Segmental long bone regeneration guided by degradable synthetic polymeric scaffolds
Recent developments in synthetic bone grafting materials and adjuvant therapeutic agents have opened the door to the regenerative reconstruction of critical-size long bone segmental defects resulting from trauma, osteoporotic fractures or tumour resections. Polymeric scaffolds with controlled macroporosities, degradability, useful surgical handling characteristics, and the ability to deliver biotherapeutics to promote new bone ingrowth have been developed for this challenging orthopaedic application. This review highlights major classes of degradable synthetic polymers and their biomineral composites, including conventional and amphiphilic polyesters, polyanhydrides, polycarbonates, and polyethylene glycol-based hydrogels, that have been explored for the regenerative reconstruction of critical-size long bone segmental defects over the past two decades. The pros and cons of these synthetic scaffold materials are presented in the context of enabling or impeding the functional (mechanical and radiographic) repair of a long bone segmental defect, with the long bone regeneration outcomes compared with healthy long bone controls or results achieved with current grafting standards.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
1. Bauer, T. W.; Muschler, G. F. Bone graft materials. An overview of the basic science. Clin Orthop Relat Res. 2000, 10-27.
2. Beekley, A. C.; Starnes, B. W.; Sebesta, J. A. Lessons learned from modern military surgery. Surg Clin North Am. 2007, 87, 157-184, vii.
3. Brown, K. V.; Guthrie, H. C.; Ramasamy, A.; Kendrew, J. M.; Clasper, J. Modern military surgery: lessons from Iraq and Afghanistan. J Bone Joint Surg Br. 2012, 94, 536-543.
4. DeCoster, T. A.; Gehlert, R. J.; Mikola, E. A.; Pirela-Cruz, M. A. Management of posttraumatic segmental bone defects. J Am Acad Orthop Surg. 2004, 12, 28-38.
5. Mauffrey, C.; Barlow, B. T.; Smith, W. Management of segmental bone defects. J Am Acad Orthop Surg. 2015, 23, 143-153.
6. Winkler, T.; Sass, F. A.; Duda, G. N.; Schmidt-Bleek, K. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Joint Res. 2018, 7, 232-243.
7. Lauthe, O.; Soubeyrand, M.; Babinet, A.; Dumaine, V.; Anract, P.; Biau, D. J. The indications and donor-site morbidity of tibial cortical strut autografts in the management of defects in long bones. Bone Joint J. 2018, 100-B, 667-674.
8. Hopp, S. G.; Dahners, L. E.; Gilbert, J. A. A study of the mechanical strength of long bone defects treated with various bone autograft substitutes: an experimental investigation in the rabbit. J Orthop Res. 1989, 7, 579-584.
9. Chiarello, E.; Cadossi, M.; Tedesco, G.; Capra, P.; Calamelli, C.; Shehu, A.; Giannini, S. Autograft, allograft and bone substitutes in reconstructive orthopedic surgery. Aging Clin Exp Res. 2013, 25 Suppl 1, S101-103.
10. Bostrom, M. P.; Seigerman, D. A. The clinical use of allografts, demineralized bone matrices, synthetic bone graft substitutes and osteoinductive growth factors: a survey study. HSS J. 2005, 1, 9-18.
11. Betz, R. R. Limitations of autograft and allograft: new synthetic solutions. Orthopedics. 2002, 25, s561-570.
12. Sorger, J. I.; Hornicek, F. J.; Zavatta, M.; Menzner, J. P.; Gebhardt, M. C.; Tomford, W. W.; Mankin, H. J. Allograft fractures revisited. Clin Orthop Relat Res. 2001, 66-74.
13. Finkemeier, C. G. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am. 2002, 84, 454-464.
14. Boyce, T.; Edwards, J.; Scarborough, N. Allograft bone. The influence of processing on safety and performance. Orthop Clin North Am. 1999, 30, 571-581.
15. Kuttappan, S.; Mathew, D.; Nair, M. B. Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering - A mini review. Int J Biol Macromol. 2016, 93, 1390-1401.
16. Cobos, J. A.; Lindsey, R. W.; Gugala, Z. The cylindrical titanium mesh cage for treatment of a long bone segmental defect: description of a new technique and report of two cases. J Orthop Trauma. 2000, 14, 54-59.
17. Attias, N.; Lindsey, R. W. Case reports: management of large segmental tibial defects using a cylindrical mesh cage. Clin Orthop Relat Res. 2006, 450, 259-266.
18. Marcacci, M.; Kon, E.; Moukhachev, V.; Lavroukov, A.; Kutepov, S.; Quarto, R.; Mastrogiacomo, M.; Cancedda, R. Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng. 2007, 13, 947-955.
19. Kasten, P.; Vogel, J.; Geiger, F.; Niemeyer, P.; Luginbühl, R.; Szalay, K. The effect of platelet-rich plasma on healing in critical-size long-bone defects. Biomaterials. 2008, 29, 3983-3992.
20. Geiger, M.; Li, R. H.; Friess, W. Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev. 2003, 55, 1613-1629.
21. Raina, D. B.; Qayoom, I.; Larsson, D.; Zheng, M. H.; Kumar, A.; Isaksson, H.; Lidgren, L.; Tägil, M. Guided tissue engineering for healing of cancellous and cortical bone using a combination of biomaterial based scaffolding and local bone active molecule delivery. Biomaterials. 2019, 188, 38-49.
22. Lissenberg-Thunnissen, S. N.; de Gorter, D. J.; Sier, C. F.; Schipper, I. B. Use and efficacy of bone morphogenetic proteins in fracture healing. Int Orthop. 2011, 35, 1271-1280.
23. Zara, J. N.; Siu, R. K.; Zhang, X.; Shen, J.; Ngo, R.; Lee, M.; Li, W.; Chiang, M.; Chung, J.; Kwak, J.; Wu, B. M.; Ting, K.; Soo, C. High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo. Tissue Eng Part A. 2011, 17, 1389-1399.
24. Tazaki, J.; Murata, M.; Akazawa, T.; Yamamoto, M.; Ito, K.; Arisue, M.; Shibata, T.; Tabata, Y. BMP-2 release and dose-response studies in hydroxyapatite and beta-tricalcium phosphate. Biomed Mater Eng. 2009, 19, 141-146.
25. Mines, D.; Gu, Y.; Kou, T. D.; Cooper, G. S. Recombinant human bone morphogenetic protein-2 and pancreatic cancer: a retrospective cohort study. Pharmacoepidemiol Drug Saf. 2011, 20, 111-118.
26. Lee, J.; Byun, H.; Madhurakkat Perikamana, S. K.; Lee, S.; Shin, H. Current advances in immunomodulatory biomaterials for bone regeneration. Adv Healthc Mater. 2019, 8, e1801106.
27. Chocholata, P.; Kulda, V.; Babuska, V. Fabrication of scaffolds for bone-tissue regeneration. Materials (Basel). 2019, 12, 568.
28. Zhang, B.; Song, J. 3D-printed biomaterials for guided tissue regeneration. Small Methods. 2018, 2, 1700306.
29. Jang, J. H.; Castano, O.; Kim, H. W. Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Deliv Rev. 2009, 61, 1065-1083.
30. Moutos, F. T.; Freed, L. E.; Guilak, F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat Mater. 2007, 6, 162-167.
31. Moutos, F. T.; Glass, K. A.; Compton, S. A.; Ross, A. K.; Gersbach, C. A.; Guilak, F.; Estes, B. T. Anatomically shaped tissue-engineered cartilage with tunable and inducible anticytokine delivery for biological joint resurfacing. Proc Natl Acad Sci U S A. 2016, 113, E4513-4522.
32. Kanczler, J. M.; Oreffo, R. O. Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater. 2008, 15, 100-114.
33. Smith, R. Biodegradable Polymers for Industrial Applications. Woodhead Publishing: 2005.
34. Cortizo, M. S.; Belluzo, M. S. Biodegradable polymers for bone tissue engineering. In Industrial applications of renewable biomass products: past, present and future, Goyanes, S. N.; D’Accorso, N. B., eds.; Springer International Publishing: Cham, 2017; pp 47-74.
35. Webb, A. R.; Yang, J.; Ameer, G. A. Biodegradable polyester elastomers in tissue engineering. Expert Opin Biol Ther. 2004, 4, 801-812.
36. Narayanan, G.; Vernekar, V. N.; Kuyinu, E. L.; Laurencin, C. T. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv Drug Deliv Rev. 2016, 107, 247-276.
37. Temenoff, J. S.; Mikos, A. G. Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials. 2000, 21, 2405-2412.
38. Kirker-Head, C. A.; Gerhart, T. N.; Armstrong, R.; Schelling, S. H.; Carmel, L. A. Healing bone using recombinant human bone morphogenetic protein 2 and copolymer. Clin Orthop Relat Res. 1998, 205-217.
39. Kokubo, S.; Mochizuki, M.; Fukushima, S.; Ito, T.; Nozaki, K.; Iwai, T.; Takahashi, K.; Yokota, S.; Miyata, K.; Sasaki, N. Long-term stability of bone tissues induced by an osteoinductive biomaterial, recombinant human bone morphogenetic protein-2 and a biodegradable carrier. Biomaterials. 2004, 25, 1795-1803.
40. Nancollas, G. H.; Henneman, Z. J. Calcium oxalate: calcium phosphate transformations. Urol Res. 2010, 38, 277-280.
41. Chung, W. J.; Kwon, K. Y.; Song, J.; Lee, S. W. Evolutionary screening of collagen-like peptides that nucleate hydroxyapatite crystals. Langmuir. 2011, 27, 7620-7628.
42. Godavitarne, C.; Robertson, A.; Peters, J.; Rogers, B. Biodegradable materials. Orthop Trauma. 2017, 31, 316-320.
43. Cancedda, R.; Giannoni, P.; Mastrogiacomo, M. A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials. 2007, 28, 4240-4250.
44. Reichert, J. C.; Cipitria, A.; Epari, D. R.; Saifzadeh, S.; Krishnakanth, P.; Berner, A.; Woodruff, M. A.; Schell, H.; Mehta, M.; Schuetz, M. A.; Duda, G. N.; Hutmacher, D. W. A tissue engineering solution for segmental defect regeneration in load-bearing long bones. Sci Transl Med. 2012, 4, 141ra193.
45. Jakus, A. E.; Rutz, A. L.; Jordan, S. W.; Kannan, A.; Mitchell, S. M.; Yun, C.; Koube, K. D.; Yoo, S. C.; Whiteley, H. E.; Richter, C. P.; Galiano, R. D.; Hsu, W. K.; Stock, S. R.; Hsu, E. L.; Shah, R. N. Hyperelastic “bone”: A highly versatile, growth factor-free, osteoregenerative, scalable, and surgically friendly biomaterial. Sci Transl Med. 2016, 8, 358ra127.
46. Kaito, T.; Myoui, A.; Takaoka, K.; Saito, N.; Nishikawa, M.; Tamai, N.; Ohgushi, H.; Yoshikawa, H. Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA-PEG/hydroxyapatite composite. Biomaterials. 2005, 26, 73-79.
47. Yoneda, M.; Terai, H.; Imai, Y.; Okada, T.; Nozaki, K.; Inoue, H.; Miyamoto, S.; Takaoka, K. Repair of an intercalated long bone defect with a synthetic biodegradable bone-inducing implant. Biomaterials. 2005, 26, 5145-5152.
48. Zhang, B.; Filion, T. M.; Kutikov, A. B.; Song, J. Facile stem cell delivery to bone grafts enabled by smart shape recovery and stiffening of degradable synthetic periosteal membranes. Adv Funct Mater. 2017, 27, 1604784.
49. Zhang, B.; DeBartolo, J. E.; Song, J. Shape recovery with concomitant mechanical strengthening of amphiphilic shape memory polymers in warm water. ACS Appl Mater Interfaces. 2017, 9, 4450-4456.
50. Kutikov, A. B.; Gurijala, A.; Song, J. Rapid prototyping amphiphilic polymer/hydroxyapatite composite scaffolds with hydration-induced self-fixation behavior. Tissue Eng Part C Methods. 2015, 21, 229-241.
51. Kutikov, A. B.; Song, J. An amphiphilic degradable polymer/hydroxyapatite composite with enhanced handling characteristics promotes osteogenic gene expression in bone marrow stromal cells. Acta Biomater. 2013, 9, 8354-8364.
52. Kutikov, A. B.; Reyer, K. A.; Song, J. Shape memory performance of thermoplastic amphiphilic triblock copolymer poly(D,L-lactic acid-co-ethylene glycol-co-D,L-lactic acid) (PELA)/hydroxyapatite composites. Macromol Chem Phys. 2014, 215, 2482-2490.
53. Kutikov, A. B.; Skelly, J. D.; Ayers, D. C.; Song, J. Templated repair of long bone defects in rats with bioactive spiral-wrapped electrospun amphiphilic polymer/hydroxyapatite scaffolds. ACS Appl Mater Interfaces. 2015, 7, 4890-4901.
54. Zhang, B.; Skelly, J. D.; Maalouf, J. R.; Ayers, D. C.; Song, J. Multifunctional scaffolds for facile implantation, spontaneous fixation, and accelerated long bone regeneration in rodents. Sci Transl Med. 2019, 11, eaau7411.
55. Peter, S. J. Yaszemski, M. J. Suggs, L. J. Payne, R. G. Langer, R. Hayes, W. C. Unroe, M. R. Alemany, L. B. Engel, P. S. Mikos, A. G. Characterization of partially saturated poly(propylene fumarate) for orthopaedic application. J Biomater Sci Polym Ed. 1997, 8, 893-904.
56. Temenoff, J. S. Mikos, A. G. Review: tissue engineering for regeneration of articular cartilage. Biomaterials. 2000, 21, 431-440.
57. Domb, A. J. Manor, N. Elmalak, O. Biodegradable bone cement compositions based on acrylate and epoxide terminated poly(propylene fumarate) oligomers and calcium salt compositions. Biomaterials. 1996, 17, 411-417.
58. Peter, S. J. Kim, P. Yasko, A. W. Yaszemski, M. J. Mikos, A. G. Crosslinking characteristics of an injectable poly(propylene fumarate)/beta-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement. J Biomed Mater Res. 1999, 44, 314-321.
59. Lee, K. W. Wang, S. Lu, L. Jabbari, E. Currier, B. L. Yaszemski, M. J. Fabrication and characterization of poly(propylene fumarate) scaffolds with controlled pore structures using 3-dimensional printing and injection molding. Tissue Eng. 2006, 12, 2801-2811.
60. Henslee, A. M. Spicer, P. P. Yoon, D. M. Nair, M. B. Meretoja, V. V. Witherel, K. E. Jansen, J. A. Mikos, A. G. Kasper, F. K. Biodegradable composite scaffolds incorporating an intramedullary rod and delivering bone morphogenetic protein-2 for stabilization and bone regeneration in segmental long bone defects. Acta Biomater. 2011, 7, 3627-3637.
61. Hedberg, E. L. Kroese-Deutman, H. C. Shih, C. K. Crowther, R. S. Carney, D. H. Mikos, A. G. Jansen, J. A. Effect of varied release kinetics of the osteogenic thrombin peptide TP508 from biodegradable, polymeric scaffolds on bone formation in vivo. J Biomed Mater Res A. 2005, 72, 343-353.
62. Kumar, N. Langer, R. S. Domb, A. J. Polyanhydrides: an overview. Adv Drug Deliv Rev. 2002, 54, 889-910.
63. Basu, A. Domb, A. J. Recent advances in polyanhydride based biomaterials. Adv Mater. 2018, 30, e1706815.
64. Katti, D. S. Lakshmi, S. Langer, R. Laurencin, C. T. Toxicity, biodegradation and elimination of polyanhydrides. Adv Drug Deliv Rev. 2002, 54, 933-961.
65. Subramanian, S. Mitchell, A. Yu, W. Snyder, S. Uhrich, K. O’Connor, J. P. Salicylic acid-based polymers for guided bone regeneration using bone morphogenetic protein-2. Tissue Eng Part A. 2015, 21, 2013-2024.
66. Giannoudis, P. V. MacDonald, D. A. Matthews, S. J. Smith, R. M. Furlong, A. J. De Boer, P. Nonunion of the femoral diaphysis. The influence of reaming and non-steroidal anti-inflammatory drugs. J Bone Joint Surg Br. 2000, 82, 655-658.
67. Goodman, S. Ma, T. Trindade, M. Ikenoue, T. Matsuura, I. Wong, N. Fox, N. Genovese, M. Regula, D. Smith, R. L. COX-2 selective NSAID decreases bone ingrowth in vivo. J Orthop Res. 2002, 20, 1164-1169.
68. Simon, A. M. O’Connor, J. P. Dose and time-dependent effects of cyclooxygenase-2 inhibition on fracture-healing. J Bone Joint Surg Am. 2007, 89, 500-511.
69. Hauenstein, O. Agarwal, S. Greiner, A. Bio-based polycarbonate as synthetic toolbox. Nat Commun. 2016, 7, 11862.
70. Legrand, D. G. Bendler, J. T. Handbook of polycarbonate science and technology. CRC Press: Boca Raton, 2000.
71. Calafat, A. M. Weuve, J. Ye, X. Jia, L. T. Hu, H. Ringer, S. Huttner, K. Hauser, R. Exposure to bisphenol A and other phenols in neonatal intensive care unit premature infants. Environ Health Perspect. 2009, 117, 639-644.
72. Kim, J. G. Chemical recycling of poly(bisphenol A carbonate). Polym Chem. 2020, 11, 4830-4849.
73. Pêgo, A. P. Poot, A. A. Grijpma, D. W. Feijen, J. Copolymers of trimethylene carbonate and epsilon-caprolactone for porous nerve guides: synthesis and properties. J Biomater Sci Polym Ed. 2001, 12, 35-53.
74. Pêgo, A. P. Poot, A. A. Grijpma, D. W. Feijen, J. In vitro degradation of trimethylene carbonate based (co)polymers. Macromol Biosci. 2002, 2, 411-419.
75. Rokicki, G. Aliphatic cyclic carbonates and spiroorthocarbonates as monomers. Prog Polym Sci. 2000, 25, 259-342.
76. Bat, E. Kothman, B. H. Higuera, G. A. van Blitterswijk, C. A. Feijen, J. Grijpma, D. W. Ultraviolet light crosslinking of poly(trimethylene carbonate) for elastomeric tissue engineering scaffolds. Biomaterials. 2010, 31, 8696-8705.
77. Dankers, P. Y. W. Zhang, Z. Wisse, E. Grijpma, D. W. Sijbesma, R. P. Feijen, J. Meijer, E. W. Oligo(trimethylene carbonate)-based supramolecular biomaterials. Macromolecules. 2006, 39, 8763-8771.
78. Zhu, K. J. Hendren, R. W. Jensen, K. Pitt, C. G. Synthesis, properties, and biodegradation of poly(1,3-trimethylene carbonate). Macromolecules. 1991, 24, 1736-1740.
79. Feng, J. Zhuo, R.-X. Zhang, X.-Z. Construction of functional aliphatic polycarbonates for biomedical applications. Prog Polym Sci. 2012, 37, 211-236.
80. Xia, Y. Yao, J. Shao, C. H. Shen, X. Y. Xie, L. Z. Chen, G. Peng, S. S. Zhang, F. M. Gu, N. Biodegradable poly(butylene-carbonate) porous membranes for guided bone regeneration: In vitro and in vivo studies. J Bioact Compatible Polym. 2013, 28, 621-636.
81. van Leeuwen, A. C. Yuan, H. Passanisi, G. van der Meer, J. W. de Bruijn, J. D. van Kooten, T. G. Grijpma, D. W. Bos, R. R. Poly(trimethylene carbonate) and biphasic calcium phosphate composites for orbital floor reconstruction: a feasibility study in sheep. Eur Cell Mater. 2014, 27, 81-96; discussion 96-97.
82. Han, Y. Shi, Q. Hu, J. Du, Q. Chen, X. Jing, X. Grafting BSA onto poly[(L-lactide)-co-carbonate] microspheres by click chemistry. Macromol Biosci. 2008, 8, 638-644.
83. Xu, J. Prifti, F. Song, J. A versatile monomer for preparing well-defined functional polycarbonates and poly(ester-carbonates). Macromolecules. 2011, 44, 2660-2667.
84. Chen, W. Yang, H. Wang, R. Cheng, R. Meng, F. Wei, W. Zhong, Z. Versatile synthesis of functional biodegradable polymers by combining ring-opening polymerization and postpolymerization modification via michael-type addition reaction. Macromolecules. 2010, 43, 201-207.
85. Kolb, H. C. Finn, M. G. Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl. 2001, 40, 2004-2021.
86. Agard, N. J. Prescher, J. A. Bertozzi, C. R. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc. 2004, 126, 15046-15047.
87. Tangpasuthadol, V. Pendharkar, S. M. Peterson, R. C. Kohn, J. Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices. Biomaterials. 2000, 21, 2379-2387.
88. Kohn, J. Langer, R. Polymerization reactions involving the side chains of .alpha.-L-amino acids. J Am Chem Soc. 1987, 109, 817-820.
89. Pyhältö, T. Lapinsuo, M. Pätiälä, H. Pelto, M. Törmälä, P. Rokkanen, P. Fixation of distal femoral osteotomies with self-reinforced poly(desamino tyrosyl-tyrosine ethyl ester carbonate) rods: an experimental study on rats. J Orthop Sci. 2002, 7, 549-556.
90. Abramson, S. D. Seyda, A. Sit, P. S. Kohn, J. Characterization of degradable polymers for orthopedic application. In Polymer based systems on tissue engineering, replacement and regeneration, Reis, R. L. Cohn, D., Eds.; Springer Netherlands: Dordrecht, 2002; pp 125-138.
91. Hooper, K. A. Macon, N. D. Kohn, J. Comparative histological evaluation of new tyrosine-derived polymers and poly (L-lactic acid) as a function of polymer degradation. J Biomed Mater Res. 1998, 41, 443-454.
92. Choueka, J. Charvet, J. L. Koval, K. J. Alexander, H. James, K. S. Hooper, K. A. Kohn, J. Canine bone response to tyrosine-derived polycarbonates and poly(L-lactic acid). J Biomed Mater Res. 1996, 31, 35-41.
93. Magno, M. H. R. Kim, J. Srinivasan, A. McBride, S. Bolikal, D. Darr, A. Hollinger, J. O. Kohn, J. Synthesis, degradation and biocompatibility of tyrosine-derived polycarbonate scaffolds. J Mater Chem. 2010, 20, 8885-8893.
94. Saxena, S. Chang, W. Fakhrzadeh, A. Murthy, N. S. Zhang, W. Kohn, J. Yelick, P. C. Calcium phosphate enriched synthetic tyrosine-derived polycarbonate - dicalcium phosphate dihydrate polymer scaffolds for enhanced bone regeneration. Materialia. 2020, 9, 100616.
95. Asikainen, A. J. Noponen, J. Mesimäki, K. Laitinen, O. Peltola, J. Pelto, M. Kellomäki, M. Ashammakhi, N. Lindqvist, C. Suuronen, R. Tyrosine derived polycarbonate membrane is useful for guided bone regeneration in rabbit mandibular defects. J Mater Sci Mater Med. 2005, 16, 753-758.
96. Asikainen, A. J. Noponen, J. Lindqvist, C. Pelto, M. Kellomäki, M. Juuti, H. Pihlajamäki, H. Suuronen, R. Tyrosine-derived polycarbonate membrane in treating mandibular bone defects. An experimental study. J R Soc Interface. 2006, 3, 629-635.
97. Kim, J. Magno, M. H. Waters, H. Doll, B. A. McBride, S. Alvarez, P. Darr, A. Vasanji, A. Kohn, J. Hollinger, J. O. Bone regeneration in a rabbit critical-sized calvarial model using tyrosine-derived polycarbonate scaffolds. Tissue Eng Part A. 2012, 18, 1132-1139.
98. Zhang, W. Zhang, Z. Chen, S. Macri, L. Kohn, J. Yelick, P. C. Mandibular jaw bone regeneration using human dental cell-seeded tyrosine-derived polycarbonate scaffolds. Tissue Eng Part A. 2016, 22, 985-993.
99. Kim, J. McBride, S. Donovan, A. Darr, A. Magno, M. H. Hollinger, J. O. Tyrosine-derived polycarbonate scaffolds for bone regeneration in a rabbit radius critical-size defect model. Biomed Mater. 2015, 10, 035001.
100. Tangpasuthadol, V. Pendharkar, S. M. Kohn, J. Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part I: study of model compounds. Biomaterials. 2000, 21, 2371-2378.
101. Han, S. H. Jung, S. H. Lee, J. H. Preparation of beta-tricalcium phosphate microsphere-hyaluronic acid-based powder gel composite as a carrier for rhBMP-2 injection and evaluation using long bone segmental defect model. J Biomater Sci Polym Ed. 2019, 30, 679-693.
102. Kolambkar, Y. M. Dupont, K. M. Boerckel, J. D. Huebsch, N. Mooney, D. J. Hutmacher, D. W. Guldberg, R. E. An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials. 2011, 32, 65-74.
103. Boerckel, J. D. Kolambkar, Y. M. Dupont, K. M. Uhrig, B. A. Phelps, E. A. Stevens, H. Y. García, A. J. Guldberg, R. E. Effects of protein dose and delivery system on BMP-mediated bone regeneration. Biomaterials. 2011, 32, 5241-5251.
104. Krebs, M. D. Salter, E. Chen, E. Sutter, K. A. Alsberg, E. Calcium phosphate-DNA nanoparticle gene delivery from alginate hydrogels induces in vivo osteogenesis. J Biomed Mater Res A. 2010, 92, 1131-1138.
105. Oest, M. E. Dupont, K. M. Kong, H. J. Mooney, D. J. Guldberg, R. E. Quantitative assessment of scaffold and growth factor-mediated repair of critically sized bone defects. J Orthop Res. 2007, 25, 941-950.
106. Kanczler, J. M. Ginty, P. J. White, L. Clarke, N. M. Howdle, S. M. Shakesheff, K. M. Oreffo, R. O. The effect of the delivery of vascular endothelial growth factor and bone morphogenic protein-2 to osteoprogenitor cell populations on bone formation. Biomaterials. 2010, 31, 1242-1250.
107. Boerckel, J. D. Dupont, K. M. Kolambkar, Y. M. Lin, A. S. Guldberg, R. E. In vivo model for evaluating the effects of mechanical stimulation on tissue-engineered bone repair. J Biomech Eng. 2009, 131, 084502.
108. Priddy, L. B. Chaudhuri, O. Stevens, H. Y. Krishnan, L. Uhrig, B. A. Willett, N. J. Guldberg, R. E. Oxidized alginate hydrogels for bone morphogenetic protein-2 delivery in long bone defects. Acta Biomater. 2014, 10, 4390-4399.
109. Shuang, F. Hou, S. X. Zhao, Y. T. Zhong, H. B. Xue, C. Zhu, J. L. Bu, G. Y. Cao, Z. Characterization of an injectable chitosan-demineralized bone matrix hybrid for healing critical-size long-bone defects in a rabbit model. Eur Rev Med Pharmacol Sci. 2014, 18, 740-752.
110. Kim, S. Bedigrew, K. Guda, T. Maloney, W. J. Park, S. Wenke, J. C. Yang, Y. P. Novel osteoinductive photo-cross-linkable chitosan-lactide-fibrinogen hydrogels enhance bone regeneration in critical size segmental bone defects. Acta Biomater. 2014, 10, 5021-5033.
111. Luca, L. Rougemont, A. L. Walpoth, B. H. Boure, L. Tami, A. Anderson, J. M. Jordan, O. Gurny, R. Injectable rhBMP-2-loaded chitosan hydrogel composite: osteoinduction at ectopic site and in segmental long bone defect. J Biomed Mater Res A. 2011, 96, 66-74.
112. Song, J. Saiz, E. Bertozzi, C. R. A new approach to mineralization of biocompatible hydrogel scaffolds: an efficient process toward 3-dimensional bonelike composites. J Am Chem Soc. 2003, 125, 1236-1243.
113. Song, J. Malathong, V. Bertozzi, C. R. Mineralization of synthetic polymer scaffolds: a bottom-up approach for the development of artificial bone. J Am Chem Soc. 2005, 127, 3366-3372.
114. Song, J. Xu, J. Filion, T. Saiz, E. Tomsia, A. P. Lian, J. B. Stein, G. S. Ayers, D. C. Bertozzi, C. R. Elastomeric high-mineral content hydrogel-hydroxyapatite composites for orthopedic applications. J Biomed Mater Res A. 2009, 89, 1098-1107.
115. Xu, J. Li, X. Lian, J. B. Ayers, D. C. Song, J. Sustained and localized in vitro release of BMP-2/7, RANKL, and tetracycline from FlexBone, an elastomeric osteoconductive bone substitute. J Orthop Res. 2009, 27, 1306-1311.
116. Filion, T. M. Li, X. Mason-Savas, A. Kreider, J. M. Goldstein, S. A. Ayers, D. C. Song, J. Elastomeric osteoconductive synthetic scaffolds with acquired osteoinductivity expedite the repair of critical femoral defects in rats. Tissue Eng Part A. 2011, 17, 503-511.
117. Sonnet, C. Simpson, C. L. Olabisi, R. M. Sullivan, K. Lazard, Z. Gugala, Z. Peroni, J. F. Weh, J. M. Davis, A. R. West, J. L. Olmsted-Davis, E. A. Rapid healing of femoral defects in rats with low dose sustained BMP2 expression from PEGDA hydrogel microspheres. J Orthop Res. 2013, 31, 1597-1604.
118. Almany, L. Seliktar, D. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials. 2005, 26, 2467-2477.
119. Zhang, Z. Feng, S. S. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials. 2006, 27, 4025-4033.
120. Xu, J. Filion, T. M. Prifti, F. Song, J. Cytocompatible poly(ethylene glycol)-co-polycarbonate hydrogels cross-linked by copper-free, strain-promoted click chemistry. Chem Asian J. 2011, 6, 2730-2737.
121. Xu, J. Feng, E. Song, J. Bioorthogonally cross-linked hydrogel network with precisely controlled disintegration time over a broad range. J Am Chem Soc. 2014, 136, 4105-4108.
122. Hubbell, J. A. Materials as morphogenetic guides in tissue engineering. Curr Opin Biotechnol. 2003, 14, 551-558.
123. Culver, J. C. Hoffmann, J. C. Poché, R. A. Slater, J. H. West, J. L. Dickinson, M. E. Three-dimensional biomimetic patterning in hydrogels to guide cellular organization. Adv Mater. 2012, 24, 2344-2348.
124. Lei, Y. Segura, T. DNA delivery from matrix metalloproteinase degradable poly(ethylene glycol) hydrogels to mouse cloned mesenchymal stem cells. Biomaterials. 2009, 30, 254-265.
125. Sridhar, B. V. Brock, J. L. Silver, J. S. Leight, J. L. Randolph, M. A. Anseth, K. S. Development of a cellularly degradable PEG hydrogel to promote articular cartilage extracellular matrix deposition. Adv Healthc Mater. 2015, 4, 702-713.
126. Shekaran, A. García, J. R. Clark, A. Y. Kavanaugh, T. E. Lin, A. S. Guldberg, R. E. García, A. J. Bone regeneration using an alpha 2 beta 1 integrin-specific hydrogel as a BMP-2 delivery vehicle. Biomaterials. 2014, 35, 5453-5461.
127. Rosales, A. M. Anseth, K. S. The design of reversible hydrogels to capture extracellular matrix dynamics. Nature reviews Materials. 2016, 1, 15012.
128. Chaudhuri, O. Gu, L. Klumpers, D. Darnell, M. Bencherif, S. A. Weaver, J. C. Huebsch, N. Lee, H. P. Lippens, E. Duda, G. N. Mooney, D. J. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater. 2016, 15, 326-334.
129. Tan, Y. Huang, H. Ayers, D. C. Song, J. Modulating viscoelasticity, stiffness, and degradation of synthetic cellular niches via stoichiometric tuning of covalent versus dynamic noncovalent cross-linking. ACS Cent Sci. 2018, 4, 971-981.
130. Fonseca, K. B. Granja, P. L. Barrias, C. C. Engineering proteolytically-degradable artificial extracellular matrices. Prog Polym Sci. 2014, 39, 2010-2029.
131. Chen, Y. Zhang, J. Liu, X. Wang, S. Tao, J. Huang, Y. Wu, W. Li, Y. Zhou, K. Wei, X. Chen, S. Li, X. Xu, X. Cardon, L. Qian, Z. Gou, M. Noninvasive in vivo 3D bioprinting. Sci Adv. 2020, 6, eaba7406.
132. Urciuolo, A. Poli, I. Brandolino, L. Raffa, P. Scattolini, V. Laterza, C. Giobbe, G. G. Zambaiti, E. Selmin, G. Magnussen, M. Brigo, L. De Coppi, P. Salmaso, S. Giomo, M. Elvassore, N. Intravital three-dimensional bioprinting. Nat Biomed Eng. 2020, 4, 901-915.