Three-dimensional biofabrication of an aragonite-enriched self-hardening bone graft substitute and assessment of its osteogenicity in vitro and in vivo
A self-hardening three-dimensional (3D)-porous composite bone graft consisting of 65 wt% hydroxyapatite (HA) and 35 wt% aragonite was fabricated using a 3D-Bioplotter®. New tetracalcium phosphate and dicalcium phosphate anhydrous/aragonite/gelatine paste formulae were developed to overcome the phase separation of the liquid and solid components. The mechanical properties, porosity, height and width stability of the end products were optimised through a systematic analysis of the fabrication processing parameters including printing pressure, printing speed and distance between strands. The resulting 3D-printed bone graft was confirmed to be a mixture of HA and aragonite by X-ray diffraction, Fourier transform infrared spectroscopy and energy dispersive X-ray spectroscopy. The compression strength of HA/aragonite was between 0.56 and 2.49 MPa. Cytotoxicity was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in vitro. The osteogenicity of HA/aragonite was evaluated in vitro by alkaline phosphatase assay using human umbilical cord matrix mesenchymal stem cells, and in vivo by juxtapositional implantation between the tibia and the anterior tibialis muscle in rats. The results showed that the scaffold was not toxic and supported osteogenic differentiation in vitro. HA/aragonite stimulated new bone formation that bridged host bone and intramuscular implants in vivo. We conclude that HA/aragonite is a biodegradable and conductive bone formation biomaterial that stimulates bone regeneration. Since this material is formed near 37°C, it will have great potential for incorporating bioactive molecules to suit personalised application; however, further study of its biodegradation and osteogenic capacity is warranted. The study was approved by the Animal Ethical Committee at Tongji Medical School, Huazhong University of Science and Technology (IACUC No. 738) on October 1, 2017.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
以下是您提供的文献内容,已去掉格式,保持与原文一致:
1. Holmes, R. E.; Bucholz, R. W.; Mooney, V. Porous hydroxyapatite as a bone-graft substitute in metaphyseal defects. A histometric study. J Bone Joint Surg Am. 1986, 68, 904-911.
2. Giannoudis, P. V.; Dinopoulos, H.; Tsiridis, E. Bone substitutes: an update. Injury. 2005, 36 Suppl 3, S20-27.
3. Kao, S. T.; Scott, D. D. A review of bone substitutes. Oral Maxillofac Surg Clin North Am. 2007, 19, 513-521, vi.
4. Okuda, T.; Ioku, K.; Yonezawa, I.; Minagi, H.; Gonda, Y.; Kawachi, G.; Kamitakahara, M.; Shibata, Y.; Murayama, H.; Kurosawa, H.; Ikeda, T. The slow resorption with replacement by bone of a hydrothermally synthesized pure calcium-deficient hydroxyapatite. Biomaterials. 2008, 29, 2719-2728.
5. Tonino, A. J.; van der Wal, B. C.; Heyligers, I. C.; Grimm, B. Bone remodeling and hydroxyapatite resorption in coated primary hip prostheses. Clin Orthop Relat Res. 2009, 467, 478-484.
6. Bouler, J. M.; Pilet, P.; Gauthier, O.; Verron, E. Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomater. 2017, 53, 1-12.
7. Wei, W.; Ma, G. H.; Hu, G.; Yu, D.; McLeish, T.; Su, Z. G.; Shen, Z. Y. Preparation of hierarchical hollow CaCO3 particles and the application as anticancer drug carrier. J Am Chem Soc. 2008, 130, 15808-15810.
8. Biradar, S.; Ravichandran, P.; Gopikrishnan, R.; Goornavar, V.; Hall, J. C.; Ramesh, V.; Baluchamy, S.; Jeffers, R. B.; Ramesh, G. T. Calcium carbonate nanoparticles: synthesis, characterization and biocompatibility. J Nanosci Nanotechnol. 2011, 11, 6868-6874.
9. Addadi, L.; Raz, S.; Weiner, S. Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv Mater. 2003, 15, 959-970.
10. Addadi, L.; Weiner, S. A pavement of pearl. Nature. 1997, 389, 912-913.
11. Svenskaya, Y.; Parakhonskiy, B.; Haase, A.; Atkin, V.; Lukyanets, E.; Gorin, D.; Antolini, R. Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer. Biophys Chem. 2013, 182, 11-15.
12. Küther, J.; Seshadri, R.; Knoll, W.; Tremel, W. Templated growth of calcite, vaterite and aragonite crystals on self-assembled monolayers of substituted alkylthiols on gold. J Mater Chem. 1998, 8, 641-650.
13. Wang, C.; Zhao, J.; Zhao, X.; Bala, H.; Wang, Z. Synthesis of nanosized calcium carbonate (aragonite) via a polyacrylamide inducing process. Powder Technol. 2006, 163, 134-138.
14. Islam, K. N.; Bakar, M. Z. B. A.; Noordin, M. M.; Hussein, M. Z. B.; Rahman, N. S. B. A.; Ali, M. E. Characterisation of calcium carbonate and its polymorphs from cockle shells (Anadara granosa). Powder Technol. 2011, 213, 188-191.
15. Fu, K.; Xu, Q.; Czernuszka, J.; Triffitt, J. T.; Xia, Z. Characterization of a biodegradable coralline hydroxyapatite/calcium carbonate composite and its clinical implementation. Biomed Mater. 2013, 8, 065007.
16. Kucharska, M.; Butruk, B.; Walenko, K.; Brynk, T.; Ciach, T. Fabrication of in-situ foamed chitosan/β-TCP scaffolds for bone tissue engineering application. Mater Lett. 2012, 85, 124-127.
17. Nommeots-Nomm, A.; Labbaf, S.; Devlin, A.; Todd, N.; Geng, H.; Solanki, A. K.; Tang, H. M.; Perdika, P.; Pinna, A.; Ejeian, F.; Tsigkou, O.; Lee, P. D.; Esfahani, M. H. N.; Mitchell, C. A.; Jones, J. R. Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration. Acta Biomater. 2017, 57, 449-461.
18. Yoshikawa, H.; Tamai, N.; Murase, T.; Myoui, A. Interconnected porous hydroxyapatite ceramics for bone tissue engineering. J R Soc Interface. 2009, 6 Suppl 3, S341-348.
19. Cao, H.; Kuboyama, N. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Bone. 2010, 46, 386-395.
20. Brougham, C. M.; Levingstone, T. J.; Shen, N.; Cooney, G. M.; Jockenhoevel, S.; Flanagan, T. C.; O’Brien, F. J. Freeze-drying as a novel biofabrication method for achieving a controlled microarchitecture within large, complex natural biomaterial scaffolds. Adv Healthc Mater. 2017, 6, 1700598.
21. Mi, H. Y.; Jing, X.; McNulty, J.; Salick, M. R.; Peng, X. F.; Turng, L. S. Approaches to fabricating multiple-layered vascular scaffolds using hybrid electrospinning and thermally induced phase separation methods. Ind Eng Chem Res. 2016, 55, 882-892.
22. Bose, S.; Vahabzadeh, S.; Bandyopadhyay, A. Bone tissue engineering using 3D printing. Mater Today. 2013, 16, 496-504.
23. Bracaglia, L. G.; Smith, B. T.; Watson, E.; Arumugasaamy, N.; Mikos, A. G.; Fisher, J. P. 3D printing for the design and fabrication of polymer-based gradient scaffolds. Acta Biomater. 2017, 56, 3-13.
24. Loh, Q. L.; Choong, C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev. 2013, 19, 485-502.
25. Ngo, T. D.; Kashani, A.; Imbalzano, G.; Nguyen, K. T. Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos B Eng. 2018, 143, 172-196.
26. Sobral, J. M.; Caridade, S. G.; Sousa, R. A.; Mano, J. F.; Reis, R. L. Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater. 2011, 7, 1009-1018.
27. Trombetta, R.; Inzana, J. A.; Schwarz, E. M.; Kates, S. L.; Awad, H. A. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann Biomed Eng. 2017, 45, 23-44.
28. Inzana, J. A.; Olvera, D.; Fuller, S. M.; Kelly, J. P.; Graeve, O. A.; Schwarz, E. M.; Kates, S. L.; Awad, H. A. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 2014, 35, 4026-4034.
29. Brunello, G.; Sivolella, S.; Meneghello, R.; Ferroni, L.; Gardin, C.; Piattelli, A.; Zavan, B.; Bressan, E. Powder-based 3D printing for bone tissue engineering. Biotechnol Adv. 2016, 34, 740-753.
30. Bose, S.; Saha, S. K. Synthesis of hydroxyapatite nanopowders via sucrose-templated sol–gel method. J Am Ceram Soc. 2003, 86, 1055-1057.
31. Lee, J. W.; Kim, J. Y.; Cho, D. W. Solid free-form fabrication technology and its application to bone tissue engineering. Int J Stem Cells. 2010, 3, 85-95.
32. Xu, H. H.; Wang, P.; Wang, L.; Bao, C.; Chen, Q.; Weir, M. D.; Chow, L. C.; Zhao, L.; Zhou, X.; Reynolds, M. A. Calcium phosphate cements for bone engineering and their biological properties. Bone Res. 2017, 5, 17056.
33. Ozdemir, F.; Evans, I.; Bretcanu, O. Calcium phosphate cements for medical applications. In Clinical Applications of Biomaterials: State-of-the-Art Progress, Trends, and Novel Approaches, Kaur, G., ed. Springer International Publishing: Cham, 2017; pp 91-121.
34. Pimentel, C. R.; Ko, S. K.; Caviglia, C.; Wolff, A.; Emnéus, J.; Keller, S. S.; Dufva, M. Three-dimensional fabrication of thick and densely populated soft constructs with complex and actively perfused channel network. Acta Biomater. 2018, 65, 174-184.
35. Stanton, M. M.; Samitier, J.; Sánchez, S. Bioprinting of 3D hydrogels. Lab Chip. 2015, 15, 3111-3115.
36. Gopinathan, J.; Noh, I. Recent trends in bioinks for 3D printing. Biomater Res. 2018, 22, 11.
37. Şahin, E.; Kalyon, D. M. The rheological behavior of a fast-setting calcium phosphate bone cement and its dependence on deformation conditions. J Mech Behav Biomed Mater. 2017, 72, 252-260.
38. General Administration of Quality Supervision Inspection and Quarantine of the People’s Republic of China; Standardization Administration of the People’s Republic of China. Standard test method for compressive resistance of ceramic materials. GB/T 4740-1984.
39. Biological evaluation of medical devices — Part 14: Identification and quantification of degradation products from ceramics. ISO 10993-14:2001.
40. Ma, T.; Xia, Z.; Liao, L. Effect of reaction systems and surfactant additives on the morphology evolution of hydroxyapatite nanorods obtained via a hydrothermal route. Appl Surf Sci. 2011, 257, 4384-4388.
41. Merry, J. C.; Gibson, I. R.; Best, S. M.; Bonfield, W. Synthesis and characterization of carbonate hydroxyapatite. J Mater Sci Mater Med. 1998, 9, 779-783.
42. Wilson, R. M.; Elliott, J. C.; Dowker, S. E.; Rodriguez-Lorenzo, L. M. Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite. Biomaterials. 2005, 26, 1317-1327.
43. Aminzare, M.; Eskandari, A.; Baroonian, M. H.; Berenov, A.; Razavi Hesabi, Z.; Taheri, M.; Sadrnezhaad, S. K. Hydroxyapatite nanocomposites: synthesis, sintering and mechanical properties. Ceram Int. 2013, 39, 2197-2206.
44. Ogose, A.; Hotta, T.; Kawashima, H.; Kondo, N.; Gu, W.; Kamura, T.; Endo, N. Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors. J Biomed Mater Res B Appl Biomater. 2005, 72, 94-101.
45. Oh, K. J.; Ko, Y. B.; Jaiswal, S.; Whang, I. C. Comparison of osteoconductivity and absorbability of beta-tricalcium phosphate and hydroxyapatite in clinical scenario of opening wedge high tibial osteotomy. J Mater Sci Mater Med. 2016, 27, 179.
46. Bohner, M.; Baroud, G. Injectability of calcium phosphate pastes. Biomaterials. 2005, 26, 1553-1563.
47. Gbureck, U.; Barralet, J. E.; Spatz, K.; Grover, L. M.; Thull, R. Ionic modification of calcium phosphate cement viscosity. Part I: hypodermic injection and strength improvement of apatite cement. Biomaterials. 2004, 25, 2187-2195.
48. Venkatesan, J.; Rekha, P. D.; Anil, S.; Bhatnagar, I.; Sudha, P. N.; Dechsakulwatana, C.; Kim, S. K.; Shim, M. S. Hydroxyapatite from cuttlefish bone: isolation, characterizations, and applications. Biotechnol Bioprocess Eng. 2018, 23, 383-393.
49. Ishikawa, K.; Takagi, S.; Chow, L. C.; Suzuki, K. Reaction of calcium phosphate cements with different amounts of tetracalcium phosphate and dicalcium phosphate anhydrous. J Biomed Mater Res. 1999, 46, 504-510.
50. Manassero, M.; Decambron, A.; Guillemin, N.; Petite, H.; Bizios, R.; Viateau, V. Coral scaffolds in bone tissue engineering and bone regeneration. In The Cnidaria, Past, Present and Future: The world of Medusa and her sisters, Goffredo, S.; Dubinsky, Z., eds.; Springer International Publishing: Cham, 2016; pp 691-714.
51. Sopyan, I.; Mel, M.; Ramesh, S.; Khalid, K. A. Porous hydroxyapatite for artificial bone applications. Science and Technology of Advanced Materials. 2007, 8, 116-123.
52. Sudarmadji, N.; Tan, J. Y.; Leong, K. F.; Chua, C. K.; Loh, Y. T. Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomater. 2011, 7, 530-537.
53. He, F.; Zhang, J.; Yang, F.; Zhu, J.; Tian, X.; Chen, X. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials. Mater Sci Eng C Mater Biol Appl. 2015, 50, 257-265.
54. Gerstenfeld, L. C.; Cullinane, D. M.; Barnes, G. L.; Graves, D. T.; Einhorn, T. A. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem. 2003, 88, 873-884.
55. Le Nihouannen, D.; Daculsi, G.; Saffarzadeh, A.; Gauthier, O.; Delplace, S.; Pilet, P.; Layrolle, P. Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles. Bone. 2005, 36, 1086-1093.
56. Yang, Z. J.; Yuan, H.; Zou, P.; Tong, W.; Qu, S.; Zhang, X. D. Osteogenic responses to extraskeletally implanted synthetic porous calcium phosphate ceramics: an early stage histomorphological study in dogs. J Mater Sci Mater Med. 1997, 8, 697-701.
57. Lu, J.; Yu, H.; Chen, C. Biological properties of calcium phosphate biomaterials for bone repair: a review. RSC Adv. 2018, 8, 2015-2033.
58. Habibovic, P.; Sees, T. M.; van den Doel, M. A.; van Blitterswijk, C. A.; de Groot, K. Osteoinduction by biomaterials--physicochemical and structural influences. J Biomed Mater Res A. 2006, 77, 747-762.
59. Gedrange, T.; Mai, R.; Weingaertner, J.; Hietschold, V.; Bourauel, C.; Pradel, W.; Lauer, G.; Proff, P. Finite element representation of bone substitute remodelling in the jaw bone. Biomed Tech (Berl). 2008, 53, 220-223.