·
REVIEW
·

Recent advances of medical polyhydroxyalkanoates in musculoskeletal system

Chen-Hui Mi1 Xin-Ya Qi1 Yan-Wen Ding1 Jing Zhou1 Jin-Wei Dao1,3 Dai-Xu Wei1,2,4*
Show Less
1 Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, China
2 Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong, Sichuan Province, China
3 Dehong Biomedical Engineering Research Center, Dehong Teachers’ College, Dehong, Yunnan Province, China
4 Shaanxi Key Laboratory for Carbon Neutral Technology, Xi’an, Shaanxi Province, China
Submitted: 14 October 2023 | Revised: 3 November 2023 | Accepted: 29 November 2023 | Published: 27 December 2023
Copyright © 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Infection and rejection in musculoskeletal trauma often pose challenges for natural healing, prompting the exploration of biomimetic organ and tissue transplantation as a common alternative solution. Polyhydroxyalkanoates (PHAs) are a large family of biopolyesters synthesised in microorganism, demonstrating excellent biocompatibility and controllable biodegradability for tissue remodelling and drug delivery. With different monomer-combination and polymer-types, multi-mechanical properties of PHAs making them have great application prospects in medical devices with stretching, compression, twist in long time, especially in musculoskeletal tissue engineering. This review systematically summarises the applications of PHAs in multiple tissues repair and drug release, encompassing areas such as bone, cartilage, joint, skin, tendons, ligament, cardiovascular tissue, and nervous tissue. It also discusses challenges encountered in their application, including high production costs, potential cytotoxicity, and uncontrollable particle size distribution. In conclusion, PHAs offer a compelling avenue for musculoskeletal system applications, striking a balance between biocompatibility and mechanical performance. However, addressing challenges in their production and application requires further research to unleash their full potential in tackling the complexities of musculoskeletal regeneration.

Keywords
drug delivery ; musculoskeletal system ; polyhydroxyalkanoate ; tissue engineering
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

1. Barone, R.; Szychlinska, M. A. Highlights in pathophysiology of the musculoskeletal system. Int J Mol Sci. 2023, 24, 6412.

2. Christensen, L. V. Physiology and pathophysiology of skeletal muscle contractions. Part I. Dynamic activity. J Oral Rehabil. 1986, 13, 451-461.

3. Christensen, L. V. Physiology and pathophysiology of skeletal muscle contractions. Part II. Static activity. J Oral Rehabil. 1986, 13, 463-477.

4. Evans, C. H. Advances in regenerative orthopedics. Mayo Clin Proc. 2013, 88, 1323-1339.

5. Evans, C. H.; Huard, J. Gene therapy approaches to regenerating the musculoskeletal system. Nat Rev Rheumatol. 2015, 11, 234-242.

6. Gobbi, A.; Francisco, R. A.; Lubowitz, J. H.; Allegra, F.; Canata, G. Osteochondral lesions of the talus: randomized controlled trial comparing chondroplasty, microfracture, and osteochondral autograft transplantation. Arthroscopy. 2006, 22, 1085-1092.

7. Jackson, D. W.; Grood, E. S.; Goldstein, J. D.; Rosen, M. A.; Kurzweil, P. R.; Cummings, J. F.; Simon, T. M. A comparison of patellar tendon autograft and allograft used for anterior cruciate ligament reconstruction in the goat model. Am J Sports Med. 1993, 21, 176-185.

8. Kolesky, D. B.; Truby, R. L.; Gladman, A. S.; Busbee, T. A.; Homan, K. A.; Lewis, J. A. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014, 26, 3124-3130.

9. Ren, Z. W.; Wang, Z. Y.; Ding, Y. W.; Dao, J. W.; Li, H. R.; Ma, X.; Yang, X. Y.; Zhou, Z. Q.; Liu, J. X.; Mi, C. H.; Gao, Z. C.; Pei, H.; Wei, D. X. Polyhydroxyalkanoates: the natural biopolyester for future medical innovations. Biomater Sci. 2023, 11, 6013-6034.

10. Zhao, X. H.; Niu, Y. N.; Mi, C. H.; Gong, H. L.; Yang, X. Y.; Cheng, J. S. Y.; Zhou, Z. Q.; Liu, J. X.; Peng, X. L.; Wei, D. X. Electrospinning nanofibers of microbial polyhydroxyalkanoates for applications in medical tissue engineering. J Polym Sci. 2021, 59, 1994-2013.

11. Wang, Z. Y.; Zhang, X. W.; Ding, Y. W.; Ren, Z. W.; Wei, D. X. Natural biopolyester microspheres with diverse structures and surface topologies as micro-devices for biomedical applications. Smart Mater Med. 2023, 4, 15-36.

12. Anderson, A. J.; Dawes, E. A. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev. 1990, 54, 450-472.

13. Palencia, M.; Lerma, T. A.; Garcés, V.; Mora, M. A.; Martínez, J. M.; Palencia, S. L. Chapter 19 - Functional and eco-friendly polymers in textile applications. In Eco-friendly functional polymers, Palencia, M.; Lerma, T. A.; Garcés, V.; Mora, M. A.; Martínez, J. M.; Palencia, S. L., eds. Elsevier: 2021; pp 285-293.

14. Mastrogiacomo, M.; Muraglia, A.; Komlev, V.; Peyrin, F.; Rustichelli, F.; Crovace, A.; Cancedda, R. Tissue engineering of bone: search for a better scaffold. Orthod Craniofac Res. 2005, 8, 277-284.

15. Troschl, C.; Meixner, K.; Drosg, B. Cyanobacterial PHA production - review of recent advances and a summary of three years’ working experience running a pilot plant. Bioengineering (Basel). 2017, 4, 26.

16. Peng, X. L.; Cheng, J. S.; Gong, H. L.; Yuan, M. D.; Zhao, X. H.; Li, Z.; Wei, D. X. Advances in the design and development of SARS-CoV-2 vaccines. Mil Med Res. 2021, 8, 67.

17. Liu, J.; Zhou, Z.; Li, H.; Yang, X.; Wang, Z.; Xiao, J.; Wei, D. X. Current status and challenges in the application of microbial PHA particles. Particuology. 2024, 87, 286-302.

18. Li, X. T.; Zhang, Y.; Chen, G. Q. Nanofibrous polyhydroxyalkanoate matrices as cell growth supporting materials. Biomaterials. 2008, 29, 3720-3728.

19. Bassas-Galià, M.; Gonzalez, A.; Micaux, F.; Gaillard, V.; Piantini, U.; Schintke, S.; Zinn, M.; Mathieu, M. Chemical modification of polyhydroxyalkanoates (PHAs) for the preparation of hybrid biomaterials. Chimia. 2015, 69, 627-630.

20. Ai, M.; Zhu, Y.; Jia, X. Recent advances in constructing artificial microbial consortia for the production of medium-chain-length polyhydroxyalkanoates. World J Microbiol Biotechnol. 2021, 37, 2.

21. Chen, S.; Liu, Q.; Wang, H.; Zhu, B.; Yu, F.; Chen, G. Q.; Inoue, Y. Polymorphic crystallization of fractionated microbial medium-chain-length polyhydroxyalkanoates. Polymer. 2009, 50, 4378-4388.

22. Grigore, M. E.; Grigorescu, R. M.; Iancu, L.; Ion, R. M.; Zaharia, C.; Andrei, E. R. Methods of synthesis, properties and biomedical applications of polyhydroxyalkanoates: a review. J Biomater Sci Polym Ed. 2019, 30, 695-712.

23. Witholt, B.; Kessler, B. Perspectives of medium chain length poly(hydroxyalkanoates), a versatile set of bacterial bioplastics. Curr Opin Biotechnol. 1999, 10, 279-285.

24. Ishak, K. A.; Velayutham, T. S.; Annuar, M. S. M.; Sirajudeen, A. A. O. Structure-property interpretation of biological polyhydroxyalkanoates with different monomeric composition: dielectric spectroscopy investigation. Int J Biol Macromol. 2021, 169, 311-320.

25. Savenkova, L.; Gercberga, Z.; Nikolaeva, V.; Dzene, A.; Bibers, I.; Kalnin, M. Mechanical properties and biodegradation characteristics of PHB-based films. Process Biochem. 2000, 35, 573-579.

26. Ciesielski, S.; Pokoj, T.; Mozejko, J.; Klimiuk, E. Molecular identification of polyhydroxyalkanoates-producing bacteria isolated from enriched microbial community. Pol J Microbiol. 2013, 62, 45-50.

27. Wecker, P.; Moppert, X.; Simon-Colin, C.; Costa, B.; Berteaux-Lecellier, V. Discovery of a mcl-PHA with unexpected biotechnical properties: the marine environment of French Polynesia as a source for PHA-producing bacteria. AMB Express. 2015, 5, 74.

28. Koller, M. Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules. 2018, 23, 362.

29. Williams, S. F.; Martin, D. P.; Horowitz, D. M.; Peoples, O. P. PHA applications: addressing the price performance issue: I. Tissue engineering. Int J Biol Macromol. 1999, 25, 111-121.

30. Lim, J.; You, M.; Li, J.; Li, Z. Emerging bone tissue engineering via polyhydroxyalkanoate (PHA)-based scaffolds. Mater Sci Eng C Mater Biol Appl. 2017, 79, 917-929.

31. Chen, G. Q.; Wu, Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials. 2005, 26, 6565-6578.

32. Wang, Y. W.; Wu, Q.; Chen, G. Q. Attachment, proliferation and differentiation of osteoblasts on random biopolyester poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds. Biomaterials. 2004, 25, 669-675.

33. Hu, Y. J.; Wei, X.; Zhao, W.; Liu, Y. S.; Chen, G. Q. Biocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) with bone marrow mesenchymal stem cells. Acta Biomater. 2009, 5, 1115-1125.

34. Wei, X.; Hu, Y. J.; Xie, W. P.; Lin, R. L.; Chen, G. Q. Influence of poly(3-hydroxybutyrate-co-4-hydroxybutyrate-co-3-hydroxyhexanoate) on growth and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. J Biomed Mater Res A. 2009, 90, 894-905.

35. Wu, Y. L.; Wang, H.; Qiu, Y. K.; Liow, S. S.; Li, Z.; Loh, X. J. PHB-based gels as delivery agents of chemotherapeutics for the effective shrinkage of tumors. Adv Healthc Mater. 2016, 5, 2679-2685.

36. Marcello, E.; Maqbool, M.; Nigmatullin, R.; Cresswell, M.; Jackson, P. R.; Basnett, P.; Knowles, J. C.; Boccaccini, A. R.; Roy, I. Antibacterial composite materials based on the combination of polyhydroxyalkanoates with selenium and strontium co-substituted hydroxyapatite for bone regeneration. Front Bioeng Biotechnol. 2021, 9, 647007.

37. Shishatskaya, E. I.; Volova, T. G. A comparative investigation of biodegradable polyhydroxyalkanoate films as matrices for in vitro cell cultures. J Mater Sci Mater Med. 2004, 15, 915-923.

38. Ji, G. Z.; Wei, X.; Chen, G. Q. Growth of human umbilical cord Wharton’s Jelly-derived mesenchymal stem cells on the terpolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate). J Biomater Sci Polym Ed. 2009, 20, 325-339.

39. Ahmed, T.; Marçal, H.; Lawless, M.; Wanandy, N. S.; Chiu, A.; Foster, L. J. Polyhydroxybutyrate and its copolymer with polyhydroxyvalerate as biomaterials: influence on progression of stem cell cycle. Biomacromolecules. 2010, 11, 2707-2715.

40. Yang, M.; Zhu, S.; Chen, Y.; Chang, Z.; Chen, G.; Gong, Y.; Zhao, N.; Zhang, X. Studies on bone marrow stromal cells affinity of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Biomaterials. 2004, 25, 1365-1373.

41. Tesema, Y.; Raghavan, D.; Stubbs Iii, J. Bone cell viability on collagen immobilized poly(3-hydroxybutrate-co-3-hydroxyvalerate) membrane: Effect of surface chemistry. J Appl Polym Sci. 2004, 93, 2445-2453.

42. Chen, X.; Zhang, X.; Zhu, Y.; Zhang, J.; Hu, P. Surface modification of polyhydroxyalkanoates by ion implantation. Characterization and cytocompatibility improvement. Polym J. 2003, 35, 148-154.

43. Wu, T. P.; Hu, R.; Zhang, X. B.; Li, W.; Chen, F. Biocompatibility of modified poly-β-hydroxybutyric acid to adrenocortical cells. J Wuhan Univ Technol Mater Sci Ed. 2004, 19, 38-40.

44. Yu, B. Y.; Chen, P. Y.; Sun, Y. M.; Lee, Y. T.; Young, T. H. Effects of the surface characteristics of polyhydroxyalkanoates on the metabolic activities and morphology of human mesenchymal stem cells. J Biomater Sci Polym Ed. 2010, 21, 17-36.

45. Webb, W. R.; Dale, T. P.; Lomas, A. J.; Zeng, G.; Wimpenny, I.; El Haj, A. J.; Forsyth, N. R.; Chen, G. Q. The application of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds for tendon repair in the rat model. Biomaterials. 2013, 34, 6683-6694.

46. Volova, T. G.; Shishatskaya, E. I.; Nikolaeva, E. D.; Sinskey, A. J. In vivo study of 2D PHA matrices of different chemical compositions: tissue reactions and biodegradations. Mater Sci Technol. 2014, 30, 549-557.

47. Qu, X. H.; Wu, Q.; Zhang, K. Y.; Chen, G. Q. In vivo studies of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) based polymers: biodegradation and tissue reactions. Biomaterials. 2006, 27, 3540-3548.

48. Fan, L.; Hu, L.; Xie, J.; He, Z.; Zheng, Y.; Wei, D.; Yao, D.; Su, F. Biosafe, self-adhesive, recyclable, tough, and conductive hydrogels for multifunctional sensors. Biomater Sci. 2021, 9, 5884-5896.

49. Li, Y.; Xiao, L.; Wei, D.; Liu, S.; Zhang, Z.; Lian, R.; Wang, L.; Chen, Y.; Jiang, J.; Xiao, Y.; Liu, C.; Li, Y.; Zhao, J. Injectable biomimetic hydrogel guided functional bone regeneration by adapting material degradation to tissue healing. Adv Funct Mater. 2023, 33, 2213047.

50. Dwivedi, R.; Pandey, R.; Kumar, S.; Mehrotra, D. Polyhydroxyalkanoates (PHA): role in bone scaffolds. J Oral Biol Craniofac Res. 2020, 10, 389-392.

51. Anjum, A.; Zuber, M.; Zia, K. M.; Noreen, A.; Anjum, M. N.; Tabasum, S. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int J Biol Macromol. 2016, 89, 161-174.

52. Arrington, E. D.; Smith, W. J.; Chambers, H. G.; Bucknell, A. L.; Davino, N. A. Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res. 1996, 300-309.

53. Hazer, B.; Steinbüchel, A. Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol. 2007, 74, 1-12.

54. Sharma, V.; Sehgal, R.; Gupta, R. Polyhydroxyalkanoate (PHA): properties and modifications. Polymer. 2021, 212, 123161.

55. Sudesh, K.; Abe, H.; Doi, Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci. 2000, 25, 1503-1555.

56. Pryadko, A.; Surmeneva, M. A.; Surmenev, R. A. Review of hybrid materials based on polyhydroxyalkanoates for tissue engineering applications. Polymers (Basel). 2021, 13, 1738.

57. Velasco, M. A.; Narváez-Tovar, C. A.; Garzón-Alvarado, D. A. Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. Biomed Res Int. 2015, 2015, 729076.

58. Mota, C.; Wang, S. Y.; Puppi, D.; Gazzarri, M.; Migone, C.; Chiellini, F.; Chen, G. Q.; Chiellini, E. Additive manufacturing of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] scaffolds for engineered bone development. J Tissue Eng Regen Med. 2017, 11, 175-186.

59. Doyle, C.; Tanner, E. T.; Bonfield, W. In vitro and in vivo evaluation of polyhydroxybutyrate and of polyhydroxybutyrate reinforced with hydroxyapatite. Biomaterials. 1991, 12, 841-847.

60. Wang, Y.; Jiang, X. L.; Yang, S. C.; Lin, X.; He, Y.; Yan, C.; Wu, L.; Chen, G. Q.; Wang, Z. Y.; Wu, Q. MicroRNAs in the regulation of interfacial behaviors of MSCs cultured on microgrooved surface pattern. Biomaterials. 2011, 32, 9207-9217.

61. Ellis, G.; Cano, P.; Jadraque, M.; Martín, M.; López, L.; Núñez, T.; de la Peña, E.; Marco, C.; Garrido, L. Laser microperforated biodegradable microbial polyhydroxyalkanoate substrates for tissue repair strategies: an infrared microspectroscopy study. Anal Bioanal Chem. 2011, 399, 2379-2388.

62. Wei, D.; Zhang, X. Biosynthesis, bioactivity, biotoxicity and applications of antimicrobial peptides for human health. Biosaf Health. 2022, 4, 118-134.

63. Codreanu, A.; Balta, C.; Herman, H.; Cotoraci, C.; Mihali, C. V.; Zurbau, N.; Zaharia, C.; Rapa, M.; Stanescu, P.; Radu, I. C.; Vasile, E.; Lupu, G.; Galateanu, B.; Hermenean, A. Bacterial cellulose-modified polyhydroxyalkanoates scaffolds promotes bone formation in critical size calvarial defects in mice. Materials (Basel). 2020, 13, 1433.

64. Pecorini, G.; Braccini, S.; Parrini, G.; Chiellini, F.; Puppi, D. Additive manufacturing of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(D,L-lactide-co-glycolide) biphasic scaffolds for bone tissue regeneration. Int J Mol Sci. 2022, 23, 3895.

65. Lezcano, M. F.; Álvarez, G.; Chuhuaicura, P.; Godoy, K.; Alarcón, J.; Acevedo, F.; Gareis, I.; Dias, F. J. Polyhydroxybutyrate (PHB) scaffolds for peripheral nerve regeneration: a systematic review of animal models. Biology (Basel). 2022, 11, 706.

66. Ansari, N. F.; Annuar, M. S. M.; Murphy, B. P. A porous medium-chain-length poly(3-hydroxyalkanoates)/hydroxyapatite composite as scaffold for bone tissue engineering. Eng Life Sci. 2017, 17, 420-429.

67. Nishizuka, T.; Kurahashi, T.; Hara, T.; Hirata, H.; Kasuga, T. Novel intramedullary-fixation technique for long bone fragility fractures using bioresorbable materials. PLoS One. 2014, 9, e104603.

68. Skibiński, S.; Czechowska, J. P.; Cichoń, E.; Seta, M.; Gondek, A.; Cudnoch-Jędrzejewska, A.; Ślósarczyk, A.; Guzik, M.; Zima, A. Study on βTCP/P(3HB) scaffolds-physicochemical properties and biological performance in low oxygen concentration. Int J Mol Sci. 2022, 23, 11587.

69. Chotchindakun, K.; Pekkoh, J.; Ruangsuriya, J.; Zheng, K.; Unalan, I.; Boccaccini, A. R. Fabrication and characterization of cinnamaldehyde-loaded mesoporous bioactive glass nanoparticles/PHBV-based microspheres for preventing bacterial infection and promoting bone tissue regeneration. Polymers (Basel). 2021, 13, 1794.

70. Ching, K. Y.; Andriotis, O. G.; Li, S.; Basnett, P.; Su, B.; Roy, I.; Tare, R. S.; Sengers, B. G.; Stolz, M. Nanofibrous poly(3-hydroxybutyrate)/poly(3-hydroxyoctanoate) scaffolds provide a functional microenvironment for cartilage repair. J Biomater Appl. 2016, 31, 77-91.

71. Li, C.; Zhang, J.; Li, Y.; Moran, S.; Khang, G.; Ge, Z. Poly (l-lactide-co-caprolactone) scaffolds enhanced with poly (β-hydroxybutyrate-co-β-hydroxyvalerate) microspheres for cartilage regeneration. Biomed Mater. 2013, 8, 025005.

72. Gao, T.; Chang, H.; Fan, M.; Lu, X.; Wang, Z.; Zhang, X.; Jing, X.; Shi, Y.; Li, Z. Bio-modification of polyhydroxyalkanoates and its biocompatibility with chondrocytes. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2014, 28, 1023-1029.

73. Movahedi, M.; Karbasi, S. Electrospun halloysite nanotube loaded polyhydroxybutyrate-starch fibers for cartilage tissue engineering. Int J Biol Macromol. 2022, 214, 301-311.

74. Li, X.; Chang, H.; Luo, H.; Wang, Z.; Zheng, G.; Lu, X.; He, X.; Chen, F.; Wang, T.; Liang, J.; Xu, M. Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds coated with PhaP-RGD fusion protein promotes the proliferation and chondrogenic differentiation of human umbilical cord mesenchymal stem cells in vitro. J Biomed Mater Res A. 2015, 103, 1169-1175.

75. You, M.; Peng, G.; Li, J.; Ma, P.; Wang, Z.; Shu, W.; Peng, S.; Chen, G. Q. Chondrogenic differentiation of human bone marrow mesenchymal stem cells on polyhydroxyalkanoate (PHA) scaffolds coated with PHA granule binding protein PhaP fused with RGD peptide. Biomaterials. 2011, 32, 2305-2313.

76. Zonari, A.; Novikoff, S.; Electo, N. R.; Breyner, N. M.; Gomes, D. A.; Martins, A.; Neves, N. M.; Reis, R. L.; Goes, A. M. Endothelial differentiation of human stem cells seeded onto electrospun polyhydroxybutyrate/polyhydroxybutyrate-co-hydroxyvalerate fiber mesh. PLoS One. 2012, 7, e35422.

77. Zhijiang, C.; Yi, X.; Haizheng, Y.; Jia, J.; Liu, Y. Poly(hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: preparation, characterization and cytocompatibility. Mater Sci Eng C Mater Biol Appl. 2016, 58, 757-767.

78. Ochoa-Segundo, E. I.; González-Torres, M.; Cabrera-Wrooman, A.; Sánchez-Sánchez, R.; Huerta-Martínez, B. M.; Melgarejo-Ramírez, Y.; Leyva-Gómez, G.; Rivera-Muñoz, E. M.; Cortés, H.; Velasquillo, C.; Vargas-Muñoz, S.; Rodríguez-Talavera, R. Gamma radiation-induced grafting of n-hydroxyethyl acrylamide onto poly(3-hydroxybutyrate): A companion study on its polyurethane scaffolds meant for potential skin tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2020, 116, 111176.

79. Kanimozhi, K.; Basha, S. K.; Kaviyarasu, K.; SuganthaKumari, V. Salt leaching synthesis, characterization and in vitro cytocompatibility of chitosan/poly(vinyl alcohol)/methylcellulose - ZnO nanocomposites scaffolds using L929 fibroblast cells. J Nanosci Nanotechnol. 2019, 19, 4447-4457.

80. Nagiah, N.; Madhavi, L.; Anitha, R.; Anandan, C.; Srinivasan, N. T.; Sivagnanam, U. T. Development and characterization of coaxially electrospun gelatin coated poly (3-hydroxybutyric acid) thin films as potential scaffolds for skin regeneration. Mater Sci Eng C Mater Biol Appl. 2013, 33, 4444-4452.

81. Sanhueza, C.; Hermosilla, J.; Bugallo-Casal, A.; Da Silva-Candal, A.; Taboada, C.; Millán, R.; Concheiro, A.; Alvarez-Lorenzo, C.; Acevedo, F. One-step electrospun scaffold of dual-sized gelatin/poly-3-hydroxybutyrate nano/microfibers for skin regeneration in diabetic wound. Mater Sci Eng C Mater Biol Appl. 2021, 119, 111602.

82. Feng, J.; Niu, Y.; Zhang, Y.; Zuo, H.; Wang, S.; Liu, X. Ficus carica extract impregnated amphiphilic polymer scaffold for diabetic wound tissue regenerations. Artif Cells Nanomed Biotechnol. 2021, 49, 219-229.

83. Veleirinho, B.; Coelho, D. S.; Dias, P. F.; Maraschin, M.; Ribeiro-do-Valle, R. M.; Lopes-da-Silva, J. A. Nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/chitosan scaffolds for skin regeneration. Int J Biol Macromol. 2012, 51, 343-350.

84. Rathbone, S.; Furrer, P.; Lübben, J.; Zinn, M.; Cartmell, S. Biocompatibility of polyhydroxyalkanoate as a potential material for ligament and tendon scaffold material. J Biomed Mater Res A. 2010, 93, 1391-1403.

85. Lomas, A. J.; Chen, G. G.; El Haj, A. J.; Forsyth, N. R. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) supports adhesion and migration of mesenchymal stem cells and tenocytes. World J Stem Cells. 2012, 4, 94-100.

86. Tashjian, R. Z.; Kolz, C. W.; Suter, T.; Henninger, H. B. Biomechanics of polyhydroxyalkanoate mesh-augmented single-row rotator cuff repairs. Am J Orthop (Belle Mead NJ). 2016, 45, E527-E533.

87. Sodian, R.; Sperling, J. S.; Martin, D. P.; Egozy, A.; Stock, U.; Mayer, J. E., Jr.; Vacanti, J. P. Fabrication of a trileaflet heart valve scaffold from a polyhydroxyalkanoate biopolyester for use in tissue engineering. Tissue Eng. 2000, 6, 183-188.

88. Leor, J.; Amsalem, Y.; Cohen, S. Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacol Ther. 2005, 105, 151-163.

89. Sun, M.; Zhou, P.; Pan, L. F.; Liu, S.; Yang, H. X. Enhanced cell affinity of the silk fibroin-modified PHBHHx material. J Mater Sci Mater Med. 2009, 20, 1743-1751.

90. Bagdadi, A. V.; Safari, M.; Dubey, P.; Basnett, P.; Sofokleous, P.; Humphrey, E.; Locke, I.; Edirisinghe, M.; Terracciano, C.; Boccaccini, A. R.; Knowles, J. C.; Harding, S. E.; Roy, I. Poly(3-hydroxyoctanoate), a promising new material for cardiac tissue engineering. J Tissue Eng Regen Med. 2018, 12, e495-e512.

91. Köse, S.; Kaya, F. A.; Denkbaş, E. B.; Korkusuz, P.; Çetinkaya, F. D. Evaluation of biocompatibility of random or aligned electrospun polyhydroxybutyrate scaffolds combined with human mesenchymal stem cells. Turk J Biol. 2016, 40, 410-419.

92. Khorasani, M. T.; Mirmohammadi, S. A.; Irani, S. Polyhydroxybutyrate (PHB) scaffolds as a model for nerve tissue engineering application: fabrication and in vitro assay. Int J Polym Mater Polym Biomater. 2011, 60, 562-575.

93. Masaeli, E.; Morshed, M.; Nasr-Esfahani, M. H.; Sadri, S.; Hilderink, J.; van Apeldoorn, A.; van Blitterswijk, C. A.; Moroni, L. Fabrication, characterization and cellular compatibility of poly(hydroxy alkanoate) composite nanofibrous scaffolds for nerve tissue engineering. PLoS One. 2013, 8, e57157.

94. Masaeli, E.; Wieringa, P. A.; Morshed, M.; Nasr-Esfahani, M. H.; Sadri, S.; van Blitterswijk, C. A.; Moroni, L. Peptide functionalized polyhydroxyalkanoate nanofibrous scaffolds enhance Schwann cells activity. Nanomedicine. 2014, 10, 1559-1569.

95. Kuo, Y. C.; Huang, M. J. Material-driven differentiation of induced pluripotent stem cells in neuron growth factor-grafted poly(ε-caprolactone)-poly(β-hydroxybutyrate) scaffolds. Biomaterials. 2012, 33, 5672-5682.

96. Bian, Y. Z.; Wang, Y.; Aibaidoula, G.; Chen, G. Q.; Wu, Q. Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials. 2009, 30, 217-225.

97. Xu, X. Y.; Li, X. T.; Peng, S. W.; Xiao, J. F.; Liu, C.; Fang, G.; Chen, K. C.; Chen, G. Q. The behaviour of neural stem cells on polyhydroxyalkanoate nanofiber scaffolds. Biomaterials. 2010, 31, 3967-3975.

98. Rahman, M.; Peng, X. L.; Zhao, X. H.; Gong, H. L.; Sun, X. D.; Wu, Q.; Wei, D. X. 3D bioactive cell-free scaffolds for in-vitro/in-vivo capture and directed osteoinduction of stem cells for bone tissue regeneration. Bioact Mater. 2021, 6, 4083-4095.

99. Wei, D. X.; Dao, J. W.; Liu, H. W.; Chen, G. Q. Suspended polyhydroxyalkanoate microspheres as 3D carriers for mammalian cell growth. Artif Cells Nanomed Biotechnol. 2018, 46, 473-483.

100. Wei, D. X.; Dao, J. W.; Chen, G. Q. A micro-ark for cells: highly open porous polyhydroxyalkanoate microspheres as injectable scaffolds for tissue regeneration. Adv Mater. 2018, 30, e1802273.

101. Zhao, X. H.; Peng, X. L.; Gong, H. L.; Wei, D. X. Osteogenic differentiation system based on biopolymer nanoparticles for stem cells in simulated microgravity. Biomed Mater. 2021, 16, 044102.

102. Armiento, A. R.; Stoddart, M. J.; Alini, M.; Eglin, D. Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomater. 2018, 65, 1-20.

103. Decker, R. S. Articular cartilage and joint development from embryogenesis to adulthood. Semin Cell Dev Biol. 2017, 62, 50-56.

104. Swieszkowski, W.; Tuan, B. H.; Kurzydlowski, K. J.; Hutmacher, D. W. Repair and regeneration of osteochondral defects in the articular joints. Biomol Eng. 2007, 24, 489-495.

105. Asl, M. A.; Karbasi, S.; Beigi-Boroujeni, S.; Zamanlui Benisi, S.; Saeed, M. Evaluation of the effects of starch on polyhydroxybutyrate electrospun scaffolds for bone tissue engineering applications. Int J Biol Macromol. 2021, 191, 500-513.

106. Wei, D. X.; Chen, C. B.; Fang, G.; Li, S. Y.; Chen, G. Q. Application of polyhydroxyalkanoate binding protein PhaP as a bio-surfactant. Appl Microbiol Biotechnol. 2011, 91, 1037-1047.

107. Fan, L.; He, Z.; Peng, X.; Xie, J.; Su, F.; Wei, D. X.; Zheng, Y.; Yao, D. Injectable, intrinsically antibacterial conductive hydrogels with self-healing and pH stimulus responsiveness for epidermal sensors and wound healing. ACS Appl Mater Interfaces. 2021, 13, 53541-53552.

108. Fan, L.; Xie, J.; Zheng, Y.; Wei, D.; Yao, D.; Zhang, J.; Zhang, T. Antibacterial, self-adhesive, recyclable, and tough conductive composite hydrogels for ultrasensitive strain sensing. ACS Appl Mater Interfaces. 2020, 12, 22225-22236.

109. Dhania, S.; Bernela, M.; Rani, R.; Parsad, M.; Grewal, S.; Kumari, S.; Thakur, R. Scaffolds the backbone of tissue engineering: Advancements in use of polyhydroxyalkanoates (PHA). Int J Biol Macromol. 2022, 208,243-259.

110. Doral, M. N.; Alam, M.; Bozkurt, M.; Turhan, E.; Atay, O. A.; Dönmez, G.; Maffulli, N. Functional anatomy of the Achilles tendon. Knee Surg Sports Traumatol Arthrosc. 2010, 18, 638-643.

111. Ahmed, I. M.; Lagopoulos, M.; McConnell, P.; Soames, R. W.; Sefton, G. K. Blood supply of the Achilles tendon. J Orthop Res. 1998, 16, 591-596.

112. Theobald, P.; Benjamin, M.; Nokes, L.; Pugh, N. Review of the vascularisation of the human Achilles tendon. Injury. 2005, 36, 1267-1272.

113. Longo, U. G.; Lamberti, A.; Maffulli, N.; Denaro, V. Tendon augmentation grafts: a systematic review. Br Med Bull. 2010, 94, 165-188.

114. Wilkins, R.; Bisson, L. J. Operative versus nonoperative management of acute Achilles tendon ruptures: a quantitative systematic review of randomized controlled trials. Am J Sports Med. 2012, 40, 2154-2160.

115. Cetti, R.; Christensen, S. E.; Ejsted, R.; Jensen, N. M.; Jorgensen, U. Operative versus nonoperative treatment of Achilles tendon rupture. A prospective randomized study and review of the literature. Am J Sports Med. 1993, 21, 791-799.

116. García-Germán, D.; Rubio-Quevedo, R.; Lopez-Goenaga, J.; Martin-Guinea, J. Achilles tendon recurrent rupture following surgical repair: report on two cases. Foot Ankle Surg. 2009, 15, 152-154.

117. Kusumbe, A. P.; Ramasamy, S. K.; Adams, R. H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 2014, 507, 323-328.

118. Straley, K. S.; Foo, C. W.; Heilshorn, S. C. Biomaterial design strategies for the treatment of spinal cord injuries. J Neurotrauma. 2010, 27, 1-19.

119. Novikov, L. N.; Novikova, L. N.; Mosahebi, A.; Wiberg, M.; Terenghi, G.; Kellerth, J. O. A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury. Biomaterials. 2002, 23, 3369-3376.

120. Wang, L.; Wang, Z. H.; Shen, C. Y.; You, M. L.; Xiao, J. F.; Chen, G. Q. Differentiation of human bone marrow mesenchymal stem cells grown in terpolyesters of 3-hydroxyalkanoates scaffolds into nerve cells. Biomaterials. 2010, 31, 1691-1698.

121. Zhang, C.; Zhao, L.; Dong, Y.; Zhang, X.; Lin, J.; Chen, Z. Folate-mediated poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting drug delivery. Eur J Pharm Biopharm. 2010, 76, 10-16.

122. Pramual, S.; Assavanig, A.; Bergkvist, M.; Batt, C. A.; Sunintaboon, P.; Lirdprapamongkol, K.; Svasti, J.; Niamsiri, N. Development and characterization of bio-derived polyhydroxyalkanoate nanoparticles as a delivery system for hydrophobic photodynamic therapy agents. J Mater Sci Mater Med. 2016, 27, 40.

123. Li, Z.; Loh, X. J. Recent advances of using polyhydroxyalkanoate-based nanovehicles as therapeutic delivery carriers. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017, 9, e1429.

124. Shah, M.; Ullah, N.; Choi, M. H.; Yoon, S. C. Nanoscale poly(4-hydroxybutyrate)-mPEG carriers for anticancer drugs delivery. J Nanosci Nanotechnol. 2014, 14, 8416-8421.

125. Nobes, G. A.; Marchessault, R. H.; Maysinger, D. Polyhydroxyalkanoates: materials for delivery systems. Drug Deliv. 1998, 5, 167-177.

126. Elmowafy, E.; Abdal-Hay, A.; Skouras, A.; Tiboni, M.; Casettari, L.; Guarino, V. Polyhydroxyalkanoate (PHA): applications in drug delivery and tissue engineering. Expert Rev Med Devices. 2019, 16, 467-482.

127. Hu, J.; Wang, M.; Xiao, X.; Zhang, B.; Xie, Q.; Xu, X.; Li, S.; Zheng, Z.; Wei, D.; Zhang, X. A novel long-acting azathioprine polyhydroxyalkanoate nanoparticle enhances treatment efficacy for systemic lupus erythematosus with reduced side effects. Nanoscale. 2020, 12, 10799-10808.

128. Yan, Y.; Wei, D.; Li, J.; Zheng, J.; Shi, G.; Luo, W.; Pan, Y.; Wang, J.; Zhang, L.; He, X.; Liu, D. A poly(L-lysine)-based hydrophilic star block co-polymer as a protein nanocarrier with facile encapsulation and pH-responsive release. Acta Biomater. 2012, 8, 2113-2120.

129. Wei, D.; Qiao, R.; Dao, J.; Su, J.; Jiang, C.; Wang, X.; Gao, M.; Zhong, J. Soybean lecithin-mediated nanoporous PLGA microspheres with highly entrapped and controlled released BMP-2 as a stem cell platform. Small. 2018, 14, e1800063.

130. Sendil, D.; Gürsel, I.; Wise, D. L.; Hasirci, V. Antibiotic release from biodegradable PHBV microparticles. J Control Release. 1999, 59, 207-217.

131. Kassab, A. C.; Xu, K.; Denkbaş, E. B.; Dou, Y.; Zhao, S.; Pişkin, E. Rifampicin carrying polyhydroxybutyrate microspheres as a potential chemoembolization agent. J Biomater Sci Polym Ed. 1997, 8, 947-961.

132. Xiong, Y. C.; Yao, Y. C.; Zhan, X. Y.; Chen, G. Q. Application of polyhydroxyalkanoates nanoparticles as intracellular sustained drug-release vectors. J Biomater Sci Polym Ed. 2010, 21, 127-140.

133. Türesin, F.; Gürsel, I.; Hasirci, V. Biodegradable polyhydroxyalkanoate implants for osteomyelitis therapy: in vitro antibiotic release. J Biomater Sci Polym Ed. 2001, 12, 195-207.

134. Yagmurlu, M. F.; Korkusuz, F.; Gürsel, I.; Korkusuz, P.; Ors, U.; Hasirci, V. Sulbactam-cefoperazone polyhydroxybutyrate-co-hydroxyvalerate (PHBV) local antibiotic delivery system: in vivo effectiveness and biocompatibility in the treatment of implant-related experimental osteomyelitis. J Biomed Mater Res. 1999, 46, 494-503.

135. Gürsel, I.; Korkusuz, F.; Türesin, F.; Alaeddinoglu, N. G.; Hasirci, V. In vivo application of biodegradable controlled antibiotic release systems for the treatment of implant-related osteomyelitis. Biomaterials. 2001, 22, 73-80.

136. Scheithauer, E. C.; Li, W.; Ding, Y.; Harhaus, L.; Roether, J. A.; Boccaccini, A. R. Preparation and characterization of electrosprayed daidzein–loaded PHBV microspheres. Mater Lett. 2015, 158, 66-69.

137. Peng, X.; Chen, Y.; Li, Y.; Wang, Y.; Zhang, X. A long-acting BMP-2 release system based on poly(3-hydroxybutyrate) nanoparticles modified by amphiphilic phospholipid for osteogenic differentiation. Biomed Res Int. 2016, 2016, 5878645.

138. Chen, R.; Yu, J.; Gong, H. L.; Jiang, Y.; Xue, M.; Xu, N.; Wei, D. X.; Shi, C. An easy long-acting BMP7 release system based on biopolymer nanoparticles for inducing osteogenic differentiation of adipose mesenchymal stem cells. J Tissue Eng Regen Med. 2020, 14, 964-972.

139. Shrivastav, A.; Kim, H. Y.; Kim, Y. R. Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. Biomed Res Int. 2013, 2013, 581684.

140. Li, Z.; Yang, J.; Loh, X. J. Polyhydroxyalkanoates: opening doors for a sustainable future. NPG Asia Mater. 2016, 8, e265-e265.

141. Nelson, T.; Kaufman, E.; Kline, J.; Sokoloff, L. The extraneural distribution of gamma-hydroxybutyrate. J Neurochem. 1981, 37, 1345-1348.

142. Wang, B. L.; Wu, J. F.; Xiao, D.; Wu, B.; Wei, D. X. 3-hydroxybutyrate in the brain: biosynthesis, function, and disease therapy. Brain‐X. 2023, 1, e6.

143. Xiang, Y.; Wang, Q. Q.; Lan, X. Q.; Zhang, H. J.; Wei, D. X. Function and treatment strategies of β-hydroxybutyrate in aging. Smart Mater Med. 2023, 4, 160-172.

144. Zhao, Y.; Zou, B.; Shi, Z.; Wu, Q.; Chen, G. Q. The effect of 3-hydroxybutyrate on the in vitro differentiation of murine osteoblast MC3T3-E1 and in vivo bone formation in ovariectomized rats. Biomaterials. 2007, 28, 3063-3073.

145. Czechowska, J.; Skibiński, S.; Guzik, M.; Zima, A. Silver decorated βTCP-poly(3-hydroxybutyrate) scaffolds for bone tissue engineering. Materials (Basel). 2021, 14, 4227.

146. Chen, J.; Li, Z.; Zhang, Y.; Zhang, X.; Zhang, S.; Liu, Z.; Yuan, H.; Pang, X.; Liu, Y.; Tao, W.; Chen, X.; Zhang, P.; Chen, G. Q. Mechanism of reduced muscle atrophy via ketone body (D)-3-hydroxybutyrate. Cell Biosci. 2022, 12, 94.

147. Wang, Z.; Ma, K.; Jiang, X.; Xie, J.; Cai, P.; Li, F.; Liang, R.; Zhao, J.; Zheng, L. Electrospun poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/Octacalcium phosphate Nanofibrous membranes for effective guided bone regeneration. Mater Sci Eng C Mater Biol Appl. 2020, 112, 110763.

148. Ang, S. L.; Shaharuddin, B.; Chuah, J. A.; Sudesh, K. Electrospun poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/silk fibroin film is a promising scaffold for bone tissue engineering. Int J Biol Macromol. 2020, 145, 173-188.

149. Kourmentza, C.; Plácido, J.; Venetsaneas, N.; Burniol-Figols, A.; Varrone, C.; Gavala, H. N.; Reis, M. A. M. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering (Basel). 2017, 4, 55.

150. Xu, N.; Peng, X. L.; Li, H. R.; Liu, J. X.; Cheng, J. S.; Qi, X. Y.; Ye, S. J.; Gong, H. L.; Zhao, X. H.; Yu, J.; Xu, G.; Wei, D. X. Marine-derived collagen as biomaterials for human health. Front Nutr. 2021, 8, 702108.

151. Volova, T.; Shishatskaya, E.; Sevastianov, V.; Efremov, S.; Mogilnaya, O. Results of biomedical investigations of PHB and PHB/PHV fibers. Biochem Eng J. 2003, 16, 125-133.

152. Turkyilmaz, S.; Chen, W. H.; Mitomo, H.; Regen, S. L. Loosening and reorganization of fluid phospholipid bilayers by chloroform. J Am Chem Soc. 2009, 131, 5068-5069.

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top