AI accelerated discovery of self-assembling peptides
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
1. Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales. Science. 2002, 295, 2418-2421.
2. Luo, Q.; Hou, C.; Bai, Y.; Wang, R.; Liu, J. Protein assembly: versatile approaches to construct highly ordered nanostructures. Chem Rev. 2016, 116, 13571-13632.
3. Desai, M. S.; Lee, S. W. Protein-based functional nanomaterial design for bioengineering applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015, 7, 69-97.
4. Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol. 2003, 21, 1171-1178.
5. Pearce, A. K.; Wilks, T. R.; Arno, M. C.; O’Reilly, R. K. Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nat Rev Chem. 2021, 5, 21-45.
6. Mendes, A. C.; Baran, E. T.; Reis, R. L.; Azevedo, H. S. Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013, 5, 582-612.
7. Ulijn, R. V.; Smith, A. M. Designing peptide based nanomaterials. Chem Soc Rev. 2008, 37, 664-675.
8. Frederix, P. W.; Scott, G. G.; Abul-Haija, Y. M.; Kalafatovic, D.; Pappas, C. G.; Javid, N.; Hunt, N. T.; Ulijn, R. V.; Tuttle, T. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nat Chem. 2015, 7, 30-37.
9. Hamet, P.; Tremblay, J. Artificial intelligence in medicine. Metabolism. 2017, 69s, S36-S40.
10. Batra, R.; Loeffler, T. D.; Chan, H.; Srinivasan, S.; Cui, H.; Korendovych, I. V.; Nanda, V.; Palmer, L. C.; Solomon, L. A.; Fry, H. C.; Sankaranarayanan, S. Machine learning overcomes human bias in the discovery of self-assembling peptides. Nat Chem. 2022, 14, 1427-1435.