Progress in spinal cord organoid research: advancing understanding of neural development, disease modelling, and regenerative medicine
Stem cell–derived spinal cord organoids (SCOs) have revolutionised the study of spinal cord development and disease mechanisms, offering a three-dimensional model that recapitulates the complexity of native tissue. This review synthesises recent advancements in SCO technology, highlighting their role in modelling spinal cord morphogenesis and their application in neurodegenerative disease research. We discuss the methodological breakthroughs in inducing regional specification and cellular diversity within SCOs, which have enhanced their predictive ability for drug screening and their relevance in mimicking pathological conditions such as neurodegenerative diseases and neuromuscular disorders. Despite these strides, challenges in achieving vascularisation and mature neuronal integration persist. The future of SCOs lies in addressing these limitations, potentially leading to transformative impactions in regenerative medicine and therapeutic development.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
1. Lancaster, M. A.; Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 2014, 345, 1247125.
2. Bian, S.; Repic, M.; Guo, Z.; Kavirayani, A.; Burkard, T.; Bagley, J. A.; Krauditsch, C.; Knoblich, J. A. Genetically engineered cerebral organoids model brain tumor formation. Nat Methods. 2018, 15, 631 - 639.
3. Giandomenico, S. L.; Mierau, S. B.; Gibbons, G. M.; Wenger, L. M. D.; Masullo, L.; Sit, T.; Sutcliffe, M.; Boulanger, J.; Tripodi, M.; Derivery, E.; Paulsen, O.; Lakatos, A.; Lancaster, M. A. Cerebral organoids at the air - liquid interface generate diverse nerve tracts with functional output. Nat Neurosci. 2019, 22, 669 - 679.
4. Cenini, G.; Hebisch, M.; Iefremova, V.; Flitsch, L. J.; Breitkreuz, Y.; Tanzi, R. E.; Kim, D. Y.; Peitz, M.; Brüstle, O. Dissecting Alzheimer’s disease pathogenesis in human 2D and 3D models. Mol Cell Neurosci. 2021, 110, 103568.
5. Zhou, G.; Pang, S.; Li, Y.; Gao, J. Progress in the generation of spinal cord organoids over the past decade and future perspectives. Neural Regen Res. 2024, 19, 1013 - 1019.
6. Lancaster, M. A.; Renner, M.; Martin, C. A.; Wenzel, D.; Bicknell, L. S.; Hurles, M. E.; Homfray, T.; Penninger, J. M.; Jackson, A. P.; Knoblich, J. A. Cerebral organoids model human brain development and microcephaly. Nature. 2013, 501, 373 - 379.
7. Zhou, C.; Wu, Y.; Wang, Z.; Liu, Y.; Yu, J.; Wang, W.; Chen, S.; Wu, W.; Wang, J.; Qian, G.; He, A. Standardization of organoid culture in cancer research. Cancer Med. 2023, 12, 14375 - 14386.
8. Smirnova, L.; Hartung, T. The promise and potential of brain organoids. Adv Healthc Mater. 2024, 13, e2302745.
9. Mulder, L. A.; Depla, J. A.; Sridhar, A.; Wolthers, K.; Pajkrt, D.; Vieira de Sá, R. A beginner’s guide on the use of brain organoids for neuroscientists: a systematic review. Stem Cell Res Ther. 2023, 14, 87.
10. Sagner, A.; Briscoe, J. Establishing neuronal diversity in the spinal cord: a time and a place. Development. 2019, 146, dev182154.
11. Carpenter, E. M. Hox genes and spinal cord development. Dev Neurosci. 2002, 24, 24 - 34.
12. Al Oustah, A.; Danesin, C.; Khouri - Farah, N.; Farreny, M. A.; Escalas, N.; Cochard, P.; Glise, B.; Soula, C. Dynamics of sonic hedgehog signaling in the ventral spinal cord are controlled by intrinsic changes in source cells requiring sulfatase 1. Development. 2014, 141, 1392 - 1403.
13. Song, L.; Liu, Y.; Yu, Y.; Duan, X.; Qi, S.; Liu, Y. Shh signaling guides spatial pathfinding of raphespinal tract axons by multidirectional repulsion. Cell Res. 2012, 22, 697 - 716.
14. Lippmann, E. S.; Williams, C. E.; Ruhl, D. A.; Estevez - Silva, M. C.; Chapman, E. R.; Coon, J. J.; Ashton, R. S. Deterministic HOX patterning in human pluripotent stem cell - derived neuroectoderm. Stem Cell Reports. 2015, 4, 632 - 644.
15. Meinhardt, A.; Eberle, D.; Tazaki, A.; Ranga, A.; Niesche, M.; Wilsch - Bräuninger, M.; Stec, A.; Schackert, G.; Lutolf, M.; Tanaka, E. M. 3D reconstitution of the patterned neural tube from embryonic stem cells. Stem Cell Reports. 2014, 3, 987 - 999.
16. Ranga, A.; Girgin, M.; Meinhardt, A.; Eberle, D.; Caiazzo, M.; Tanaka, E. M.; Lutolf, M. P. Neural tube morphogenesis in synthetic 3D microenvironments. Proc Natl Acad Sci U S A. 2016, 113, E6831 - E6839.
17. Libby, A. R. G.; Joy, D. A.; Elder, N. H.; Bulger, E. A.; Krakora, M. Z.; Gaylord, E. A.; Mendoza - Camacho, F.; Butts, J. C.; McDevitt, T. C. Axial elongation of caudalized human organoids mimics aspects of neural tube development. Development. 2021, 148, dev198275.
18. Ogura, T.; Sakaguchi, H.; Miyamoto, S.; Takahashi, J. Three - dimensional induction of dorsal, intermediate and ventral spinal cord tissues from human pluripotent stem cells. Development. 2018, 145, dev162214.
19. Duval, N.; Vaslin, C.; Barata, T. C.; Frarma, Y.; Contremoulins, V.; Baudin, X.; Nedelec, S.; Ribes, V. C. BMP4 patterns Smad activity and generates stereotyped cell fate organization in spinal organoids. Development. 2019, 146, dev175430.
20. Henrique, D.; Abranches, E.; Verrier, L.; Storey, K. G. Neuromesodermal progenitors and the making of the spinal cord. Development. 2015, 142, 2864 - 2875.
21. Whye, D.; Wood, D.; Kim, K. H.; Chen, C.; Makhortova, N.; Sahin, M.; Buttermore, E. D. Dynamic 3D combinatorial generation of hPSC - derived neuromesodermal organoids with diverse regional and cellular identities. Curr Protoc. 2022, 2, e568.
22. Gribaudo, S.; Robert, R.; van Sambeek, B.; Mirdass, C.; Lyubimova, A.; Bouhali, K.; Ferent, J.; Morin, X.; van Oudenaarden, A.; Nedelec, S. Self - organizing models of human trunk organogenesis recapitulate spinal cord and spine co - morphogenesis. Nat Biotechnol. 2024, 42, 1243 - 1253.
23. Yadav, A.; Matson, K. J. E.; Li, L.; Hua, I.; Petrescu, J.; Kang, K.; Alkaslasi, M. R.; Lee, D. I.; Hasan, S.; Galuta, A.; Dedek, A.; Ameri, S.; Parnell, J.; Alshardan, M. M.; Qumqumji, F. A.; Alhamad, S. M.; Wang, A. P.; Poulen, G.; Lonjon, N.; Vachiery - Lahaye, F.; Gaur, P.; Nalls, M. A.; Qi, Y. A.; Maric, D.; Ward, M. E.; Hildebrand, M. E.; Mery, P. F.; Bourinet, E.; Bauchet, L.; Tsai, E. C.; Phatnani, H.; Le Pichon, C. E.; Menon, V.; Levine, A. J. A cellular taxonomy of the adult human spinal cord. Neuron. 2023, 111, 328 - 344.e7.
24. Borromeo, M. D.; Meredith, D. M.; Castro, D. S.; Chang, J. C.; Tung, K. C.; Guillemot, F.; Johnson, J. E. A transcription factor network specifying inhibitory versus excitatory neurons in the dorsal spinal cord. Development. 2014, 141, 2803 - 2812.
25. Motojima, Y.; Ueta, Y.; Sakai, A. Analysis of the proportion and neuronal activity of excitatory and inhibitory neurons in the rat dorsal spinal cord after peripheral nerve injury. Neurosci Lett. 2021, 749, 135707.
26. Bertels, H.; Vicente - Ortiz, G.; El Kanbi, K.; Takeoka, A. Neurotransmitter phenotype switching by spinal excitatory interneurons regulates locomotor recovery after spinal cord injury. Nat Neurosci. 2022, 25, 617 - 629.
27. Miyazaki, Y.; Adachi, T.; Utsumi, J.; Shichino, T.; Segawa, H. Xenon has greater inhibitory effects on spinal dorsal horn neurons than nitrous oxide in spinal cord transected cats. Anesth Analg. 1999, 88, 893-897.
28. Liu, M. Z.; Chen, X. J.; Liang, T. Y.; Li, Q.; Wang, M.; Zhang, X. Y.; Li, Y. Z.; Sun, Q.; Sun, Y. G. Synaptic control of spinal GRPR(+) neurons by local and long-range inhibitory inputs. Proc Natl Acad Sci U S A. 2019, 116, 27011-27017.
29. Serafin, E. K.; Burns, R.; Yoo, J.; Baccei, M. L. Gucy2d selectively marks inhibitory dynorphin neurons in the spinal dorsal horn but is dispensable for pain and itch sensitivity. Pain Rep. 2021, 6, e947.
30. Powis, R. A.; Gillingwater, T. H. Selective loss of alpha motor neurons with sparing of gamma motor neurons and spinal cord cholinergic neurons in a mouse model of spinal muscular atrophy. J Anat. 2016, 228, 443-451.
31. Kirby, A. J.; Palmer, T.; Mead, R. J.; Ichiyama, R. M.; Chakrabarty, S. Caudal-rostral progression of alpha motoneuron degeneration in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Antioxidants (Basel). 2022, 11, 983.
32. Prochazka, A.; Mushahwar, V.; Yakovenko, S. Activation and coordination of spinal motoneuron pools after spinal cord injury. Prog Brain Res. 2002, 137, 109-124.
33. Gould, T. W.; Oppenheim, R. W. The function of neurotrophic factor receptors expressed by the developing adductor motor pool in vivo. J Neurosci. 2004, 24, 4668-4682.
34. Yokoyama, H.; Ogawa, T.; Shinya, M.; Kawashima, N.; Nakazawa, K. Speed dependency in α-motoneuron activity and locomotor modules in human locomotion: indirect evidence for phylogenetically conserved spinal circuits. Proc Biol Sci. 2017, 284, 20170290.
35. Panayiotou, E.; Panayi, E.; Lapathitis, G.; Francius, C.; Clotman, F.; Kessaris, N.; Richardson, W. D.; Malas, S. Pax6 is expressed in subsets of V0 and V2 interneurons in the ventral spinal cord in mice. Gene Expr Patterns. 2013, 13, 328-334.
36. Osseward, P. J., 2nd; Pfaff, S. L. Cell type and circuit modules in the spinal cord. Curr Opin Neurobiol. 2019, 56, 175-184.
37. Gray de Cristoforis, A.; Ferrari, F.; Clotman, F.; Vogel, T. Differentiation and localization of interneurons in the developing spinal cord depends on DOT1L expression. Mol Brain. 2020, 13, 85.
38. Cheng, J.; Guan, N. N. A fresh look at propriospinal interneurons plasticity and intraspinal circuits remodeling after spinal cord injury. IBRO Neurosci Rep. 2023, 14, 441-446.
39. Seo, W. M.; Yoon, J.; Lee, J. H.; Lee, Y.; Lee, H.; Geum, D.; Sun, W.; Song, M. R. Modeling axonal regeneration by changing cytoskeletal dynamics in stem cell-derived motor nerve organoids. Sci Rep. 2022, 12, 2082.
40. James, O. G.; Selvaraj, B. T.; Magnani, D.; Burr, K.; Connick, P.; Barton, S. K.; Vasistha, N. A.; Hampton, D. W.; Story, D.; Smigiel, R.; Ploski, R.; Brophy, P. J.; Ffrench-Constant, C.; Lyons, D. A.; Chandran, S. iPSC-derived myelinoids to study myelin biology of humans. Dev Cell. 2021, 56, 1346-1358.e6.
41. Muckom, R. J.; Sampayo, R. G.; Johnson, H. J.; Schaffer, D. V. Advanced materials to enhance central nervous system tissue modeling and cell therapy. Adv Funct Mater. 2020, 30, 2002931.
42. Shin, A.; Ryu, J. R.; Kim, B. G.; Sun, W. Establishment and validation of a model for fetal neural ischemia using necrotic core-free human spinal cord organoids. Stem Cells Transl Med. 2024, 13, 268-277.
43. Lee, J. H.; Shaker, M. R.; Park, S. H.; Sun, W. Transcriptional signature of valproic acid-induced neural tube defects in human spinal cord organoids. Int J Stem Cells. 2023, 16, 385-393.
44. Zou, H.; Wang, J. Y.; Ma, G. M.; Xu, M. M.; Luo, F.; Zhang, L.; Wang, W. Y. The function of FUS in neurodevelopment revealed by the brain and spinal cord organoids. Mol Cell Neurosci. 2022, 123, 103771.
45. Lee, J. H.; Shin, H.; Shaker, M. R.; Kim, H. J.; Park, S. H.; Kim, J. H.; Lee, N.; Kang, M.; Cho, S.; Kwak, T. H.; Kim, J. W.; Song, M. R.; Kwon, S. H.; Han, D. W.; Lee, S.; Choi, S. Y.; Rhyu, I. J.; Kim, H.; Geum, D.; Cho, I. J.; Sun, W. Production of human spinal-cord organoids recapitulating neural-tube morphogenesis. Nat Biomed Eng. 2022, 6, 435-448.
46. Winanto; Khong, Z. J.; Soh, B. S.; Fan, Y.; Ng, S. Y. Organoid cultures of MELAS neural cells reveal hyperactive Notch signaling that impacts neurodevelopment. Cell Death Dis. 2020, 11, 182.
47. Gao, C.; Shi, Q.; Pan, X.; Chen, J.; Zhang, Y.; Lang, J.; Wen, S.; Liu, X.; Cheng, T. L.; Lei, K. Neuromuscular organoids model spinal neuromuscular pathologies in C9orf72 amyotrophic lateral sclerosis. Cell Rep. 2024, 43, 113892.
48. Aguglia, G.; Coyne, C. B.; Dermody, T. S.; Williams, J. V.; Freeman, M. C. Contemporary enterovirus-D68 isolates infect human spinal cord organoids. mBio. 2023, 14, e0105823.
49. Grass, T.; Dokuzluoglu, Z.; Buchner, F.; Rosignol, I.; Thomas, J.; Caldarelli, A.; Dalinskaya, A.; Becker, J.; Rost, F.; Marass, M.; Wirth, B.; Beyer, M.; Bonaguro, L.; Rodriguez-Muela, N. Isogenic patient-derived organoids reveal early neurodevelopmental defects in spinal muscular atrophy initiation. Cell Rep Med. 2024, 5, 101659.
50. Ao, Z.; Cai, H.; Wu, Z.; Krzesniak, J.; Tian, C.; Lai, Y. Y.; Mackie, K.; Guo, F. Human spinal organoid-on-a-chip to model nociceptive circuitry for pain therapeutics discovery. Anal Chem. 2022, 94, 1365-1372.
51. Stiefel, D.; Shibata, T.; Meuli, M.; Duffy, P. G.; Copp, A. J. Tethering of the spinal cord in mouse fetuses and neonates with spina bifida. J Neurosurg. 2003, 99, 206-213.
52. Lundin, B. F.; Knight, G. T.; Fedorchak, N. J.; Krucki, K.; Iyer, N.; Maher, J. E.; Izban, N. R.; Roberts, A.; Cicero, M. R.; Robinson, J. F.; Iskandar, B. J.; Willett, R.; Ashton, R. S. RosetteArray(®) platform for quantitative high-throughput screening of human neurodevelopmental risk. bioRxiv. 2024. doi: 10.1101/2024.04.01.587605.
53. Strong, M. J.; Strong, W. L.; Jaffe, H.; Traggert, B.; Sopper, M. M.; Pant, H. C. Phosphorylation state of the native high-molecular-weight neurofilament subunit protein from cervical spinal cord in sporadic amyotrophic lateral sclerosis. J Neurochem. 2001, 76, 1315-1325.
54. Schirmer, L.; Albert, M.; Buss, A.; Schulz-Schaeffer, W. J.; Antel, J. P.; Brück, W.; Stadelmann, C. Substantial early, but nonprogressive neuronal loss in multiple sclerosis (MS) spinal cord. Ann Neurol. 2009, 66, 698-704.
55. Liu, D.; Liu, C.; Li, J.; Azadzoi, K.; Yang, Y.; Fei, Z.; Dou, K.; Kowall, N. W.; Choi, H. P.; Vieira, F.; Yang, J. H. Proteomic analysis reveals differentially regulated protein acetylation in human amyotrophic lateral sclerosis spinal cord. PLoS One. 2013, 8, e80779.
56. Valbuena, G. N.; Cantoni, L.; Tortarolo, M.; Bendotti, C.; Keun, H. C. Spinal cord metabolic signatures in models of fast- and slow-progressing SOD1(G93A) amyotrophic lateral sclerosis. Front Neurosci. 2019, 13, 1276.
57. Zhao, A.; Pan, Y.; Cai, S. Patient-specific cells for modeling and decoding amyotrophic lateral sclerosis: advances and challenges. Stem Cell Rev Rep. 2020, 16, 482-502.
58. Chooi, W. H.; Ng, C. Y.; Ow, V.; Harley, J.; Ng, W.; Hor, J. H.; Low, K. E.; Malleret, B.; Xue, K.; Ng, S. Y. Defined alginate hydrogels support spinal cord organoid derivation, maturation, and modeling of spinal cord diseases. Adv Healthc Mater. 2023, 12, e2202342.
59. Guo, R.; Chen, Y.; Zhang, J.; Zhou, Z.; Feng, B.; Du, X.; Liu, X.; Ma, J.; Cui, H. Neural Differentiation and spinal cord organoid generation from induced pluripotent stem cells (iPSCs) for ALS modelling and inflammatory screening. Mol Neurobiol. 2024, 61, 4732-4749.
60. Sirtori, R.; M, J. G.; E, M. P.; Collins, A.; Donatelli, L.; Fallini, C. LINC complex alterations are a key feature of sporadic and familial ALS/FTD. Acta Neuropathol Commun. 2024, 12, 69.
61. Han, Y.; Yang, L.; Lacko, L. A.; Chen, S. Human organoid models to study SARS-CoV-2 infection. Nat Methods. 2022, 19, 418-428.
62. Willner, M. J.; Xiao, Y.; Kim, H. S.; Chen, X.; Xu, B.; Leong, K. W. Modeling SARS-CoV-2 infection in individuals with opioid use disorder with brain organoids. J Tissue Eng. 2021, 12, 2041731420985299.
63. Hu, X.; Xu, W.; Ren, Y.; Wang, Z.; He, X.; Huang, R.; Ma, B.; Zhao, J.; Zhu, R.; Cheng, L. Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2023, 8, 245.
64. Xu, J.; Fang, S.; Deng, S.; Li, H.; Lin, X.; Huang, Y.; Chung, S.; Shu, Y.; Shao, Z. Generation of neural organoids for spinal-cord regeneration via the direct reprogramming of human astrocytes. Nat Biomed Eng. 2023, 7, 253-269.
65. Li, X.; Fu, J.; Guan, M.; Shi, H.; Pan, W.; Lou, X. Biochanin A attenuates spinal cord injury in rats during early stages by inhibiting oxidative stress and inflammasome activation. Neural Regen Res. 2024, 19, 2050-2056.
66. Anjum, A.; Yazid, M. D.; Fauzi Daud, M.; Idris, J.; Ng, A. M. H.; Selvi Naicker, A.; Ismail, O. H. R.; Athi Kumar, R. K.; Lokanathan, Y. Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci. 2020, 21, 7533.
67. Lai, J. D.; Berlind, J. E.; Fricklas, G.; Lie, C.; Urenda, J. P.; Lam, K.; Sta Maria, N.; Jacobs, R.; Yu, V.; Zhao, Z.; Ichida, J. K. KCNJ2 inhibition mitigates mechanical injury in a human brain organoid model of traumatic brain injury. Cell Stem Cell. 2024, 31, 519-536.e8.
68. Deng, Y. F.; Xiang, P.; Du, J. Y.; Liang, J. F.; Li, X. Intrathecal liproxstatin-1 delivery inhibits ferroptosis and attenuates mechanical and thermal hypersensitivities in rats with complete Freund’s adjuvant-induced inflammatory pain. Neural Regen Res. 2023, 18, 456-462.
69. Li, D. Y.; Gao, S. J.; Sun, J.; Zhang, L. Q.; Wu, J. Y.; Song, F. H.; Liu, D. Q.; Zhou, Y. Q.; Mei, W. Targeting the nitric oxide/cGMP signaling pathway to treat chronic pain. Neural Regen Res. 2023, 18, 996-1003.
70. Xiao, D.; Deng, Q.; Guo, Y.; Huang, X.; Zou, M.; Zhong, J.; Rao, P.; Xu, Z.; Liu, Y.; Hu, Y.; Shen, Y.; Jin, K.; Xiang, M. Generation of self-organized sensory ganglion organoids and retinal ganglion cells from fibroblasts. Sci Adv. 2020, 6, eaaz5858.
71. Yang, J.; Yan, Y.; Yin, X.; Liu, X.; Reshetov, I. V.; Karalkin, P. A.; Li, Q.; Huang, R. L. Bioengineering and vascularization strategies for islet organoids: advancing toward diabetes therapy. Metabolism. 2024, 152, 155786.
72. Wang, M.; Gage, F. H.; Schafer, S. T. Transplantation strategies to enhance maturity and cellular complexity in brain organoids. Biol Psychiatry. 2023, 93, 616-621.
73. Kofman, S.; Mohan, N.; Sun, X.; Ibric, L.; Piermarini, E.; Qiang, L. Human mini brains and spinal cords in a dish: Modeling strategies, current challenges, and prospective advances. J Tissue Eng. 2022, 13, 20417314221113391.
74. Xue, W.; Li, B.; Liu, H.; Xiao, Y.; Li, B.; Ren, L.; Li, H.; Shao, Z. Generation of dorsoventral human spinal cord organoids via functionalizing composite scaffold for drug testing. iScience. 2023, 26, 105898.
75. Lancaster, M. A.; Corsini, N. S.; Wolfinger, S.; Gustafson, E. H.; Phillips, A. W.; Burkard, T. R.; Otani, T.; Livesey, F. J.; Knoblich, J. A. Guided self-organization and cortical plate formation in human brain organoids. Nat Biotechnol. 2017, 35, 659-666.
76. Li, W.; Zhang, G.; Guan, T.; Zhang, X.; Khosrozadeh, A.; Xing, M.; Kong, J. Manipulable permeability of nanogel encapsulation on cells exerts protective effect against TNF-α-induced apoptosis. ACS Biomater Sci Eng. 2018, 4, 2825-2835.
77. Wu, W.; Liu, Y.; Liu, R.; Wang, Y.; Zhao, Y.; Li, H.; Lu, B.; Ju, C.; Gao, X.; Xu, H.; Cao, Y.; Cheng, S.; Wang, Z.; Jia, S.; Hu, C.; Zhu, L.; Hao, D. Decellularized brain extracellular matrix hydrogel aids the formation of human spinal-cord organoids recapitulating the complex three-dimensional organization. ACS Biomater Sci Eng. 2024, 10, 3203-3217.
78. Sun, Z.; Chen, Z.; Yin, M.; Wu, X.; Guo, B.; Cheng, X.; Quan, R.; Sun, Y.; Zhang, Q.; Fan, Y.; Jin, C.; Yin, Y.; Hou, X.; Liu, W.; Shu, M.; Xue, X.; Shi, Y.; Chen, B.; Xiao, Z.; Dai, J.; Zhao, Y. Harnessing developmental dynamics of spinal cord extracellular matrix improves regenerative potential of spinal cord organoids. Cell Stem Cell. 2024, 31, 772-787.e11.
79. Wang, Z.; Liu, R.; Liu, Y.; Zhao, Y.; Wang, Y.; Lu, B.; Li, H.; Ju, C.; Wu, W.; Gao, X.; Xu, H.; Cheng, S.; Cao, Y.; Jia, S.; Hu, C.; Zhu, L.; Hao, D. Human placenta decellularized extracellular matrix hydrogel promotes the generation of human spinal cord organoids with dorsoventral organization from human induced pluripotent stem cells. ACS Biomater Sci Eng. 2024, 10, 3218-3231.
80. Han, Y.; King, M.; Tikhomirov, E.; Barasa, P.; Souza, C. D. S.; Lindh, J.; Baltriukiene, D.; Ferraiuolo, L.; Azzouz, M.; Gullo, M. R.; Kozlova, E. N. Towards 3D bioprinted spinal cord organoids. Int J Mol Sci. 2022, 23, 5788.
81. Lai, B. Q.; Feng, B.; Che, M. T.; Wang, L. J.; Cai, S.; Huang, M. Y.; Gu, H. Y.; Jiang, B.; Ling, E. A.; Li, M.; Zeng, X.; Zeng, Y. S. A modular assembly of spinal cord-like tissue allows targeted tissue repair in the transected spinal cord. Adv Sci (Weinh). 2018, 5, 1800261.
82. Lai, B. Q.; Wu, R. J.; Han, W. T.; Bai, Y. R.; Liu, J. L.; Yu, H. Y.; Yang, S. B.; Wang, L. J.; Ren, J. L.; Ding, Y.; Li, G.; Zeng, X.; Ma, Y. H.; Quan, Q.; Xing, L. Y.; Jiang, B.; Wang, Y. Q.; Zhang, L.; Chen, Z. H.; Zhang, H. B.; Chen, Y. F.; Zheng, Q. J.; Zeng, Y. S. Tail nerve electrical stimulation promoted the efficiency of transplanted spinal cord-like tissue as a neuronal relay to repair the motor function of rats with transected spinal cord injury. Biomaterials. 2023, 297, 122103.
83. Ji, Y.; Li, Y. M.; Seo, J. G.; Jang, T. S.; Knowles, J. C.; Song, S. H.; Lee, J. H. Biological potential of polyethylene glycol (PEG)-functionalized graphene quantum dots in in vitro neural stem/progenitor cells. Nanomaterials (Basel). 2021, 11, 1446.
84. Ito, Y.; Oyane, A.; Yasunaga, M.; Hirata, K.; Hirose, M.; Tsurushima, H.; Ito, Y.; Matsumaru, Y.; Ishikawa, E. Induction of angiogenesis and neural progenitor cells by basic fibroblast growth factor-releasing polyglycolic acid sheet following focal cerebral infarction in mice. J Biomed Mater Res A. 2022, 110, 1964-1975.
85. Layrolle, P.; Payoux, P.; Chavanas, S. Message in a scaffold: natural biomaterials for three-dimensional (3D) bioprinting of human brain organoids. Biomolecules. 2022, 13, 25.
86. Marchini, A.; Gelain, F. Synthetic scaffolds for 3D cell cultures and organoids: applications in regenerative medicine. Crit Rev Biotechnol. 2022, 42, 468-486.
87. Kim, S.; Min, S.; Choi, Y. S.; Jo, S. H.; Jung, J. H.; Han, K.; Kim, J.; An, S.; Ji, Y. W.; Kim, Y. G.; Cho, S. W. Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids. Nat Commun. 2022, 13, 1692.
88. Pham, M. T.; Pollock, K. M.; Rose, M. D.; Cary, W. A.; Stewart, H. R.; Zhou, P.; Nolta, J. A.; Waldau, B. Generation of human vascularized brain organoids. Neuroreport. 2018, 29, 588-593.
89. Kelava, I.; Lancaster, M. A. Dishing out mini-brains: current progress and future prospects in brain organoid research. Dev Biol. 2016, 420, 199-209.
90. Zhang, Z. N.; Freitas, B. C.; Qian, H.; Lux, J.; Acab, A.; Trujillo, C. A.; Herai, R. H.; Nguyen Huu, V. A.; Wen, J. H.; Joshi-Barr, S.; Karpiak, J. V.; Engler, A. J.; Fu, X. D.; Muotri, A. R.; Almutairi, A. Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction. Proc Natl Acad Sci U S A. 2016, 113, 3185-3190.
91. Wei, Y. T.; He, Y.; Xu, C. L.; Wang, Y.; Liu, B. F.; Wang, X. M.; Sun, X. D.; Cui, F. Z.; Xu, Q. Y. Hyaluronic acid hydrogel modified with nogo-66 receptor antibody and poly-L-lysine to promote axon regrowth after spinal cord injury. J Biomed Mater Res B Appl Biomater. 2010, 95, 110-117.
92. Xiang, Y.; Tanaka, Y.; Patterson, B.; Kang, Y. J.; Govindaiah, G.; Roselaar, N.; Cakir, B.; Kim, K. Y.; Lombroso, A. P.; Hwang, S. M.; Zhong, M.; Stanley, E. G.; Elefanty, A. G.; Naegele, J. R.; Lee, S. H.; Weissman, S. M.; Park, I. H. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell. 2017, 21, 383-398.e7.
93. Hoang, P.; Ma, Z. Biomaterial-guided stem cell organoid engineering for modeling development and diseases. Acta Biomater. 2021, 132, 23-36.
94. He, F.; Tao, T.; Liu, H.; Wang, Y.; Cui, K.; Guo, Y.; Qin, J. Controllable fabrication of composite core-shell capsules at a macroscale as organoid biocarriers. ACS Appl Bio Mater. 2021, 4, 1584-1596.
95. Wertheim, L.; Edri, R.; Goldshmit, Y.; Kagan, T.; Noor, N.; Ruban, A.; Shapira, A.; Gat-Viks, I.; Assaf, Y.; Dvir, T. Regenerating the injured spinal cord at the chronic phase by engineered iPSCs-derived 3D neuronal networks. Adv Sci (Weinh). 2022, 9, e2105694.
96. Feng, B.; Yang, H.; Zhu, M.; Li, J.; Chang, H. M.; Leung, P. C. K.; Guo, J.; Zhang, Y. Collagen-based biomaterials in organoid technology for reproductive medicine: composition, characteristics, and applications. Collagen Leather. 2023, 5, 35.
97. Chen, Z. X.; Zha, X. J.; Xia, Y. K.; Ling, T. X.; Xiong, J.; Huang, J. G. 3D foaming printing biomimetic hierarchically macro-micronanoporous hydrogels for enhancing cell growth and proliferation. ACS Appl Mater Interfaces. 2024, 16, 10813-10821.
98. Chen, X.; Wang, Y.; Zhou, G.; Hu, X.; Han, S.; Gao, J. The combination of nanoscaffolds and stem cell transplantation: Paving a promising road for spinal cord injury regeneration. Biomed Pharmacother. 2021, 143, 112233.
99. Mansour, A. A.; Gonçalves, J. T.; Bloyd, C. W.; Li, H.; Fernandes, S.; Quang, D.; Johnston, S.; Parylak, S. L.; Jin, X.; Gage, F. H. An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol. 2018, 36, 432-441.
100. Lim, S.; Jung, G. A.; Muckom, R. J.; Glover, D. J.; Clark, D. S. Engineering bioorthogonal protein-polymer hybrid hydrogel as a functional protein immobilization platform. Chem Commun (Camb). 2019, 55, 806-809.
101. Mirabella, T.; MacArthur, J. W.; Cheng, D.; Ozaki, C. K.; Woo, Y. J.; Yang, M.; Chen, C. S. 3D-printed vascular networks direct therapeutic angiogenesis in ischaemia. Nat Biomed Eng. 2017, 1, 0083.
102. Urciuolo, A.; Giobbe, G. G.; Dong, Y.; Michielin, F.; Brandolino, L.; Magnussen, M.; Gagliano, O.; Selmin, G.; Scattolini, V.; Raffa, P.; Caccin, P.; Shibuya, S.; Scaglioni, D.; Wang, X.; Qu, J.; Nikolic, M.; Montagner, M.; Galea, G. L.; Clevers, H.; Giomo, M.; De Coppi, P.; Elvassore, N. Hydrogel-in-hydrogel live bioprinting for guidance and control of organoids and organotypic cultures. Nat Commun. 2023, 14, 3128.
103. Knight, G. T.; Lundin, B. F.; Iyer, N.; Ashton, L. M.; Sethares, W. A.; Willett, R. M.; Ashton, R. S. Engineering induction of singular neural rosette emergence within hPSC-derived tissues. Elife. 2018, 7, e37549.
104. Seo, K.; Cho, S.; Shin, H.; Shin, A.; Lee, J. H.; Kim, J. H.; Lee, B.; Jang, H.; Kim, Y.; Cho, H. M.; Park, Y.; Kim, H. Y.; Lee, T.; Park, W. Y.; Kim, Y. J.; Yang, E.; Geum, D.; Kim, H.; Cho, I. J.; Lee, S.; Ryu, J. R.; Sun, W. Symmetry breaking of human pluripotent stem cells (hPSCs) in micropattern generates a polarized spinal cord-like organoid (pSCO) with dorsoventral organization. Adv Sci (Weinh). 2023, 10, e2301787.
105. Anand, G. M.; Megale, H. C.; Murphy, S. H.; Weis, T.; Lin, Z.; He, Y.; Wang, X.; Liu, J.; Ramanathan, S. Controlling organoid symmetry breaking uncovers an excitable system underlying human axial elongation. Cell. 2023, 186, 497-512.e23.
106. Xue, X.; Kim, Y. S.; Ponce-Arias, A. I.; O’Laughlin, R.; Yan, R. Z.; Kobayashi, N.; Tshuva, R. Y.; Tsai, Y. H.; Sun, S.; Zheng, Y.; Liu, Y.; Wong, F. C. K.; Surani, A.; Spence, J. R.; Song, H.; Ming, G. L.; Reiner, O.; Fu, J. A patterned human neural tube model using microfluidic gradients. Nature. 2024, 628, 391 - 399.
107. Andersen, J.; Revah, O.; Miura, Y.; Thom, N.; Amin, N. D.; Kelley, K. W.; Singh, M.; Chen, X.; Thete, M. V.; Walczak, E. M.; Vogel, H.; Fan, H. C.; Paşca, S. P. Generation of functional human 3D cortico - motor assembloids. Cell. 2020, 183, 1913 - 1929.e26.
108. Faustino Martins, J. M.; Fischer, C.; Urzi, A.; Vidal, R.; Kunz, S.; Ruffault, P. L.; Kabuss, L.; Hube, I.; Gazzerro, E.; Birchmeier, C.; Spuler, S.; Sauer, S.; Gouti, M. Self - organizing 3D human trunk neuromuscular organoids. Cell Stem Cell. 2020, 27, 498.
109. Son, J.; Park, S. J.; Ha, T.; Lee, S. N.; Cho, H. Y.; Choi, J. W. Electrophysiological monitoring of neurochemical - based neural signal transmission in a human brain - spinal cord assembloid. ACS Sens. 2022, 7, 409 - 414.
110. Hong, S.; Lee, J.; Kim, Y.; Kim, E.; Shin, K. AAVS1 - targeted, stable expression of ChR2 in human brain organoids for consistent optogenetic control. Bioeng Transl Med. 2024, e10690.
111. Hor, J. H.; Soh, E. S.; Tan, L. Y.; Lim, V. J. W.; Santosa, M. M.; Winanto; Ho, B. X.; Fan, Y.; Soh, B. S.; Ng, S. Y. Cell cycle inhibitors protect motor neurons in an organoid model of Spinal Muscular Atrophy. Cell Death Dis. 2018, 9, 1100.
112. Li, M.; Gao, L.; Zhao, L.; Zou, T.; Xu, H. Toward the next generation of vascularized human neural organoids. Med Res Rev. 2023, 43, 31 - 54.
113. Tang, X. Y.; Wu, S.; Wang, D.; Chu, C.; Hong, Y.; Tao, M.; Hu, H.; Xu, M.; Guo, X.; Liu, Y. Human organoids in basic research and clinical applications. Signal Transduct Target Ther. 2022, 7, 168.
114. O’Hara - Wright, M.; Mobini, S.; Gonzalez - Cordero, A. Bioelectric potential in next - generation organoids: electrical stimulation to enhance 3D structures of the central nervous system. Front Cell Dev Biol. 2022, 10, 901652.