·
REVIEW
·

Model construction and clinical therapeutic potential of engineered cardiac organoids for cardiovascular diseases

Yongtao Wang1,2 Yan Hou1 Tian Hao3 Marta Garcia-Contreras3 Guoping Li3 Dragos Cretoiu4,5 Junjie Xiao1,2*
Show Less
1 Cardiac Regeneration and Ageing Lab, School of Medicine, Shanghai University, Shanghai, China
2 Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, China
3 Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
4 Department of Medical Genetics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
5 Materno-Fetal Assistance Excellence Unit, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
Submitted: 14 August 2024 | Revised: 8 October 2024 | Accepted: 14 November 2024 | Published: 28 December 2024
Copyright © 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Cardiovascular diseases cause significant morbidity and mortality worldwide. Engineered cardiac organoids are being developed and used to replicate cardiac tissues supporting cardiac morphogenesis and development. These organoids have applications in drug screening, cardiac disease models and regenerative medicine. Therefore, a thorough understanding of cardiac organoids and a comprehensive overview of their development are essential for cardiac tissue engineering. This review summarises different types of cardiac organoids used to explore cardiac function, including those based on co–culture, aggregation, scaffolds, and geometries. The self–assembly of monolayers, multilayers and aggravated cardiomyocytes forms biofunctional cell aggregates in cardiac organoids, elucidating the formation mechanism of scaffold–free cardiac organoids. In contrast, scaffolds such as decellularised extracellular matrices, three–dimensional hydrogels and bioprinting techniques provide a supportive framework for cardiac organoids, playing a crucial role in cardiac development. Different geometries are engineered to create cardiac organoids, facilitating the investigation of intrinsic communication between cardiac organoids and biomechanical pathways. Additionally, this review emphasises the relationship between cardiac organoids and the cardiac system, and evaluates their clinical applications. This review aims to provide valuable insights into the study of three–dimensional cardiac organoids and their clinical potential.

Keywords
cardiac organoids ; cardiovascular diseases ; clinical applications ; scaffolds ; self–assembly
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

1.Neal, B.; Wu, J. Sodium, blood pressure, and the likely massive avoidable burden of cardiovascular disease. Circulation. 2021, 143, 1568-1570.
2. Ruan, Y.; Guo, Y.; Zheng, Y.; Huang, Z.; Sun, S.; Kowal, P.; Shi, Y.; Wu, F. Cardiovascular disease (CVD) and associated risk factors among older adults in six low-and middle-income countries: results from SAGE Wave 1. BMC Public Health. 2018, 18, 778.
3. Cahill, T. J.; Ashrafian, H.; Watkins, H. Genetic cardiomyopathies causing heart failure. Circ Res. 2013, 113, 660-675.
4. Elliott, P.; Andersson, B.; Arbustini, E.; Bilinska, Z.; Cecchi, F.; Charron, P.; Dubourg, O.; Kühl, U.; Maisch, B.; McKenna, W. J.; Monserrat, L.; Pankuweit, S.; Rapezzi, C.; Seferovic, P.; Tavazzi, L.; Keren, A. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2008, 29, 270-276.
5. Franz, W. M.; Müller, O. J.; Katus, H. A. Cardiomyopathies: from genetics to the prospect of treatment. Lancet. 2001, 358, 1627-1637.
6. Kimura, A. Molecular genetics and pathogenesis of cardiomyopathy. J Hum Genet. 2016, 61, 41-50.
7. Zhou, J.; Su, J.; Fu, X.; Zheng, L.; Yin, Z. Microfluidic device for primary tumor spheroid isolation. Exp Hematol Oncol. 2017, 6, 22.
8. Ben-David, U.; Ha, G.; Tseng, Y. Y.; Greenwald, N. F.; Oh, C.; Shih, J.; McFarland, J. M.; Wong, B.; Boehm, J. S.; Beroukhim, R.; Golub, T. R. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet. 2017, 49, 1567-1575.
9. Wu, Y.; Qin, M.; Yang, X. Organ bioprinting: progress, challenges and outlook. J Mater Chem B. 2023, 11, 10263-10287.
10. Zhu, L.; Liu, K.; Feng, Q.; Liao, Y. Cardiac organoids: a 3D technology for modeling heart development and disease. Stem Cell Rev Rep. 2022, 18, 2593-2605.
11. Miyamoto, M.; Nam, L.; Kannan, S.; Kwon, C. Heart organoids and tissue models for modeling development and disease. Semin Cell Dev Biol. 2021, 118, 119-128.
12. Lewis-Israeli, Y. R.; Wasserman, A. H.; Aguirre, A. Heart organoids and engineered heart tissues: novel tools for modeling human cardiac biology and disease. Biomolecules. 2021, 11, 1277.
13. Xu, H.; Jiao, Y.; Qin, S.; Zhao, W.; Chu, Q.; Wu, K. Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine. Exp Hematol Oncol. 2018, 7, 30.
14. Cho, J.; Lee, H.; Rah, W.; Chang, H. J.; Yoon, Y. S. From engineered heart tissue to cardiac organoid. Theranostics. 2022, 12, 2758-2772.
15. Jaconi, M. E.; Puceat, M. Cardiac organoids and gastruloids to study physio-pathological heart development. J Cardiovasc Dev Dis. 2021, 8, 178.
16. Lee, S. G.; Kim, Y. J.; Son, M. Y.; Oh, M. S.; Kim, J.; Ryu, B.; Kang, K. R.; Baek, J.; Chung, G.; Woo, D. H.; Kim, C. Y.; Chung, H. M. Generation of human iPSCs derived heart organoids structurally and functionally similar to heart. Biomaterials. 2022, 290, 121860.
17. Rossi, G.; Manfrin, A.; Lutolf, M. P. Progress and potential in organoid research. Nat Rev Genet. 2018, 19, 671-687.
18. Lancaster, M. A.; Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 2014, 345, 1247125.
19. Saorin, G.; Caligiuri, I.; Rizzolio, F. Microfluidic organoids-on-a-chip: The future of human models. Semin Cell Dev Biol. 2023, 144, 41-54.
20. Jiang, S.; Feng, W.; Chang, C.; Li, G. Modeling human heart development and congenital defects using organoids: how close are we? J Cardiovasc Dev Dis. 2022, 9, 125.
21. Schmidt, C.; Deyett, A.; Ilmer, T.; Haendeler, S.; Torres Caballero, A.; Novatchkova, M.; Netzer, M. A.; Ceci Ginistrelli, L.; Mancheno Juncosa, E.; Bhattacharya, T.; Mujadzic, A.; Pimpale, L.; Jahnel, S. M.; Cirigliano, M.; Reumann, D.; Tavernini, K.; Papai, N.; Hering, S.; Hofbauer, P.; Mendjan, S. Multi-chamber cardioids unravel human heart development and cardiac defects. Cell. 2023, 186, 5587-5605.e27.
22. Ng, W. H.; Varghese, B.; Jia, H.; Ren, X. Alliance of heart and endoderm: multilineage organoids to model co-development. Circ Res. 2023, 132, 511-518.
23. Tang, X. Y.; Wu, S.; Wang, D.; Chu, C.; Hong, Y.; Tao, M.; Hu, H.; Xu, M.; Guo, X.; Liu, Y. Human organoids in basic research and clinical applications. Signal Transduct Target Ther. 2022, 7, 168.
24. Kannankeril, P. J.; Roden, D. M. Drug-induced long QT and torsade de pointes: recent advances. Curr Opin Cardiol. 2007, 22, 39-43.
25. Tang, C. P. S.; McMullen, J.; Tam, C. Cardiac side effects of bruton tyrosine kinase (BTK) inhibitors. Leuk Lymphoma. 2018, 59, 1554-1564.
26. Burridge, P. W.; Li, Y. F.; Matsa, E.; Wu, H.; Ong, S. G.; Sharma, A.; Holmström, A.; Chang, A. C.; Coronado, M. J.; Ebert, A. D.; Knowles, J. W.; Telli, M. L.; Witteles, R. M.; Blau, H. M.; Bernstein, D.; Altman, R. B.; Wu, J. C. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med. 2016, 22, 547-556.
27. Woosley, R. L. Cardiac actions of antihistamines. Annu Rev Pharmacol Toxicol. 1996, 36, 233-252.
28. Glassman, A. H.; Bigger, J. T., Jr. Antipsychotic drugs: prolonged QTc interval, torsade de pointes, and sudden death. Am J Psychiatry. 2001, 158, 1774-1782.
29. Johnson, R. A.; Palacios, I. Dilated cardiomyopathies of the adult (second of two parts). N Engl J Med. 1982, 307, 1119 - 1126.
30. Gintant, G. A.; Limberis, J. T.; McDermott, J. S.; Wegner, C. D.; Cox, B. F. The canine Purkinje fiber: an in vitro model system for acquired long QT syndrome and drug - induced arrhythmogenesis. J Cardiovasc Pharmacol. 2001, 37, 607 - 618.
31. Kramer, J.; Obejero - Paz, C. A.; Myatt, G.; Kuryshev, Y. A.; Bruening - Wright, A.; Verducci, J. S.; Brown, A. M. MICE models: superior to the HERG model in predicting Torsade de Pointes. Sci Rep. 2013, 3, 2100.
32. Smith, A. S.; Macadangdang, J.; Leung, W.; Laflamme, M. A.; Kim, D. H. Human iPSC - derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening. Biotechnol Adv. 2017, 35, 77 - 94.
33. Pontes Soares, C.; Midlej, V.; de Oliveira, M. E.; Benchimol, M.; Costa, M. L.; Mermelstein, C. 2D and 3D - organized cardiac cells shows differences in cellular morphology, adhesion junctions, presence of myofibrils and protein expression. PLoS One. 2012, 7, e38147.
34. Abbott, A. Cell culture: biology’s new dimension. Nature. 2003, 424, 870 - 872.
35. Uzun, A. U.; Mannhardt, I.; Breckwoldt, K.; Horváth, A.; Johannsen, S. S.; Hansen, A.; Eschenhagen, T.; Christ, T. Ca(2 + ) - currents in human induced pluripotent stem cell - derived cardiomyocytes effects of two different culture conditions. Front Pharmacol. 2016, 7, 300.
36. Mannhardt, I.; Breckwoldt, K.; Letuffe - Brenière, D.; Schaaf, S.; Schulz, H.; Neuber, C.; Benzin, A.; Werner, T.; Eder, A.; Schulze, T.; Klampe, B.; Christ, T.; Hirt, M. N.; Huebner, N.; Moretti, A.; Eschenhagen, T.; Hansen, A. Human engineered heart tissue: analysis of contractile force. Stem Cell Reports. 2016, 7, 29 - 42.
37. Li, Y.; Huang, G.; Li, M.; Wang, L.; Elson, E. L.; Lu, T. J.; Genin, G. M.; Xu, F. An approach to quantifying 3D responses of cells to extreme strain. Sci Rep. 2016, 6, 19550.
38. Li, C. L.; Tian, T.; Nan, K. J.; Zhao, N.; Guo, Y. H.; Cui, J.; Wang, J.; Zhang, W. G. Survival advantages of multicellular spheroids vs. monolayers of HepG2 cells in vitro. Oncol Rep. 2008, 20, 1465 - 1471.
39. Zhang, W.; Chen, Y.; Li, M.; Cao, S.; Wang, N.; Zhang, Y.; Wang, Y. A PDA - functionalized 3D lung scaffold bioplatform to construct complicated breast tumor microenvironment for anticancer drug screening and immunotherapy. Adv Sci (Weinh). 2023, 10, e2302855.
40. Hoang, P.; Sun, S.; Tarris, B. A.; Ma, Z. Controlling morphology and functions of cardiac organoids by two - dimensional geometrical templates. Cells Tissues Organs. 2023, 212, 64 - 73.
41. Noël, E. S. Cardiac construction - Recent advances in morphological and transcriptional modeling of early heart development. Curr Top Dev Biol. 2024, 156, 121 - 156.
42. Domian, I. J.; Chiravuri, M.; van der Meer, P.; Feinberg, A. W.; Shi, X.; Shao, Y.; Wu, S. M.; Parker, K. K.; Chien, K. R. Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science. 2009, 326, 426 - 429.
43. Kattman, S. J.; Witty, A. D.; Gagliardi, M.; Dubois, N. C.; Niapour, M.; Hotta, A.; Ellis, J.; Keller, G. Stage - specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell. 2011, 8, 228 - 240.
44. Correia, C.; Koshkin, A.; Duarte, P.; Hu, D.; Carido, M.; Sebastião, M. J.; Gomes - Alves, P.; Elliott, D. A.; Domian, I. J.; Teixeira, A. P.; Alves, P. M.; Serra, M. 3D aggregate culture improves metabolic maturation of human pluripotent stem cell derived cardiomyocytes. Biotechnol Bioeng. 2018, 115, 630 - 644.
45. Kempf, H.; Kropp, C.; Olmer, R.; Martin, U.; Zweigerdt, R. Cardiac differentiation of human pluripotent stem cells in scalable suspension culture. Nat Protoc. 2015, 10, 1345 - 1361.
46. Eschenhagen, T.; Zimmermann, W. H. Engineering myocardial tissue. Circ Res. 2005, 97, 1220 - 1231.
47. Daly, A. C.; Davidson, M. D.; Burdick, J. A. 3D bioprinting of high cell - density heterogeneous tissue models through spheroid fusion within self - healing hydrogels. Nat Commun. 2021, 12, 753.
48. Lewis - Israeli, Y. R.; Wasserman, A. H.; Gabalski, M. A.; Volmert, B. D.; Ming, Y.; Ball, K. A.; Yang, W.; Zou, J.; Ni, G.; Pajares, N.; Chatzistavrou, X.; Li, W.; Zhou, C.; Aguirre, A. Self - assembling human heart organoids for the modeling of cardiac development and congenital heart disease. Nat Commun. 2021, 12, 5142.
49. Aalders, J.; Léger, L.; Piras, D.; van Hengel, J.; Ledda, S. Use of transparent liquid marble: microbioreactor to culture cardiospheres. Methods Mol Biol. 2021, 2273, 85 - 102.
50. Polonchuk, L.; Chabria, M.; Badi, L.; Hoflack, J. C.; Figtree, G.; Davies, M. J.; Gentile, C. Cardiac spheroids as promising in vitro models to study the human heart microenvironment. Sci Rep. 2017, 7, 7005.
51. Beauchamp, P.; Jackson, C. B.; Ozhathil, L. C.; Agarkova, I.; Galindo, C. L.; Sawyer, D. B.; Suter, T. M.; Zuppinger, C. 3D co - culture of hiPSC - derived cardiomyocytes with cardiac fibroblasts improves tissue - like features of cardiac spheroids. Front Mol Biosci. 2020, 7, 14.
52. Zuppinger, C. Measurement of contractility and calcium release in cardiac spheroids. Methods Mol Biol. 2019, 1929, 41 - 52.
53. Giacomelli, E.; Meraviglia, V.; Campostrini, G.; Cochrane, A.; Cao, X.; van Helden, R. W. J.; Krotenberg Garcia, A.; Mircea, M.; Kostidis, S.; Davis, R. P.; van Meer, B. J.; Jost, C. R.; Koster, A. J.; Mei, H.; Míguez, D. G.; Mulder, A. A.; Ledesma - Terrón, M.; Pompilio, G.; Sala, L.; Salvatori, D. C. F.; Slieker, R. C.; Sommariva, E.; de Vries, A. A. F.; Giera, M.; Semrau, S.; Tertoolen, L. G. J.; Orlova, V. V.; Bellin, M.; Mummery, C. L. Human - iPSC - derived cardiac stromal cells enhance maturation in 3D cardiac microtissues and reveal non - cardiomyocyte contributions to heart disease. Cell Stem Cell. 2020, 26, 862 - 879.e11.
54. Ong, C. S.; Pitaktong, I.; Hibino, N. Principles of spheroid preparation for creation of 3D cardiac tissue using biomaterial - free bioprinting. Methods Mol Biol. 2020, 2140, 183 - 197.
55. Arai, K.; Murata, D.; Verissimo, A. R.; Mukae, Y.; Itoh, M.; Nakamura, A.; Morita, S.; Nakayama, K. Fabrication of scaffold - free tubular cardiac constructs using a Bio - 3D printer. PLoS One. 2018, 13, e0209162.
56. Pinto, A. R.; Ilinykh, A.; Ivey, M. J.; Kuwabara, J. T.; D’Antoni, M. L.; Debuque, R.; Chandran, A.; Wang, L.; Arora, K.; Rosenthal, N. A.; Tallquist, M. D. Revisiting cardiac cellular composition. Circ Res. 2016, 118, 400 - 409.
57. Winbo, A.; Ramanan, S.; Eugster, E.; Jovinge, S.; Skinner, J. R.; Montgomery, J. M. Functional coculture of sympathetic neurons and cardiomyocytes derived from human - induced pluripotent stem cells. Am J Physiol Heart Circ Physiol. 2020, 319, H927 - H937.
58. Devalla, H. D.; Passier, R. Cardiac differentiation of pluripotent stem cells and implications for modeling the heart in health and disease. Sci Transl Med. 2018, 10, eaah5457.
59. Noguchi, R.; Nakayama, K.; Itoh, M.; Kamohara, K.; Furukawa, K.; Oyama, J. I.; Node, K.; Morita, S. Development of a three - dimensional pre - vascularized scaffold - free contractile cardiac patch for treating heart disease. J Heart Lung Transplant. 2016, 35, 137 - 145.
60. Pitaktong, I.; Lui, C.; Lowenthal, J.; Mattson, G.; Jung, W. H.; Bai, Y.; Yeung, E.; Ong, C. S.; Chen, Y.; Gerecht, S.; Hibino, N. Early vascular cells improve microvascularization within 3D cardiac spheroids. Tissue Eng Part C Methods. 2020, 26, 80 - 90.
61. Litviňuková, M.; Talavera - López, C.; Maatz, H.; Reichart, D.; Worth, C. L.; Lindberg, E. L.; Kanda, M.; Polanski, K.; Heinig, M.; Lee, M.; Nadelmann, E. R.; Roberts, K.; Tuck, L.; Fasouli, E. S.; DeLaughter, D. M.; McDonough, B.; Wakimoto, H.; Gorham, J. M.; Samari, S.; Mahbubani, K. T.; Saeb - Parsy, K.; Patone, G.; Boyle, J. J.; Zhang, H.; Zhang, H.; Viveiros, A.; Oudit, G. Y.; Bayraktar, O. A.; Seidman, J. G.; Seidman, C. E.; Noseda, M.; Hubner, N.; Teichmann, S. A. Cells of the adult human heart. Nature. 2020, 588, 466 - 472.
62. Hofbauer, P.; Jahnel, S. M.; Mendjan, S. In vitro models of the human heart. Development. 2021, 148, dev199672.
63. Caspi, O.; Lesman, A.; Basevitch, Y.; Gepstein, A.; Arbel, G.; Habib, I. H.; Gepstein, L.; Levenberg, S. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res. 2007, 100, 263 - 272.
64. Saini, H.; Navaei, A.; Van Putten, A.; Nikkhah, M. 3D cardiac microtissues encapsulated with the co - culture of cardiomyocytes and cardiac fibroblasts. Adv Healthc Mater. 2015, 4, 1961 - 1971.
65. Zhao, Y.; Rafatian, N.; Feric, N. T.; Cox, B. J.; Aschar - Sobbi, R.; Wang, E. Y.; Aggarwal, P.; Zhang, B.; Conant, G.; Ronaldson - Bouchard, K.; Pahnke, A.; Protze, S.; Lee, J. H.; Davenport Huyer, L.; Jekic, D.; Wickeler, A.; Naguib, H. E.; Keller, G. M.; Vunjak - Novakovic, G.; Broeckel, U.; Backx, P. H.; Radisic, M. A platform for generation of chamber - specific cardiac tissues and disease modeling. Cell. 2019, 176, 913 - 927.e8.
66. Oh, Y.; Cho, G. S.; Li, Z.; Hong, I.; Zhu, R.; Kim, M. J.; Kim, Y. J.; Tampakakis, E.; Tung, L.; Huganir, R.; Dong, X.; Kwon, C.; Lee, G. Functional coupling with cardiac muscle promotes maturation of hPSC - derived sympathetic neurons. Cell Stem Cell. 2016, 19, 95 - 106.
67. Schwach, V.; Passier, R. Native cardiac environment and its impact on engineering cardiac tissue. Biomater Sci. 2019, 7, 3566 - 3580.
68. Rienks, M.; Papageorgiou, A. P.; Frangogiannis, N. G.; Heymans, S. Myocardial extracellular matrix: an ever - changing and diverse entity. Circ Res. 2014, 114, 872 - 888.
69. Wang, F.; Zhu, J.; Wang, Y.; Li, J. Recent advances in engineering nanomedicines for second near - infrared photothermal - combinational immunotherapy. Nanomaterials (Basel). 2022, 12, 1656.
70. Wang, F.; Zhu, A.; Zhou, J.; Wang, Y.; Li, J. Near - infrared photoresponsive nanotransducers for precise regulation of gene expression. Bioconjug Chem. 2023. doi: 10.1021/acs.bioconjchem.3c00013.
71. Ariyasinghe, N. R.; Lyra - Leite, D. M.; McCain, M. L. Engineering cardiac microphysiological systems to model pathological extracellular matrix remodeling. Am J Physiol Heart Circ Physiol. 2018, 315, H771 - H789.
72. Cain, B. S.; Meldrum, D. R.; Meng, X.; Shames, B. D.; Banerjee, A.; Harken, A. H. Calcium preconditioning in human myocardium. Ann Thorac Surg. 1998, 65, 1065 - 1070.
73. Kitazawa, T. Effect of extracellular calcium on contractile activation in guinea - pig ventricular muscle. J Physiol. 1984, 355, 635 - 659.
74. Liu, W.; Zhang, X.; Jiang, X.; Dai, B.; Zhang, L.; Zhu, Y. Decellularized extracellular matrix materials for treatment of ischemic cardiomyopathy. Bioact Mater. 2024, 33, 460 - 482.
75. Mills, R. J.; Titmarsh, D. M.; Koenig, X.; Parker, B. L.; Ryall, J. G.; Quaife - Ryan, G. A.; Voges, H. K.; Hodson, M. P.; Ferguson, C.; Drowley, L.; Plowright, A. T.; Needham, E. J.; Wang, Q. D.; Gregorevic, P.; Xin, M.; Thomas, W. G.; Parton, R. G.; Nielsen, L. K.; Launikonis, B. S.; James, D. E.; Elliott, D. A.; Porrello, E. R.; Hudson, J. E. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc Natl Acad Sci U S A. 2017, 114, E8372 - E8381.
76. Bowers, S. L. K.; Meng, Q.; Kuwabara, Y.; Huo, J.; Minerath, R.; York, A. J.; Sargent, M. A.; Prasad, V.; Saviola, A. J.; Galindo, D. C.; Hansen, K. C.; Vagnozzi, R. J.; Yutzey, K. E.; Molkentin, J. D. Col1a2 - deleted mice have defective type I collagen and secondary reactive cardiac fibrosis with altered hypertrophic dynamics. Cells. 2023, 12, 2174.
77. Wang, Q.; Yang, H.; Bai, A.; Jiang, W.; Li, X.; Wang, X.; Mao, Y.; Lu, C.; Qian, R.; Guo, F.; Ding, T.; Chen, H.; Chen, S.; Zhang, J.; Liu, C.; Sun, N. Functional engineered human cardiac patches prepared from nature’s platform improve heart function after acute myocardial infarction. Biomaterials. 2016, 105, 52 - 65.
78. Mendibil, U.; Ruiz - Hernandez, R.; Retegi - Carrion, S.; Garcia - Urquia, N.; Olalde - Graells, B.; Abarrategi, A. Tissue - specific decellularization methods: rationale and strategies to achieve regenerative compounds. Int J Mol Sci. 2020, 21, 5447.
79. Bejleri, D.; Davis, M. E. Decellularized extracellular matrix materials for cardiac repair and regeneration. Adv Healthc Mater. 2019, 8, e1801217.
80. Guyette, J. P.; Charest, J. M.; Mills, R. W.; Jank, B. J.; Moser, P. T.; Gilpin, S. E.; Gershlak, J. R.; Okamoto, T.; Gonzalez, G.; Milan, D. J.; Gaudette, G. R.; Ott, H. C. Bioengineering human myocardium on native extracellular matrix. Circ Res. 2016, 118, 56 - 72.
81. Basara, G.; Ozcebe, S. G.; Ellis, B. W.; Zorlutuna, P. Tunable human myocardium derived decellularized extracellular matrix for 3D bioprinting and cardiac tissue engineering. Gels. 2021, 7, 70.
82. Saludas, L.; Pascual - Gil, S.; Prósper, F.; Garbayo, E.; Blanco - Prieto, M. Hydrogel based approaches for cardiac tissue engineering. Int J Pharm. 2017, 523, 454 - 475.
83. Navaee, F.; Khornian, N.; Longet, D.; Heub, S.; Boder - Pasche, S.; Weder, G.; Kleger, A.; Renaud, P.; Braschler, T. A three - dimensional engineered cardiac in vitro model: controlled alignment of cardiomyocytes in 3D microphysiological systems. Cells. 2023, 12, 576.
84. Sharma, D.; Ferguson, M.; Kamp, T. J.; Zhao, F. Constructing biomimetic cardiac tissues: a review of scaffold materials for engineering cardiac patches. Emergent Mater. 2019, 2, 181 - 191.
85. Chachques, J. C.; Trainini, J. C.; Lago, N.; Masoli, O. H.; Barisani, J. L.; Cortes - Morichetti, M.; Schussler, O.; Carpentier, A. Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM clinical trial): one year follow - up. Cell Transplant. 2007, 16, 927 - 934.
86. Kim, B. S.; Kim, H.; Gao, G.; Jang, J.; Cho, D. W. Decellularized extracellular matrix: a step towards the next generation source for bioink manufacturing. Biofabrication. 2017, 9, 034104.
87. Choi, S.; Lee, K. Y.; Kim, S. L.; MacQueen, L. A.; Chang, H.; Zimmerman, J. F.; Jin, Q.; Peters, M. M.; Ardoña, H. A. M.; Liu, X.; Heiler, A. C.; Gabardi, R.; Richardson, C.; Pu, W. T.; Bausch, A. R.; Parker, K. K. Fibre - infused gel scaffolds guide cardiomyocyte alignment in 3D - printed ventricles. Nat Mater. 2023, 22, 1039 - 1046.
88. Zhu, J.; Marchant, R. E. Design properties of hydrogel tissue - engineering scaffolds. Expert Rev Med Devices. 2011, 8, 607 - 626.
89. Shkumatov, A.; Baek, K.; Kong, H. Matrix rigidity - modulated cardiovascular organoid formation from embryoid bodies. PLoS One. 2014, 9, e94764.
90. Navaee, F.; Renaud, P.; Kleger, A.; Braschler, T. Highly efficient cardiac differentiation and maintenance by thrombin - coagulated fibrin hydrogels enriched with decellularized porcine heart extracellular matrix. Int J Mol Sci. 2023, 24, 2842.
91. Asti, A.; Gioglio, L. Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation. Int J Artif Organs. 2014, 37, 187 - 205.
92. Navaee, F.; Renaud, P.; Piacentini, N.; Durand, M.; Bayat, D. Z.; Ledroit, D.; Heub, S.; Boder - Pasche, S.; Kleger, A.; Braschler, T.; Weder, G. Toward a physiologically relevant 3D helicoidal - oriented cardiac model: simultaneous application of mechanical stimulation and surface topography. Bioengineering (Basel). 2023, 10, 266.
93. Tallawi, M.; Rosellini, E.; Barbani, N.; Cascone, M. G.; Rai, R.; Saint - Pierre, G.; Boccaccini, A. R. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review. J R Soc Interface. 2015, 12, 20150254.
94. DePalma, S. J.; Davidson, C. D.; Stis, A. E.; Helms, A. S.; Baker, B. M. Microenvironmental determinants of organized iPSC - cardiomyocyte tissues on synthetic fibrous matrices. Biomater Sci. 2021, 9, 93 - 107.
95. Hendrickson, T.; Mancino, C.; Whitney, L.; Tsao, C.; Rahimi, M.; Taraballi, F. Mimicking cardiac tissue complexity through physical cues: A review on cardiac tissue engineering approaches. Nanomedicine. 2021, 33, 102367.
96. Nunes, S. S.; Miklas, J. W.; Liu, J.; Aschar - Sobbi, R.; Xiao, Y.; Zhang, B.; Jiang, J.; Massé, S.; Gagliardi, M.; Hsieh, A.; Thavandiran, N.; Laflamme, M. A.; Nanthakumar, K.; Gross, G. J.; Backx, P. H.; Keller, G.; Radisic, M. Biowire: a platform for maturation of human pluripotent stem cell - derived cardiomyocytes. Nat Methods. 2013, 10, 781 - 787.
97. Hirt, M. N.; Boeddinghaus, J.; Mitchell, A.; Schaaf, S.; Börnchen, C.; Müller, C.; Schulz, H.; Hubner, N.; Stenzig, J.; Stoehr, A.; Neuber, C.; Eder, A.; Luther, P. K.; Hansen, A.; Eschenhagen, T. Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation. J Mol Cell Cardiol. 2014, 74, 151 - 161.
98. Ruan, J. L.; Tulloch, N. L.; Razumova, M. V.; Saiget, M.; Muskheli, V.; Pabon, L.; Reinecke, H.; Regnier, M.; Murry, C. E. Mechanical stress conditioning and electrical stimulation promote contractility and force maturation of induced pluripotent stem cell - derived human cardiac tissue. Circulation. 2016, 134, 1557 - 1567.
99. Wang, B.; Wang, G.; To, F.; Butler, J. R.; Claude, A.; McLaughlin, R. M.; Williams, L. N.; de Jongh Curry, A. L.; Liao, J. Myocardial scaffold - based cardiac tissue engineering: application of coordinated mechanical and electrical stimulations. Langmuir. 2013, 29, 11109 - 11117.
100. Morgan, K. Y.; Black, L. D., 3rd. Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs. Tissue Eng Part A. 2014, 20, 1654 - 1667.
101. Unal, A. Z.; West, J. L. Synthetic ECM: bioactive synthetic hydrogels for 3D tissue engineering. Bioconjug Chem. 2020, 31, 2253 - 2271.
102. Moshksayan, K.; Harihara, A.; Mondal, S.; Hegarty, E.; Atherly, T.; Sahoo, D. K.; Jergens, A. E.; Mochel, J. P.; Allenspach, K.; Zoldan, J.; Ben - Yakar, A. OrganoidChip facilitates hydrogel - free immobilization for fast and blur - free imaging of organoids. Sci Rep. 2023, 13, 11268.
103. Zuppinger, C. 3D cardiac cell culture: a critical review of current technologies and applications. Front Cardiovasc Med. 2019, 6, 87.
104. Strohm, E. M.; Callaghan, N. I.; Ding, Y.; Latifi, N.; Rafatian, N.; Funakoshi, S.; Fernandes, I.; Reitz, C. J.; Di Paola, M.; Gramolini, A. O.; Radisic, M.; Keller, G.; Kolios, M. C.; Simmons, C. A. Noninvasive quantification of contractile dynamics in cardiac cells, spheroids, and organs - on - a - chip using high - frequency ultrasound. ACS Nano. 2024, 18, 314 - 327.
105. Bates, R. C.; Edwards, N. S.; Yates, J. D. Spheroids and cell survival. Crit Rev Oncol Hematol. 2000, 36, 61 - 74.
106. Coutant, K.; Magne, B.; Ferland, K.; Fuentes - Rodriguez, A.; Chancy, O.; Mitchell, A.; Germain, L.; Landreville, S. Melanocytes in regenerative medicine applications and disease modeling. J Transl Med. 2024, 22, 336.
107. Arzt, M.; Pohlman, S.; Mozneb, M.; Sharma, A. Chemically defined production of tri - lineage human iPSC - derived cardiac spheroids. Curr Protoc. 2023, 3, e767.
108. Filippo Buono, M.; von Boehmer, L.; Strang, J.; Hoerstrup, S. P.; Emmert, M. Y.; Nugraha, B. Human Cardiac Organoids for Modeling Genetic Cardiomyopathy. Cells. 2020, 9, 1733.
109. Beauchamp, P.; Moritz, W.; Kelm, J. M.; Ullrich, N. D.; Agarkova, I.; Anson, B. D.; Suter, T. M.; Zuppinger, C. Development and characterization of a scaffold - free 3D spheroid model of induced pluripotent stem cell - derived human cardiomyocytes. Tissue Eng Part C Methods. 2015, 21, 852 - 861.
110. Matthys, O. B.; McDevitt, T. C. Self - assembled heterotypic cardiac spheroids from human pluripotent stem cells. Methods Mol Biol. 2022, 2485, 39 - 53.
111. Wang, Y.; Wang, N.; Chen, Y.; Yang, Y. Regulation of micropatterned curvature - dependent FA heterogeneity on cytoskeleton tension and nuclear DNA synthesis of malignant breast cancer cells. J Mater Chem B. 2022, 11, 99 - 108.
112. Wang, Y.; Wang, N.; Yang, Y.; Chen, Y.; Zhang, Z. Cellular nanomechanics derived from pattern - dependent focal adhesion and cytoskeleton to balance gene transfection of malignant osteosarcoma. J Nanobiotechnology. 2022, 20, 499.
113. Yang, Y.; Han, K.; Huang, S.; Wang, K.; Wang, Y.; Ding, S.; Zhang, L.; Zhang, M.; Xu, B.; Ma, S.; Wang, Y.; Wu, S.; Wang, X. Revelation of adhesive proteins affecting cellular contractility through reference - free traction force microscopy. J Mater Chem B. 2024, 12, 3249 - 3261.
114. Ayan, B.; Celik, N.; Zhang, Z.; Zhou, K.; Kim, M. H.; Banerjee, D.; Wu, Y.; Costanzo, F.; Ozbolat, I. T. Aspiration - assisted freeform bioprinting of prefabricated tissue spheroids in a yield - stress gel. Communications physics. 2020, 3, 183.
115. Lee, A.; Hudson, A. R.; Shiwarski, D. J.; Tashman, J. W.; Hinton, T. J.; Yerneni, S.; Bliley, J. M.; Campbell, P. G.; Feinberg, A. W. 3D bioprinting of collagen to rebuild components of the human heart. Science. 2019, 365, 482 - 487.
116. Seguret, M.; Vermersch, E.; Jouve, C.; Hulot, J. S. Cardiac organoids to model and heal heart failure and cardiomyopathies. Biomedicines. 2021, 9, 563.
117. Alonzo, M.; AnilKumar, S.; Roman, B.; Tasnim, N.; Joddar, B. 3D bioprinting of cardiac tissue and cardiac stem cell therapy. Transl Res. 2019, 211, 64 - 83.
118. Ardissino, M.; Morley, A. P.; Slob, E. A. W.; Schuermans, A.; Rayes, B.; Raisi-Estabragh, Z.; de Marvao, A.; Burgess, S.; Rogne, T.; Honigberg, M. C.; Ng, F. S. Birth weight influences cardiac structure, function, and disease risk: evidence of a causal association. Eur Heart J. 2024, 45, 443 - 454.
119. Crouch, E. E.; Diafos, L. N.; Valenzuela, E. J.; Wedderburn-Pugh, K.; Birrueta, J. O.; Caston, J.; Joseph, T.; Andrews, M. G.; Bhaduri, A.; Huang, E. J. Profiling human brain vascular cells using single - cell transcriptomics and organoids. Nat Protoc. 2024, 19, 603 - 628.
120. Li, R. A.; Keung, W.; Cashman, T. J.; Backeris, P. C.; Johnson, B. V.; Bardot, E. S.; Wong, A. O. T.; Chan, P. K. W.; Chan, C. W. Y.; Costa, K. D. Bioengineering an electro - mechanically functional miniature ventricular heart chamber from human pluripotent stem cells. Biomaterials. 2018, 163, 116 - 127.
121. Orlowska, M. K.; Krycer, J. R.; Reid, J. D.; Mills, R. J.; Doran, M. R.; Hudson, J. E. A miniaturized culture platform for control of the metabolic environment. Biomicrofluidics. 2024, 18, 024101.
122. MacQueen, L. A.; Sheehy, S. P.; Chantre, C. O.; Zimmerman, J. F.; Pasqualini, F. S.; Liu, X.; Goss, J. A.; Campbell, P. H.; Gonzalez, G. M.; Park, S. J.; Capulli, A. K.; Ferrier, J. P.; Kosar, T. F.; Mahadevan, L.; Pu, W. T.; Parker, K. K. A tissue - engineered scale model of the heart ventricle. Nat Biomed Eng. 2018, 2, 930 - 941.
123. Zhang, J. Engineered tissue patch for cardiac cell therapy. Curr Treat Options Cardiovasc Med. 2015, 17, 399.
124. Drakhlis, L.; Biswanath, S.; Farr, C. M.; Lupanow, V.; Teske, J.; Ritzenhoff, K.; Franke, A.; Manstein, F.; Bolesani, E.; Kempf, H.; Liebscher, S.; Schenke - Layland, K.; Hegermann, J.; Nolte, L.; Meyer, H.; de la Roche, J.; Thiemann, S.; Wahl - Schott, C.; Martin, U.; Zweigerdt, R. Human heart - forming organoids recapitulate early heart and foregut development. Nat Biotechnol. 2021, 39, 737 - 746.
125. Hansen, A.; Eder, A.; Bönstrup, M.; Flato, M.; Mewe, M.; Schaaf, S.; Aksehirlioglu, B.; Schwoerer, A. P.; Uebeler, J.; Eschenhagen, T. Development of a drug screening platform based on engineered heart tissue. Circ Res. 2010, 107, 35 - 44.
126. Feric, N. T.; Pallotta, I.; Singh, R.; Bogdanowicz, D. R.; Gustilo, M. M.; Chaudhary, K. W.; Willette, R. N.; Chendrimada, T. P.; Xu, X.; Graziano, M. P.; Aschar - Sobbi, R. Engineered cardiac tissues generated in the biowire II: a platform for human - based drug discovery. Toxicol Sci. 2019, 172, 89 - 97.
127. Serrao, G. W.; Turnbull, I. C.; Ancukiewicz, D.; Kim, D. E.; Kao, E.; Cashman, T. J.; Hadri, L.; Hajjar, R. J.; Costa, K. D. Myocyte - depleted engineered cardiac tissues support therapeutic potential of mesenchymal stem cells. Tissue Eng Part A. 2012, 18, 1322 - 1333.
128. Kensah, G.; Gruh, I.; Viering, J.; Schumann, H.; Dahlmann, J.; Meyer, H.; Skvorc, D.; Bär, A.; Akhyari, P.; Heisterkamp, A.; Haverich, A.; Martin, U. A novel miniaturized multimodal bioreactor for continuous in - situ assessment of bioartificial cardiac tissue during stimulation and maturation. Tissue Eng Part C Methods. 2011, 17, 463 - 473.
129. Zimmermann, W. H.; Schneiderbanger, K.; Schubert, P.; Didié, M.; Münzel, F.; Heubach, J. F.; Kostin, S.; Neuhuber, W. L.; Eschenhagen, T. Tissue engineering of a differentiated cardiac muscle construct. Circ Res. 2002, 90, 223 - 230.
130. Nattel, S. New ideas about atrial fibrillation 50 years on. Nature. 2002, 415, 219 - 226.
131. Colman, M. A. Arrhythmia mechanisms and spontaneous calcium release: Bi - directional coupling between re - entrant and focal excitation. PLoS Comput Biol. 2019, 15, e1007260.
132. Wang, Y.; Yang, Y.; Yoshitomi, T.; Kawazoe, N.; Yang, Y.; Chen, G. Regulation of gene transfection by cell size, shape and elongation on micropatterned surfaces. J Mater Chem B. 2021, 9, 4329 - 4339.
133. Wang, Y.; Yang, Y.; Wang, X.; Yoshitomi, T.; Kawazoe, N.; Yang, Y.; Chen, G. Micropattern - controlled chirality of focal adhesions regulates the cytoskeletal arrangement and gene transfection of mesenchymal stem cells. Biomaterials. 2021, 271, 120751.
134. Wang, Y.; Yang, Y.; Wang, X.; Kawazoe, N.; Yang, Y.; Chen, G. The varied influences of cell adhesion and spreading on gene transfection of mesenchymal stem cells on a micropatterned substrate. Acta Biomater. 2021, 125, 100 - 111.
135. Múnera, J. O.; Wells, J. M. Generation of gastrointestinal organoids from human pluripotent stem cells. Methods Mol Biol. 2017, 1597, 167 - 177.
136. Silva, A. C.; Matthys, O. B.; Joy, D. A.; Kauss, M. A.; Natarajan, V.; Lai, M. H.; Turaga, D.; Blair, A. P.; Alexanian, M.; Bruneau, B. G.; McDevitt, T. C. Co - emergence of cardiac and gut tissues promotes cardiomyocyte maturation within human iPSC - derived organoids. Cell Stem Cell. 2021, 28, 2137 - 2152.e6.
137. Rossi, G.; Broguiere, N.; Miyamoto, M.; Boni, A.; Guiet, R.; Girgin, M.; Kelly, R. G.; Kwon, C.; Lutolf, M. P. Capturing cardiogenesis in gastruloids. Cell Stem Cell. 2021, 28, 230 - 240.e6.
138. Shadrin, I. Y.; Allen, B. W.; Qian, Y.; Jackman, C. P.; Carlson, A. L.; Juhas, M. E.; Bursac, N. Cardiopatch platform enables maturation and scale - up of human pluripotent stem cell - derived engineered heart tissues. Nat Commun. 2017, 8, 1825.
139. Stiefbold, M.; Zhang, H.; Wan, L. Q. Engineered platforms for mimicking cardiac development and drug screening. Cell Mol Life Sci. 2024, 81, 197.
140. Jasim, S. A.; Bokov, D. O.; Suksatan, W.; Alsaikhan, F.; Jawad, M. A.; Sharma, S. K.; Chupradit, S.; Thangavelu, L. Organoid models of heart diseases: find a new channel in improvements of cardiac regenerative medicine. Curr Med Chem. 2023, 30, 2726 - 3742.
141. Kerr, C. M.; Silver, S. E.; Choi, Y. S.; Floy, M. E.; Bradshaw, A. D.; Cho, S. W.; Palecek, S. P.; Mei, Y. Decellularized heart extracellular matrix alleviates activation of hiPSC - derived cardiac fibroblasts. Bioact Mater. 2024, 31, 463 - 474.
142. Chandra Sekar, N.; Khoshmanesh, K.; Baratchi, S. Bioengineered models of cardiovascular diseases. Atherosclerosis. 2024, 393, 117565.
143. Voges, H. K.; Mills, R. J.; Elliott, D. A.; Parton, R. G.; Porrello, E. R.; Hudson, J. E. Development of a human cardiac organoid injury model reveals innate regenerative potential. Development. 2017, 144, 1118 - 1127.
144. Song, M.; Choi, D. B.; Im, J. S.; Song, Y. N.; Kim, J. H.; Lee, H.; An, J.; Kim, A.; Choi, H.; Kim, J. C.; Han, C.; Jeon, Y. K.; Kim, S. J.; Woo, D. H. Modeling acute myocardial infarction and cardiac fibrosis using human induced pluripotent stem cell - derived multi - cellular heart organoids. Cell Death Dis. 2024, 15, 308.
145. Schwach, V.; Gomes Fernandes, M.; Maas, S.; Gerhardt, S.; Tsonaka, R.; van der Weerd, L.; Passier, R.; Mummery, C. L.; Birket, M. J.; Salvatori, D. C. F. Expandable human cardiovascular progenitors from stem cells for regenerating mouse heart after myocardial infarction. Cardiovasc Res. 2020, 116, 545 - 553.
146. Gao, L.; Gregorich, Z. R.; Zhu, W.; Mattapally, S.; Oduk, Y.; Lou, X.; Kannappan, R.; Borovjagin, A. V.; Walcott, G. P.; Pollard, A. E.; Fast, V. G.; Hu, X.; Lloyd, S. G.; Ge, Y.; Zhang, J. Large cardiac muscle patches engineered from human induced - pluripotent stem cell - derived cardiac cells improve recovery from myocardial infarction in Swine. Circulation. 2018, 137, 1712 - 1730.
147. Tiburcy, M.; Hudson, J. E.; Balfanz, P.; Schlick, S.; Meyer, T.; Chang Liao, M. L.; Levent, E.; Raad, F.; Zeidler, S.; Wingender, E.; Riegler, J.; Wang, M.; Gold, J. D.; Kehat, I.; Wettwer, E.; Ravens, U.; Dierickx, P.; van Laake, L. W.; Goumans, M. J.; Khadjeh, S.; Toischer, K.; Hasenfuss, G.; Couture, L. A.; Unger, A.; Linke, W. A.; Araki, T.; Neel, B.; Keller, G.; Gepstein, L.; Wu, J. C.; Zimmermann, W. H. Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation. 2017, 135, 1832 - 1847.
148. Ho, B. X.; Pang, J. K. S.; Chen, Y.; Loh, Y. H.; An, O.; Yang, H. H.; Seshachalam, V. P.; Koh, J. L. Y.; Chan, W. K.; Ng, S. Y.; Soh, B. S. Robust generation of human - chambered cardiac organoids from pluripotent stem cells for improved modelling of cardiovascular diseases. Stem Cell Res Ther. 2022, 13, 529.
149. Yang, Z.; Zhang, Y.; Wang, J.; Yin, J.; Wang, Z.; Pei, R. Cardiac organoid: multiple construction approaches and potential applications. J Mater Chem B. 2023, 11, 7567 - 7581.
150. Wilke, R. A.; Lin, D. W.; Roden, D. M.; Watkins, P. B.; Flockhart, D.; Zineh, I.; Giacomini, K. M.; Krauss, R. M. Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges. Nat Rev Drug Discov. 2007, 6, 904 - 916.
151. Skardal, A.; Aleman, J.; Forsythe, S.; Rajan, S.; Murphy, S.; Devarasetty, M.; Pourhabibi Zarandi, N.; Nzou, G.; Wicks, R.; Sadri - Ardekani, H.; Bishop, C.; Soker, S.; Hall, A.; Shupe, T.; Atala, A. Drug compound screening in single and integrated multi - organoid body - on - a - chip systems. Biofabrication. 2020, 12, 025017.
152. Mills, R. J.; Parker, B. L.; Quaife - Ryan, G. A.; Voges, H. K.; Needham, E. J.; Bornot, A.; Ding, M.; Andersson, H.; Polla, M.; Elliott, D. A.; Drowley, L.; Clausen, M.; Plowright, A. T.; Barrett, I. P.; Wang, Q. D.; James, D. E.; Porrello, E. R.; Hudson, J. E. Drug screening in human PSC - cardiac organoids identifies pro - proliferative compounds acting via the mevalonate pathway. Cell Stem Cell. 2019, 24, 895 - 907.e6.
153. Chen, X.; Lu, N.; Huang, S.; Zhang, Y.; Liu, Z.; Wang, X. Assessment of doxorubicin toxicity using human cardiac organoids: a novel model for evaluating drug cardiotoxicity. Chem Biol Interact. 2023, 386, 110777.
154. Palano, G.; Foinquinos, A.; Müllers, E. In vitro assays and imaging methods for drug discovery for cardiac fibrosis. Front Physiol. 2021, 12, 697270.
155. Martin, M.; Gähwiler, E. K. N.; Generali, M.; Hoerstrup, S. P.; Emmert, M. Y. Advances in 3D organoid models for stem cell - based cardiac regeneration. Int J Mol Sci. 2023, 24.
156. Davidson, S. M.; Padró, T.; Bollini, S.; Vilahur, G.; Duncker, D. J.; Evans, P. C.; Guzik, T.; Hoefer, I. E.; Waltenberger, J.; Wojta, J.; Weber, C. Progress in cardiac research: from rebooting cardiac regeneration to a complete cell atlas of the heart. Cardiovasc Res. 2021, 117, 2161 - 2174.
157. Voges, H. K.; Foster, S. R.; Reynolds, L.; Parker, B. L.; Devilée, L.; Quaife - Ryan, G. A.; Fortuna, P. R. J.; Mathieson, E.; Fitzsimmons, R.; Lor, M.; Batho, C.; Reid, J.; Pocock, M.; Friedman, C. E.; Mizikovsky, D.; Francois, M.; Palpant, N. J.; Needham, E. J.; Peralta, M.; Monte - Nieto, G. D.; Jones, L. K.; Smyth, I. M.; Mehdiabadi, N. R.; Bolk, F.; Janbandhu, V.; Yao, E.; Harvey, R. P.; Chong, J. J. H.; Elliott, D. A.; Stanley, E. G.; Wiszniak, S.; Schwarz, Q.; James, D. E.; Mills, R. J.; Porrello, E. R.; Hudson, J. E. Vascular cells improve functionality of human cardiac organoids. Cell Rep. 2023, 42, 112322.
158. Hou, J.; Chen, Y. G.; Xiong, J. W. Unveiling new horizons in heart research: the promise of multi - chamber cardiac organoids. Cell Regen. 2024, 13, 10.
159. Fan, C.; He, J.; Xu, S.; Yan, J.; Jin, L.; Dai, J.; Hu, B. Advances in biomaterial - based cardiac organoids. Biomater Adv. 2023, 153, 213502.
160. Mazzola, M.; Di Pasquale, E. Toward cardiac regeneration: combination of pluripotent stem cell - based therapies and bioengineering strategies. Front Bioeng Biotechnol. 2020, 8, 455.
161. Kastan, N. R.; Oak, S.; Liang, R.; Baxt, L.; Myers, R. W.; Ginn, J.; Liverton, N.; Huggins, D. J.; Pichardo, J.; Paul, M.; Carroll, T. S.; Nagiel, A.; Gnedeva, K.; Hudspeth, A. J. Development of an improved inhibitor of Lats kinases to promote regeneration of mammalian organs. Proc Natl Acad Sci U S A. 2022, 119, e2206113119.
162. Fernandes, I.; Funakoshi, S.; Hamidzada, H.; Epelman, S.; Keller, G. Modeling cardiac fibroblast heterogeneity from human pluripotent stem cell - derived epicardial cells. Nat Commun. 2023, 14, 8183.
163. Garg, P.; Garg, V.; Shrestha, R.; Sanguinetti, M. C.; Kamp, T. J.; Wu, J. C. Human induced pluripotent stem cell - derived cardiomyocytes as models for cardiac channelopathies: a primer for non - electrophysiologists. Circ Res. 2018, 123, 224 - 243.
164. Kim, H.; Kamm, R. D.; Vunjak - Novakovic, G.; Wu, J. C. Progress in multicellular human cardiac organoids for clinical applications. Cell Stem Cell. 2022, 29, 503 - 514.
165. Zhang, S.; Wan, Z.; Kamm, R. D. Vascularized organoids on a chip: strategies for engineering organoids with functional vasculature. Lab Chip. 2021, 21, 473 - 488.
166. Huebsch, N.; Loskill, P.; Mandegar, M. A.; Marks, N. C.; Sheehan, A. S.; Ma, Z.; Mathur, A.; Nguyen, T. N.; Yoo, J. C.; Judge, L. M.; Spencer, C. I.; Chukka, A. C.; Russell, C. R.; So, P. L.; Conklin, B. R.; Healy, K. E. Automated video - based analysis of contractility and calcium flux in human - induced pluripotent stem cell - derived cardiomyocytes cultured over different spatial scales. Tissue Eng Part C Methods. 2015, 21, 467 - 479.
167. Lin, E.; Alessio, A. What are the basic concepts of temporal, contrast, and spatial resolution in cardiac CT? J Cardiovasc Comput Tomogr. 2009, 3, 403 - 408.
168. Richards, D. J.; Li, Y.; Kerr, C. M.; Yao, J.; Beeson, G. C.; Coyle, R. C.; Chen, X.; Jia, J.; Damon, B.; Wilson, R.; Starr Hazard, E.; Hardiman, G.; Menick, D. R.; Beeson, C. C.; Yao, H.; Ye, T.; Mei, Y. Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity. Nat Biomed Eng. 2020, 4, 446 - 462.
169. Ueda, H. R.; Ertürk, A.; Chung, K.; Gradinaru, V.; Chédotal, A.; Tomancak, P.; Keller, P. J. Tissue clearing and its applications in neuroscience. Nat Rev Neurosci. 2020, 21, 61 - 79.
170. Hayes, H. B.; Nicolini, A. M.; Arrowood, C. A.; Chvatal, S. A.; Wolfson, D. W.; Cho, H. C.; Sullivan, D. D.; Chal, J.; Fermini, B.; Clements, M.; Ross, J. D.; Millard, D. C. Novel method for action potential measurements from intact cardiac monolayers with multiwell microelectrode array technology. Sci Rep. 2019, 9, 11893.
171. Gao, J.; Liao, C.; Liu, S.; Xia, T.; Jiang, G. Nanotechnology: new opportunities for the development of patch - clamps. J Nanobiotechnology. 2021, 19, 97.
172. Passaro, A. P.; Stice, S. L. Electrophysiological analysis of brain organoids: current approaches and advancements. Front Neurosci. 2020, 14, 622137.
173. Lee, J.; Sutani, A.; Kaneko, R.; Takeuchi, J.; Sasano, T.; Kohda, T.; Ihara, K.; Takahashi, K.; Yamazoe, M.; Morio, T.; Furukawa, T.; Ishino, F. In vitro generation of functional murine heart organoids via FGF4 and extracellular matrix. Nat Commun. 2020, 11, 4283.
174. Wang, Y.; Tong, X.; Shi, X.; Keswani, T.; Chatterjee, E.; Chen, L.; Li, G.; Lee, K.; Guo, T.; Yu, Y. Chiral cell nanomechanics originated in clockwise/counterclockwise biofunctional microarrays to govern the nuclear mechanotransduction of mesenchymal stem cells. ACS Appl Mater Interfaces. 2023, 15, 48038 - 48049.
175. Taegtmeyer, H.; Young, M. E.; Lopaschuk, G. D.; Abel, E. D.; Brunengraber, H.; Darley - Usmar, V.; Des Rosiers, C.; Gerszten, R.; Glatz, J. F.; Griffin, J. L.; Gropler, R. J.; Holzhuetter, H. G.; Kizer, J. R.; Lewandowski, E. D.; Malloy, C. R.; Neubauer, S.; Peterson, L. R.; Portman, M. A.; Recchia, F. A.; Van Eyk, J. E.; Wang, T. J. Assessing cardiac metabolism: a scientific statement from the American Heart Association. Circ Res. 2016, 118, 1659 - 1701.
176. Romeo, S. G.; Secco, I.; Schneider, E.; Reumiller, C. M.; Santos, C. X. C.; Zoccarato, A.; Musale, V.; Pooni, A.; Yin, X.; Theofilatos, K.; Trevelin, S. C.; Zeng, L.; Mann, G. E.; Pathak, V.; Harkin, K.; Stitt, A. W.; Medina, R. J.; Margariti, A.; Mayr, M.; Shah, A. M.; Giacca, M.; Zampetaki, A. Human blood vessel organoids reveal a critical role for CTGF in maintaining microvascular integrity. Nat Commun. 2023, 14, 5552.
177. Ferrick, D. A.; Neilson, A.; Beeson, C. Advances in measuring cellular bioenergetics using extracellular flux. Drug Discov Today. 2008, 13, 268 - 274.
178. Horikoshi, Y.; Yan, Y.; Terashvili, M.; Wells, C.; Horikoshi, H.; Fujita, S.; Bosnjak, Z. J.; Bai, X. Fatty acid - treated induced pluripotent stem cell - derived human cardiomyocytes exhibit adult cardiomyocyte - like energy metabolism phenotypes. Cells. 2019, 8, 1095.
179. Matkovich, S. J. Multiomic approaches to delineate the pathogenesis of cardiac disease. Curr Opin Cardiol. 2019, 34, 246 - 253.
180. Paik, D. T.; Chandy, M.; Wu, J. C. Patient and disease - specific induced pluripotent stem cells for discovery of personalized cardiovascular drugs and therapeutics. Pharmacol Rev. 2020, 72, 320 - 342.
181. Li, S.; Wang, Y.; Jiang, H.; Bai, Y.; Chen, T.; Chen, M.; Ma, M.; Yang, S.; Wu, Y.; Shi, C.; Wang, F.; Chen, Y. Display of CCL21 on cancer cell membrane through genetic modification using a pH low insertion peptide. Int J Biol Macromol. 2023, 240, 124324.
182. Ramilowski, J. A.; Goldberg, T.; Harshbarger, J.; Kloppmann, E.; Lizio, M.; Satagopam, V. P.; Itoh, M.; Kawaji, H.; Carninci, P.; Rost, B.; Forrest, A. R. A draft network of ligand - receptor - mediated multicellular signalling in human. Nat Commun. 2015, 6, 7866.
183. Packer, J.; Trapnell, C. Single - cell multi - omics: an engine for new quantitative models of gene regulation. Trends Genet. 2018, 34, 653 - 665.
184. Asp, M.; Giacomello, S.; Larsson, L.; Wu, C.; Fürth, D.; Qian, X.; Wärdell, E.; Custodio, J.; Reimegård, J.; Salmén, F.; Österholm, C.; Ståhl, P. L.; Sundström, E.; Åkesson, E.; Bergmann, O.; Bienko, M.; Månsson - Broberg, A.; Nilsson, M.; Sylvén, C.; Lundeberg, J. A spatiotemporal organ - wide gene expression and cell atlas of the developing human heart. Cell. 2019, 179, 1647 - 1660.e19.
185. Mantri, M.; Scuderi, G. J.; Abedini - Nassab, R.; Wang, M. F. Z.; McKellar, D.; Shi, H.; Grodner, B.; Butcher, J. T.; De Vlaminck, I. Spatiotemporal single - cell RNA sequencing of developing chicken hearts identifies interplay between cellular differentiation and morphogenesis. Nat Commun. 2021, 12, 1771.

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top