·
REVIEW
·

Cardiac organ chip: advances in construction and application

Jun Li1 Honghao Hou2 Qian Li1 Junjie Liu2 Yunlong Zhao3,4 Chaoran Zhao2 Zhentao Li1* Leyu Wang1* Zhentao Li2*
Show Less
1 Department of Anatomy, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong Province, China
2 Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong Province, China
3 Dyson School of Design Engineering, Imperial College London, London, UK
4 National Physical Laboratory, Teddington, UK
Submitted: 29 September 2024 | Revised: 17 October 2024 | Accepted: 22 October 2024 | Published: 28 December 2024
Copyright © 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Cardiovascular diseases are a leading cause of death worldwide, and effective treatment for cardiac disease has been a research focal point. Although the development of new drugs and strategies has never ceased, the existing drug development process relies primarily on rodent models such as mice, which have significant shortcomings in predicting human responses. Therefore, human–based in vitro cardiac tissue models are considered to simulate physiological and functional characteristics more effectively, advancing disease treatment and drug development. The microfluidic device simulates the physiological functions and pathological states of the human heart by culture, thereby reducing the need for animal experimentation and enhancing the efficiency and accuracy of the research. The basic framework of cardiac chips typically includes multiple functional units, effectively simulating different parts of the heart and allowing the observation of cardiac cell growth and responses under various drug treatments and disease conditions. To date, cardiac chips have demonstrated significant application value in drug development, toxicology testing, and the construction of cardiac disease models; they not only accelerate drug screening but also provide a new research platform for understanding cardiac diseases. In the future, with advancements in functionality, integration, and personalised medicine, cardiac chips will further simulate multiorgan systems, becoming vital tools for disease modelling and precision medicine. Here, we emphasised the development history of cardiac organ chips, highlighted the material selection and construction strategy of cardiac organ chip electrodes and hydrogels, introduced the current application scenarios of cardiac organ chips, and discussed the development opportunities and prospects for their of biomedical applications.

Keywords
cardiac organ chip
drug
cardiac disease
microenvironment
microfluidic
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

1. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, Himmelfarb CD, Khera A, Lloyd-Jones D, McEvoy JW, Michos ED, Miedema MD, Muñoz D, Smith SC Jr, Virani SS, Williams KA Sr, Yeboah J, Ziaeian B. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140:e596 - e646.
2. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS. Heart Disease and Stroke Statistics - 2022 Update: A Report From the American Heart Association. Circulation. 2022;145:e153 - e639.
3. Katare RG, Ando M, Kakinuma Y, Sato T. Engineered heart tissue: a novel tool to study the ischemic changes of the heart in vitro. PLoS One. 2010;5:e9275.
4. Bracken MB. Why animal studies are often poor predictors of human reactions to exposure. J R Soc Med. 2009;102:120 - 122.
5. Wang J, Wang C, Xu N, Liu ZF, Pang DW, Zhang ZL. A virus - induced kidney disease model based on organ - on - a - chip: Pathogenesis exploration of virus - related renal dysfunctions. Biomaterials. 2019;219:119367.
6. Ho CT, Lin RZ, Chen RJ, Chin CK, Gong SE, Chang HY, Peng HL, Hsu L, Yew TR, Chang SF, Liu CH. Liver - cell patterning lab chip: mimicking the morphology of liver lobule tissue. Lab Chip. 2013;13:3578 - 3587.
7. Yasotharan S, Pinto S, Sled JG, Bolz SS, Günther A. Artery - on - a - chip platform for automated, multimodal assessment of cerebral blood vessel structure and function. Lab Chip. 2015;15:2660 - 2669.
8. Oleaga C, Lavado A, Riu A, Rothemund S, Carmona - Moran CA, Persaud K, Yurko A, Lear J, Narasimhan NS, Long CJ, Sommerhage F, Bridges LR, Cai Y, Martin C, Schnepper MT, Goswami A, Note R, Langer J, Teissier S, Cotovio J, Hickman JJ. Long - term electrical and mechanical function monitoring of a human - on - a - chip system. Adv Funct Mater. 2019;29:1805792.
9. Rohr S, Schölly DM, Kléber AG. Patterned growth of neonatal rat heart cells in culture. Morphological and electrophysiological characterization. Circ Res. 1991;68:114 - 130.
10. Duffy DC, McDonald JC, Schueller OJ, Whitesides GM. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem. 1998;70:4974 - 4984.
11. Huh D, Matthews BD, Mammoto A, Montoya - Zavala M, Hsin HY, Ingber DE. Reconstituting organ - level lung functions on a chip. Science. 2010;328:1662 - 1668.
12. Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, Ellis J, Keller G. Stage - specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell. 2011;8:228 - 240.
13. Sun X, Nunes SS. Biowire platform for maturation of human pluripotent stem cell - derived cardiomyocytes. Methods. 2016;101:21 - 26.
14. Sun L, Chen Z, Xu D, Zhao Y. Electroconductive and anisotropic structural color hydrogels for visual heart - on - a - chip construction. Adv Sci (Weinh). 2022;9:e2105777.
15. Zhang B, Montgomery M, Chamberlain MD, Ogawa S, Korolj A, Pahnke A, Wells LA, Massé S, Kim J, Reis L, Momen A, Nunes SS, Wheeler AR, Nanthakumar K, Keller G, Sefton MV, Radisic M. Biodegradable scaffold with built - in vasculature for organ - on - a - chip engineering and direct surgical anastomosis. Nat Mater. 2016;15:669 - 678.
16. Ferrari E, Nebuloni F, Rasponi M, Occhetta P. Photo and soft lithography for organ - on - a - chip applications. Methods Mol Biol. 2022;2373:1 - 19.
17. Tang Y, Tian F, Miao X, Wu D, Wang Y, Wang H, You K, Li Q, Zhao S, Wang W. Heart - on - a - chip using human iPSC - derived cardiomyocytes with an integrated vascular endothelial layer based on a culture patch as a potential platform for drug evaluation. Biofabrication. 2022;15:015010.
18. Parsa H, Wang BZ, Vunjak - Novakovic G. A microfluidic platform for the high - throughput study of pathological cardiac hypertrophy. Lab Chip. 2017;17:3264 - 3271.
19. Jahn P, Karger RK, Soso Khalaf S, Hamad S, Peinkofer G, Sahito RGA, Pieroth S, Nitsche F, Lu J, Derichsweiler D, Brockmeier K, Hescheler J, A MS, Pfannkuche K. Engineering of cardiac microtissues by microfluidic cell encapsulation in thermoshrinking non - crosslinked PNIPAAm gels. Biofabrication. 2022;14:035017.
20. Li Q, Tong Z, Mao H. Microfluidic Based Organ - on - Chips and Biomedical Application. Biosensors (Basel). 2023;13:436.
21. Chen X, Liu S, Han M, Long M, Li T, Hu L, Wang L, Huang W, Wu Y. Engineering cardiac tissue for advanced heart - on - a - chip platforms. Adv Healthc Mater. 2024;13:e2301338.
22. Cox - Pridmore DM, Castro FA, Silva SRP, Camelliti P, Zhao Y. Emerging bioelectronic strategies for cardiovascular tissue engineering and implantation. Small. 2022;18:e2105281.
23. Vivas A, van den Berg A, Passier R, Odijk M, van der Meer AD. Fluidic circuit board with modular sensor and valves enables stand - alone, tubeless microfluidic flow control in organs - on - chips. Lab Chip. 2022;22:1231 - 1243.
24. Lai BFL, Lu RXZ, Davenport Huyer L, Kakinoki S, Yazbeck J, Wang EY, Wu Q, Zhang B, Radisic M. A well plate - based multiplexed platform for incorporation of organoids into an organ - on - a - chip system with a perfusable vasculature. Nat Protoc. 2021;16:2158 - 2189.
25. Qin Y, Kreutz JE, Schneider T, Yen GS, Shah ES, Wu L, Chiu DT. A reinforced PDMS mold for hot embossing of cyclic olefin polymer in the fabrication of microfluidic chips. Lab Chip. 2022;22:4729 - 4734.
26. Lee S, Sasaki D, Kim D, Mori M, Yokota T, Lee H, Park S, Fukuda K, Sekino M, Matsuura K, Shimizu T, Someya T. Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nat Nanotechnol. 2019;14:156 - 160.
27. Lind JU, Busbee TA, Valentine AD, Pasqualini FS, Yuan H, Yadid M, Park SJ, Kotikian A, Nesmith AP, Campbell PH, Vlassak JJ, Lewis JA, Parker KK. Instrumented cardiac microphysiological devices via multimaterial three - dimensional printing. Nat Mater. 2017;16:303 - 308.
28. Li F, Guo L, Hu Y, Li Z, Liu J, He J, Cui H. Multiplexed chemiluminescence determination of three acute myocardial infarction biomarkers based on microfluidic paper - based immunodevice dual amplified by multifunctionalized gold nanoparticles. Talanta. 2020;207:120346.
29. Savoji H, Davenport Huyer L, Mohammadi MH, Lun Lai BFL, Rafatian N, Bannerman D, Shoaib M, Bobicki ER, Ramachandran A, Radisic M. 3D printing of vascular tubes using bioelastomer prepolymers by freeform reversible embedding. ACS Biomater Sci Eng. 2020;6:1333 - 1343.
30. Mohammadi MH, Okhovatian S, Savoji H, Campbell SB, Lai BFL, Wu J, Pascual - Gil S, Bannerman D, Rafatian N, Li RK, Radisic M. Toward hierarchical assembly of aligned cell sheets into a conical cardiac ventricle using microfabricated elastomers. Adv Biol (Weinh). 2022;6:e2101165.
31. Zheng J, Fang J, Xu D, Liu H, Wei X, Qin C, Xue J, Gao Z, Hu N. Micronano synergetic three - dimensional bioelectronics: a revolutionary breakthrough platform for cardiac electrophysiology. ACS Nano. 2024;18:15332 - 15357.
32. Skardal A, Murphy SV, Devarasetty M, Mead I, Kang HW, Seol YJ, Shrike Zhang Y, Shin SR, Zhao L, Aleman J, Hall AR, Shupe TD, Kleensang A, Dokmeci MR, Jin Lee S, Jackson JD, Yoo JJ, Hartung T, Khademhosseini A, Soker S, Bishop CE, Atala A. Multi - tissue interactions in an integrated three - tissue organ - on - a - chip platform. Sci Rep. 2017;7:8837.
33. Zhao S, Chen Y, Partlow BP, Golding AS, Tseng P, Coburn J, Applegate MB, Moreau JE, Omenetto FG, Kaplan DL. Bio - functionalized silk hydrogel microfluidic systems. Biomaterials. 2016;93:60 - 70.
34. Wang C, Tanataweethum N, Karnik S, Bhushan A. Novel microfluidic colon with an extracellular matrix membrane. ACS Biomater Sci Eng. 2018;4:1377 - 1385.
35. Zhang M, Xu C, Jiang L, Qin J. A 3D human lung - on - a - chip model for nanotoxicity testing. Toxicol Res. 2018;7:1048 - 1060.
36. Wang Z, Lee SJ, Cheng HJ, Yoo JJ, Atala A. 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomater. 2018;70:48 - 56.
37. Occhetta P, Isu G, Lemme M, Conficconi C, Oertle P, Räz C, Visone R, Cerino G, Plodinec M, Rasponi M, Marsano A. A three - dimensional in vitro dynamic micro - tissue model of cardiac scar formation. Integr Biol (Camb). 2018;10:174 - 183.
38. Nawroth JC, Scudder LL, Halvorson RT, Tresback J, Ferrier JP, Sheehy SP, Cho A, Kannan S, Sunyovszki I, Goss JA, Campbell PH, Parker KK. Automated fabrication of photopatterned gelatin hydrogels for organ - on - chips applications. Biofabrication. 2018;10:025004.
39. Fu F, Shang L, Chen Z, Yu Y, Zhao Y. Bioinspired living structural color hydrogels. Sci Robot. 2018;3:eaar8580.
40. Aragón Á, Cebro - Márquez M, Perez E, Pazos A, Lage R, González - Juanatey JR, Moscoso I, Bao - Varela C, Nieto D. Bioelectronics - on - a - chip for cardio myoblast proliferation enhancement using electric field stimulation. Biomater Res. 2020;24:15.
41. Zhang F, Cheng H, Qu K, Qian X, Lin Y, Zhang Y, Qian S, Huang N, Cui C, Chen M. Continuous contractile force and electrical signal recordings of 3D cardiac tissue utilizing conductive hydrogel pillars on a chip. Mater Today Bio. 2023;20:100626.
42. Mathur A, Loskill P, Shao K, Huebsch N, Hong S, Marcus SG, Marks N, Mandegar M, Conklin BR, Lee LP, Healy KE. Human iPSC - based cardiac microphysiological system for drug screening applications. Sci Rep. 2015;5:8883.
43. Yip JK, Sarkar D, Petersen AP, Gipson JN, Tao J, Kale S, Rexius - Hall ML, Cho N, Khalil NN, Kapadia R, McCain ML. Contact photolithography - free integration of patterned and semi - transparent indium tin oxide stimulation electrodes into polydimethylsiloxane - based heart - on - a - chip devices for streamlining physiological recordings. Lab Chip. 2021;21:674 - 687.
44. Visone R, Talò G, Occhetta P, Cruz - Moreira D, Lopa S, Pappalardo OA, Redaelli A, Moretti M, Rasponi M. A microscale biomimetic platform for generation and electro - mechanical stimulation of 3D cardiac microtissues. APL Bioeng. 2018;2:046102.
45. Schneider O, Moruzzi A, Fuchs S, Grobel A, Schulze HS, Mayr T, Loskill P. Fusing spheroids to aligned μ - tissues in a heart - on - chip featuring oxygen sensing and electrical pacing capabilities. Mater Today Bio. 2022;15:100280.
46. Caluori G, Pribyl J, Pesl M, Jelinkova S, Rotrekl V, Skladal P, Raiteri R. Non - invasive electromechanical cell - based biosensors for improved investigation of 3D cardiac models. Biosens Bioelectron. 2019;124 - 125:129 - 135.
47. Jamieson LE, Harrison DJ, Campbell CJ. Chemical analysis of multicellular tumour spheroids. Analyst. 2015;140:3910 - 3920.
48. Paloschi V, Sabater - Lleal M, Middelkamp H, Vivas A, Johansson S, van der Meer A, Tenje M, Maegdefessel L. Organ - on - a - chip technology: a novel approach to investigate cardiovascular diseases. Cardiovasc Res. 2021;117:2742 - 2754.
49. Mathur A, Loskill P, Hong S, Lee J, Marcus SG, Dumont L, Conklin BR, Willenbring H, Lee LP, Healy KE. Human induced pluripotent stem cell - based microphysiological tissue models of myocardium and liver for drug development. Stem Cell Res Ther. 2013;4 Suppl 1:S14.
50. Ronaldson - Bouchard K, Vunjak - Novakovic G. Organs - on - a - chip: a fast track for engineered human tissues in drug development. Cell Stem Cell. 2018;22:310 - 324.
51. Ren L, Zhou X, Nasiri R, Fang J, Jiang X, Wang C, Qu M, Ling H, Chen Y, Xue Y, Hartel MC, Tebon P, Zhang S, Kim HJ, Yuan X, Shamloo A, Dokmeci MR, Li S, Khademhosseini A, Ahadian S, Sun W. Combined effects of electric stimulation and microgrooves in cardiac tissue - on - a - chip for drug screening. Small Methods. 2020;4.
52. Caplin JD, Granados NG, James MR, Montazami R, Hashemi N. Microfluidic organ - on - a - chip technology for advancement of drug development and toxicology. Adv Healthc Mater. 2015;4:1426 - 1450.
53. Yan J, Li Z, Guo J, Liu S, Guo J. Organ - on - a - chip: a new tool for in vitro research. Biosens Bioelectron. 2022;216:114626.
54. Mozneb M, Jenkins A, Sances S, Pohlman S, Workman MJ, West D, Ondatje B, El - Ghazawi K, Woodbury A, Garcia VJ, Patel S, Arzt M, Dezem F, Laperle AH, Moser VA, Ho R, Yucer N, Plummer J, Barrett RJ, Svendsen CN, Sharma A. Multi - lineage heart - chip models drug cardiotoxicity and enhances maturation of human stem cell - derived cardiovascular cells. Lab Chip. 2024;24:869 - 881.
55. Pridgeon CS, Schlott C, Wong MW, Heringa MB, Heckel T, Leedale J, Launay L, Gryshkova V, Przyborski S, Bearon RN, Wilkinson EL, Ansari T, Greenman J, Hendriks DFG, Gibbs S, Sidaway J, Sison - Young RL, Walker P, Cross MJ, Park BK, Goldring CEP. Innovative organotypic in vitro models for safety assessment: aligning with regulatory requirements and understanding models of the heart, skin, and liver as paradigms. Arch Toxicol. 2018;92:557 - 569.
56. Liu LP, Li YM, Guo NN, Li S, Ma X, Zhang YX, Gao Y, Huang JL, Zheng DX, Wang LY, Xu H, Hui L, Zheng YW. Therapeutic potential of patient iPSC - derived imelanocytes in autologous transplantation. Cell Rep. 2019;27:455 - 466.e5.
57. Mourad O, Yee R, Li M, Nunes SS. Modeling heart diseases on a chip: advantages and future opportunities. Circ Res. 2023;132:483 - 497.
58. Abulaiti M, Yalikun Y, Murata K, Sato A, Sami MM, Sasaki Y, Fujiwara Y, Minatoya K, Shiba Y, Tanaka Y, Masumoto H. Establishment of a heart - on - a - chip microdevice based on human iPS cells for the evaluation of human heart tissue function. Sci Rep. 2020;10:19201.
59. Blackwell DJ, Schmeckpeper J, Knollmann BC. Animal models to study cardiac arrhythmias. Circ Res. 2022;130:1926 - 1964.
60. Visone R, Lozano - Juan F, Marzorati S, Rivolta MW, Pesenti E, Redaelli A, Sassi R, Rasponi M, Occhetta P. Predicting human cardiac QT alterations and pro - arrhythmic effects of compounds with a 3D beating heart - on - a - chip platform. Toxicol Sci. 2023;191:47 - 60.
61. Chen T, Vunjak - Novakovic G. Human tissue - engineered model of myocardial ischemia - reperfusion injury. Tissue Eng Part A. 2019;25:711 - 724.
62. Matsumura Y, Zhu Y, Jiang H, D’Amore A, Luketich SK, Charwat V, Yoshizumi T, Sato H, Yang B, Uchibori T, Healy KE, Wagner WR. Intramyocardial injection of a fully synthetic hydrogel attenuates left ventricular remodeling post myocardial infarction. Biomaterials. 2019;217:119289.
63. Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018;15:387 - 407.
64. Nunes SS, Feric N, Pahnke A, Miklas JW, Li M, Coles J, Gagliardi M, Keller G, Radisic M. Human stem cell - derived cardiac model of chronic drug exposure. ACS Biomater Sci Eng. 2017;3:1911 - 1921.
65. Kong M, Lee J, Yazdi IK, Miri AK, Lin YD, Seo J, Zhang YS, Khademhosseini A, Shin SR. Cardiac fibrotic remodeling on a chip with dynamic mechanical stimulation. Adv Healthc Mater. 2019;8:e1801146.

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top