Additive manufacturing innovation for musculoskeletal tissue repair and regeneration: from bench to bedside
1. International Organization for Standardization. ISO/ASTM 52900:2021. Additive manufacturing-general principles-fundamentals and vocabulary.
2. Cooke, M. E., Rosenzweig, D. H., Liu, C., Ghorbani, F. Editorial: Biofabrication and biopolymeric materials innovation for musculoskeletal tissue regeneration. Front Bioeng Biotechnol. 2022; 10:909577.
3. Naghieh, S., Lindberg, G., Tamaddon, M., Liu, C. Biofabrication strategies for musculoskeletal disorders: evolution towards clinical applications. Bioengineering (Basel). 2021; 8:123.
4. Woolf, A. D., Pfleger, B. Burden of major musculoskeletal conditions. Bull World Health Organ. 2003; 81:646-656.
5. Allen, K. D., Golightly, Y. M. State of the evidence. Curr Opin Rheumatol. 2015; 27:276-283.
6. Wang, D., Zhang, X., Huang, S., Liu, Y., Fu, B. S., Mak, K. K., Blocki, A. M., Yung, P. S., Tuan, R. S., Ker, D. F. E. Engineering multi-tissue units for regenerative medicine: bone-tendon-muscle units of the rotator cuff. Biomaterials. 2021; 272:120789.
7. Liu, C. Z., Sachlos, E., Wahl, D. A., Han, Z. W., Czernuszka, J. T. On the manufacturability of scaffold mould using a 3D printing technology. Rapid Prototyp J. 2007; 13:163-174.
8. Bourell, D. L., Leu, M. C., Rosen, D. W. Roadmap for additive manufacturing identifying the future of freeform processing. Laboratory for Freeform Fabrication, Advanced Manufacturing Center, The University of Texas at Austin. 2009.
9. Haglin, J. M., Eltorai, A. E., Gil, J. A., Marcaccio, S. E., Botero-Hincapie, J., Daniels, A. H. Patient-specific orthopaedic implants. Orthop Surg. 2016; 8:417-424.
10. Tamaddon, M., Gilja, H., Wang, L., Oliveira, J., Sun, X., Tan, R., Liu, C. Osteochondral scaffolds for early treatment of cartilage defects in osteoarthritic joints: from bench to clinic. Biomater Transl. 2020; 1:3-17.
11. Zheng, J., Zhao, H., Dong, E., Kang, J., Liu, C., Sun, C., Li, D., Wang, L. Additively-manufactured PEEK/HA porous scaffolds with highly-controllable mechanical properties and excellent biocompatibility. Mater Sci Eng C Mater Biol Appl. 2021; 128:112333.
12. Salmi, M. Additive manufacturing processes in medical applications. Materials (Basel). 2021; 14:191.
13. Donate, R., Tamaddon, M., Ribeiro, V., Monzón, M., Oliveira, J. M., Liu, C. Translation through collaboration: practice applied in BAMOS project in in vivo testing of innovative osteochondral scaffolds. Biomater Transl. 2022; 3:102-104.
14. Sahranavard, M., Sarkari, S., Safavi, S., Ghorbani, F. Three-dimensional bioprinting of decellularized extracellular matrix-based bio-inks for cartilage regeneration: a systematic review. Biomater Transl. 2022; 3:105-115.
15. Sun, C., Kang, J., Yang, C., Zheng, J., Su, Y., Dong, E., Liu, Y., Yao, S., Shi, C., Pang, H., He, J., Wang, L., Liu, C., Peng, J., Liu, L., Jiang, Y., Li, D. Additive manufactured polyether-ether-ketone implants for orthopaedic applications: a narrative review. Biomater Transl. 2022; 3:116-133.
16. Pu, F., Wu, W., Jing, D., Yu, Y., Peng, Y., Liu, J., Wu, Q., Wang, B., Zhang, Z., Shao, Z. Three-dimensional-printed titanium prostheses with bone trabeculae enable mechanical-biological reconstruction after resection of bone tumours. Biomater Transl. 2022; 3:134-141.
17. Naghavi, S. A., Sun, C., Hejazi, M., Tamaddon, M., Zheng, J., Wang, L., Zhang, C., Varma, S. N., Li, D., Moazen, D., Wang, L., Liu, C. On the mechanical aspect of additive manufactured polyether-ether-ketone scaffold for repair of large bone defects. Biomater Transl. 2022; 3:142-151.