·
VIEWPOINT
·

Translation through collaboration: practice applied in BAMOS project in in vivo testing of innovative osteochondral scaffolds

Ricardo Donate1* Maryam Tamaddon2 Viviana Ribeiro3,4 Mario Monzón1* J. Miguel Oliveira3,4* Chaozong Liu2*
Show Less
1 Departamento de Ingeniería Mecánica, Grupo de Investigación en Fabricación Integrada y Avanzada, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
2 Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, UK
3 3B’s Research Group, I3B’s-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Barco, Guimarães, Portugal
4 ICVS/3B’s-PT Government Associated Laboratory, Braga, Guimarães, Portugal
Submitted: 1 April 2022 | Revised: 6 May 2022 | Accepted: 25 May 2022 | Published: 28 June 2022
Copyright © 2022 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Osteoarthritis is the most common chronic degenerative joint disease, recognized by the World Health Organization as a public health problem that affects millions of people worldwide. The project Biomaterials and Additive Manufacturing: Osteochondral Scaffold (BAMOS) innovation applied to osteoarthritis, funded under the frame of the Horizon 2020 Research and Innovation Staff Exchanges (RISE) program, aims to delay or avoid the use of joint replacements by developing novel cost-effective osteochondral scaffold technology for early intervention of osteoarthritis. The multidisciplinary consortium of BAMOS, formed by international leading research centres, collaborates through research and innovation staff exchanges. The project covers all the stages of the development before the clinical trials: design of scaffolds, biomaterials development, processability under additive manufacturing, in vitro test, and in vivo test. This paper reports the translational practice adopted in the project in in vivo assessment of the osteochondral scaffolds developed.

Keywords
bone
cartilage
in vivo evaluation
regenerative medicine
tissue engineering
References

1. Monzón, M. Biomaterials and additive manufacturing: osteochondral scaffold innovation applied to osteoarthritis (BAMOS project). J Zhejiang Univ Sci A. 2018, 19, 329-330.  
2. Ribeiro, V. P.; Pina, S.; Canadas, R. F.; Morais, A. D. S.; Vilela, C.; Vieira, S.; Cengiz, I. F.; Reis, R. L.; Oliveira, J. M. In vivo performance of hierarchical HRP-crosslinked silk fibroin/β-TCP scaffolds for osteochondral tissue regeneration. Regen Med Front. 2019, 1, e190007.  
3. Ribeiro, V. P.; Pina, S.; Costa, J. B.; Cengiz, I. F.; García-Fernández, L.; Fernández-Gutiérrez, M. D. M.; Paiva, O. C.; Oliveira, A. L.; San-Román, J.; Oliveira, J. M.; Reis, R. L. Enzymatically cross-linked silk fibroin-based hierarchical scaffolds for osteochondral regeneration. ACS Appl Mater Interfaces. 2019, 11, 3781-3799.  
4. Yang, T.; Tamaddon, M.; Jiang, L.; Wang, J.; Liu, Z.; Liu, Z.; Meng, H.; Hu, Y.; Gao, J.; Yang, X.; Zhao, Y.; Wang, Y.; Wang, A.; Wu, Q.; Liu, C.; Peng, J.; Sun, X.; Xue, Q. Bilayered scaffold with 3D printed stiff subchondral bony compartment to provide constant mechanical support for long-term cartilage regeneration. J Orthop Translat. 2021, 30, 112-121.  
5. Blunn, G.; Liu, C.; Tamaddon, M. Improved bone and cartilage regeneration in a rapid-manufactured functionally-graded osteochondral. In Hangzhou International Conference on Biomaterials, Bio-Design and Manufacturing (BDMC2018), Hangzhou (China), 2018.  
6. Tamaddon, M.; Blunn, G.; Tan, R.; Yang, P.; Sun, X.; Chen, S. M.; Luo, J.; Liu, Z.; Wang, L.; Li, D.; Donate, R.; Monzón, M.; Liu, C. In vivo evaluation of additively manufactured multi-layered scaffold for the repair of large osteochondral defects. Bio-des Manuf. 2022. doi: 10.1007/s42242-021-00177-w.  
7. Flaherty, T.; Tamaddon, M.; Liu, C. Micro-computed tomography analysis of subchondral bone regeneration using osteochondral scaffolds in an ovine condyle model. Appl Sci. 2021, 11, 891.  
8. Tamaddon, M.; Blunn, G.; Xu, W.; Alemán Domínguez, M. E.; Monzón, M.; Donaldson, J.; Skinner, J.; Arnett, T. R.; Wang, L.; Liu, C. Sheep condyle model evaluation of bone marrow cell concentrate combined with a scaffold for repair of large osteochondral defects. Bone Joint Res. 2021, 10, 677-689.  
9. Liu, Z.; Tamaddon, M.; Chen, S. M.; Wang, H.; San Cheong, V.; Gang, F.; Sun, X.; Liu, C. Determination of an initial stage of the bone tissue ingrowth into titanium matrix by cell adhesion model. Front Bioeng Biotechnol. 2021, 9, 736063.

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top