Nanotechnology-based strategies for vaccine development: accelerating innovation and delivery
The key role and impact of nanotechnology in vaccine development became particularly prominent following the outbreak of the coronavirus disease 2019 (COVID-19) pandemic in 2019. Especially in the process of designing and optimising COVID-19 vaccines, the application of nanomaterials significantly accelerated vaccine development and efficient delivery. In this review, we categorised and evaluated conventional vaccines, including attenuated live vaccines, inactivated vaccines, and subunit vaccines, highlighting their advantages and limitations. We summarised the development history, mechanisms, and latest technologies of vaccine adjuvants, emphasising their critical role in immune responses. Furthermore, we focused on the application of nanotechnology in the vaccine field, detailing the characteristics of nanoparticle vaccines, including virus-like particles, lipid-based carriers, inorganic nanoparticles, and polymer-based carriers. We emphasised their potential advantages in enhancing vaccine stability and immunogenicity, as well as their ability to deliver vaccines and present antigens through various routes. Despite facing challenges such as low drug loading efficiency, issues with long-term storage, high costs, and difficulties in large-scale production, nano-vaccines hold promise for the future. This review underscores the pivotal role and prospects of nanotechnology in vaccine development, offering new pathways and strategies to address current and future disease challenges.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
- Plotkin, S. History of vaccination. Proc Natl Acad Sci U S A. 2014, 111, 12283-12287.
- Woodland, D. L. Vaccine development. Viral Immunol. 2017, 30, 141.
- Feng, C.; Li, Y.; Ferdows, B. E.; Patel, D. N.; Ouyang, J.; Tang, Z.; Kong, N.; Chen, E.; Tao, W. Emerging vaccine nanotechnology: from defense against infection to sniping cancer. Acta Pharm Sin B. 2022, 12, 2206-2223.
- Crimmins, E. M. Lifespan and healthspan: past, present, and promise. 2015, 55, 901-911.
- Cox, R. J.; Brokstad, K. A.; Ogra, P. Influenza virus: immunity and vaccination strategies. Comparison of the immune response to inactivated and live, attenuated influenza vaccines. Scand J Immunol. 2004, 59, 1-15.
- Bhardwaj, P.; Bhatia, E.; Sharma, S.; Ahamad, N.; Banerjee, R. Advancements in prophylactic and therapeutic nanovaccines. Acta Biomater. 2020, 108, 1-21.
- Sasaki, E.; Hamaguchi, I.; Mizukami, T. Pharmacodynamic and safety considerations for influenza vaccine and adjuvant design. Expert Opin Drug Metab Toxicol. 2020, 16, 1051-1061.
- Duan, L. J.; Wang, Q.; Zhang, C.; Yang, D. X.; Zhang, X. Y. Potentialities and challenges of mRNA vaccine in cancer immunotherapy. Front Immunol. 2022, 13, 923647.
- Huang, X.; Zhang, G.; Tang, T. Y.; Gao, X.; Liang, T. B. Personalized pancreatic cancer therapy: from the perspective of mRNA vaccine. Mil Med Res. 2022, 9, 53.
- Onugwu, A. L.; Ugorji, O. L.; Ufondu, C. A.; Ihim, S. A.; Echezona, A. C.; Nwagwu, C. S.; Onugwu, S. O.; Uzondu, S. W.; Agbo, C. P.; Ogbonna, J. D.; Attama, A. A. Nanoparticle-based delivery systems as emerging therapy in retinoblastoma: recent advances, challenges and prospects. Nanoscale Adv. 2023, 5, 4628-4648.
- Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015, 33, 941-951.
- Gote, V.; Bolla, P. K.; Kommineni, N.; Butreddy, A.; Nukala, P. K.; Palakurthi, S. S.; Khan, W. A comprehensive review of mRNA vaccines. Int J Mol Sci. 2023, 24, 2700.
- Tenchov, R.; Bird, R.; Curtze, A. E.; Zhou, Q. Lipid nanoparticles–from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano. 2021, 15, 16982-17015.
- Chauhan, G.; Madou, M. J.; Kalra, S.; Chopra, V.; Ghosh, D.; Martinez- Chapa, S. O. Nanotechnology for COVID-19: therapeutics and vaccine research. ACS Nano. 2020, 14, 7760-7782.
- Pulendran, B.; P, S. A.; O’Hagan, D. T. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov. 2021, 20, 454-475.
- Li, M.; Wang, H.; Tian, L.; Pang, Z.; Yang, Q.; Huang, T.; Fan, J.; Song, L.; Tong, Y.; Fan, H. COVID-19 vaccine development: milestones, lessons and prospects. Signal Transduct Target Ther. 2022, 7, 146.
- Chen, J.; Ye, Z.; Huang, C.; Qiu, M.; Song, D.; Li, Y.; Xu, Q. Lipid nanoparticle-mediated lymph node-targeting delivery of mRNA cancer vaccine elicits robust CD8(+) T cell response. Proc Natl Acad Sci U S A. 2022, 119, e2207841119.
- Orenstein, W.; Offit, P.; Edwards, K. M.; Plotkin, S. Plotkin’s Vaccines. 8th ed. Elsevier: 2023.
- Cook, M. A.; Wright, G. D. The past, present, and future of antibiotics. Sci Transl Med. 2022, 14, eabo7793.
- Wood, J. M.; Robertson, J. S. From lethal virus to life-saving vaccine: developing inactivated vaccines for pandemic influenza. Nat Rev Microbiol. 2004, 2, 842-847.
- Minor, P. D. Live attenuated vaccines: Historical successes and current challenges. 2015, 479-480, 379-392.
- Vetter, V.; Denizer, G.; Friedland, L. R.; Krishnan, J.; Shapiro, M. Understanding modern-day vaccines: what you need to know. Ann Med. 2018, 50, 110-120.
- Yang, N.; Jin, X.; Zhu, C.; Gao, F.; Weng, Z.; Du, X.; Feng, G. Subunit vaccines for Acinetobacter baumannii. Front Immunol. 2022, 13, 1088130.
- Moyle, P. M.; Toth, I. Modern subunit vaccines: development, components, and research opportunities. 2013, 8, 360- 376.
- Jahanafrooz, Z.; Baradaran, B.; Mosafer, J.; Hashemzaei, M.; Rezaei, T.; Mokhtarzadeh, A.; Hamblin, M. R. Comparison of DNA and mRNA vaccines against cancer. Drug Discov Today. 2020, 25, 552-560.
- Ghattas, M.; Dwivedi, G.; Lavertu, M.; Alameh, M. G. Vaccine technologies and platforms for infectious diseases: current progress, challenges, and opportunities. 2021, 9, 1490.
- Gong, W.; Pan, C.; Cheng, P.; Wang, J.; Zhao, G.; Wu, X. Peptide-based vaccines for tuberculosis. Front Immunol. 2022, 13, 830497.
- Ho, W.; Gao, M.; Li, F.; Li, Z.; Zhang, X. Q.; Xu, X. Next-generation vaccines: nanoparticle-mediated DNA and mRNA delivery. Adv Healthc Mater. 2021, 10, e2001812.
- Tang, J.; Cai, L.; Xu, C.; Sun, S.; Liu, Y.; Rosenecker, J.; Guan, S. Nanotechnologies in Delivery of DNA and mRNA vaccines to the nasal and pulmonary mucosa. Nanomaterials (Basel). 2022, 12, 226.
- Bolhassani, A.; Javanzad, S.; Saleh, T.; Hashemi, M.; Aghasadeghi, M. R.; Sadat, S. M. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum Vaccin Immunother. 2014, 10, 321-332.
- Lee, W.; Suresh, M. Vaccine adjuvants to engage the cross-presentation pathway. Front Immunol. 2022, 13, 940047.
- Mohan, T.; Verma, P.; Rao, D. N. Novel adjuvants & delivery vehicles for vaccines development: a road ahead. Indian J Med Res. 2013, 138, 779-795.
- Ren, H.; Jia, W.; Xie, Y.; Yu, M.; Chen, Y. Adjuvant physiochemistry and advanced nanotechnology for vaccine development. Chem Soc Rev. 2023, 52, 5172-5254.
- Del Giudice, G.; Rappuoli, R.; Didierlaurent, A. M. Correlates of adjuvanticity: a review on adjuvants in licensed vaccines. Semin Immunol. 2018, 39, 14-21.
- Pifferi, C.; Fuentes, R.; Fernández-Tejada, A. Natural and synthetic carbohydrate-based vaccine adjuvants and their mechanisms of action. Nat Rev Chem. 2021, 5, 197-216.
- Bookstaver, M. L.; Tsai, S. J.; Bromberg, J. S.; Jewell, C. M. Improving vaccine and immunotherapy design using biomaterials. Trends Immunol. 2018, 39, 135-150.
- Reed, S. G.; Bertholet, S.; Coler, R. N.; Friede, M. New horizons in adjuvants for vaccine development. Trends Immunol. 2009, 30, 23-32.
- Freund, J.; McDermott, K. Sensitization to horse serum by means of adjuvants. Proc Soc Exp Biol Med. 1942, 49, 548-553.
- Biehl, J. P.; Vilter, R. W. Proceedings of the society for experimental biology and medicine. Nutr Rev. 1982, 40, 183-186.
- Zhao, T.; Cai, Y.; Jiang, Y.; He, X.; Wei, Y.; Yu, Y.; Tian, X. Vaccine adjuvants: mechanisms and platforms. Signal Transduct Target Ther. 2023, 8, 283.
- Iwasaki, A.; Omer, S. B. Why and how vaccines work. Cell. 2020, 183, 290-295.
- O’Hagan, D. T.; Valiante, N. M. Recent advances in the discovery and delivery of vaccine adjuvants. Nat Rev Drug Discov. 2003, 2, 727-735.
- Fan, J.; Jin, S.; Gilmartin, L.; Toth, I.; Hussein, W. M.; Stephenson, R. J. Advances in infectious disease vaccine adjuvants. Vaccines. 2022, 10, 1120.
- Facciolà, A.; Visalli, G.; Laganà, A.; Di Pietro, A. An overview of vaccine adjuvants: current evidence and future perspectives. Vaccines. 2022, 10, 819.
- Olive, C. Pattern recognition receptors: sentinels in innate immunity and targets of new vaccine adjuvants. Expert Rev Vaccines. 2012, 11, 237-256.
- Marrack, P.; McKee, A. S.; Munks, M. W. Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol. 2009, 9, 287-293.
- Yang, J.; Wang, W.; Chen, Z.; Lu, S.; Yang, F.; Bi, Z.; Bao, L.; Mo, F.; Li, X.; Huang, Y.; Hong, W.; Yang, Y.; Zhao, Y.; Ye, F.; Lin, S.; Deng, W.; Chen, H.; Lei, H.; Zhang, Z.; Luo, M.; Gao, H.; Zheng, Y.; Gong, Y.; Jiang, X.; Xu, Y.; Lv, Q.; Li, D.; Wang, M.; Li, F.; Wang, S.; Wang, G.; Yu, P.; Qu, Y.; Yang, L.; Deng, H.; Tong, A.; Li, J.; Wang, Z.; Yang, J.; Shen, G.; Zhao, Z.; Li, Y.; Luo, J.; Liu, H.; Yu, W.; Yang, M.; Xu, J.; Wang, J.; Li, H.; Wang, H.; Kuang, D.; Lin, P.; Hu, Z.; Guo, W.; Cheng, W.; He, Y.; Song, X.; Chen, C.; Xue, Z.; Yao, S.; Chen, L.; Ma, X.; Chen, S.; Gou, M.; Huang, W.; Wang, Y.; Fan, C.; Tian, Z.; Shi, M.; Wang, F. S.; Dai, L.; Wu, M.; Li, G.; Wang, G.; Peng, Y.; Qian, Z.; Huang, C.; Lau, J. Y.; Yang, Z.; Wei, Y.; Cen, X.; Peng, X.; Qin, C.; Zhang, K.; Lu, G.; Wei, X. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature. 2020, 586, 572-577.
- Zhang, Y.; Zeng, G.; Pan, H.; Li, C.; Hu, Y.; Chu, K.; Han, W.; Chen, Z.; Tang, R.; Yin, W.; Chen, X.; Hu, Y.; Liu, X.; Jiang, C.; Li, J.; Yang, M.; Song, Y.; Wang, X.; Gao, Q.; Zhu, F. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis. 2021, 21, 181-192.
- Obozina, A. S.; Komedchikova, E. N.; Kolesnikova, O. A.; Iureva, A. M.; Kovalenko, V. L.; Zavalko, F. A.; Rozhnikova, T. V.; Tereshina, E. D.; Mochalova, E. N.; Shipunova, V. O. Genetically encoded self-assembling protein nanoparticles for the targeted delivery in vitro and in vivo. Pharmaceutics. 2023, 15, 231.
- Lee, N. K.; Cho, S.; Kim, I. S. Ferritin - a multifaceted protein scaffold for biotherapeutics. Exp Mol Med. 2022, 54, 1652-1657.
- Mohanty, A.; Parida, A.; Raut, R. K.; Behera, R. K. Ferritin: a promising nanoreactor and nanocarrier for bionanotechnology. ACS Bio Med Chem Au. 2022, 2, 258-281.
- Oberg, A. L.; Kennedy, R. B.; Li, P.; Ovsyannikova, I. G.; Poland, G. A. Systems biology approaches to new vaccine development. Curr Opin Immunol. 2011, 23, 436-443.
- Rappuoli, R.; Mandl, C. W.; Black, S.; De Gregorio, E. Vaccines for the twenty-first century society. Nat Rev Immunol. 2011, 11, 865-872.
- Mamo, T.; Poland, G. A. Nanovaccinology: the next generation of vaccines meets 21st century materials science and engineering. Vaccine. 2012, 30, 6609-6611.
- Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021, 20, 101-124.
- Zhao, L.; Seth, A.; Wibowo, N.; Zhao, C. X.; Mitter, N.; Yu, C.; Middelberg, A. P. Nanoparticle vaccines. Vaccine. 2014, 32, 327-337.
- Bezbaruah, R.; Chavda, V. P.; Nongrang, L.; Alom, S.; Deka, K.; Kalita, T.; Ali, F.; Bhattacharjee, B.; Vora, L. Nanoparticle-based delivery systems for vaccines. Vaccines. 2022, 10, 1946.
- Couvreur, P.; Vauthier, C. Nanotechnology: intelligent design to treat complex disease. Pharm Res. 2006, 23, 1417-1450.
- Frey, S.; Castro, A.; Arsiwala, A.; Kane, R. S. Bionanotechnology for vaccine design. Curr Opin Biotechnol. 2018, 52, 80-88.
- Moghimi, S. M.; Hunter, A. C.; Murray, J. C. Nanomedicine: current status and future prospects. FASEB J. 2005, 19, 311-330.
- Irvine, D. J.; Swartz, M. A.; Szeto, G. L. Engineering synthetic vaccines using cues from natural immunity. Nat Mater. 2013, 12, 978-990.
- Ma, X.; Zou, F.; Yu, F.; Li, R.; Yuan, Y.; Zhang, Y.; Zhang, X.; Deng, J.; Chen, T.; Song, Z.; Qiao, Y.; Zhan, Y.; Liu, J.; Zhang, J.; Zhang, X.; Peng, Z.; Li, Y.; Lin, Y.; Liang, L.; Wang, G.; Chen, Y.; Chen, Q.; Pan, T.; He, X.; Zhang, H. Nanoparticle vaccines based on the receptor binding domain (RBD) and heptad repeat (HR) of SARS-CoV-2 elicit robust protective immune responses. Immunity. 2020, 53, 1315-1330.e9.
- Fries, C. N.; Curvino, E. J.; Chen, J. L.; Permar, S. R.; Fouda, G. G.; Collier, J. H. Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. Nat Nanotechnol. 2021, 16, 1-14.
- Lung, P.; Yang, J.; Li, Q. Nanoparticle formulated vaccines: opportunities and challenges. Nanoscale. 2020, 12, 5746-5763.
- Shetty, S.; Alvarado, P. C.; Pettie, D.; Collier, J. H. Next-generation vaccine development with nanomaterials: recent advances, possibilities, and challenges. Annu Rev Biomed Eng. 2024, 26, 273-306.
- Marcandalli, J.; Fiala, B.; Ols, S.; Perotti, M.; de van der Schueren, W.; Snijder, J.; Hodge, E.; Benhaim, M.; Ravichandran, R.; Carter, L.; Sheffler, W.; Brunner, L.; Lawrenz, M.; Dubois, P.; Lanzavecchia, A.; Sallusto, F.; Lee, K. K.; Veesler, D.; Correnti, C. E.; Stewart, L. J.; Baker, D.; Loré, K.; Perez, L.; King, N. P. Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus. Cell. 2019, 176, 1420-1431.e17.
- Rappuoli, R.; Serruto, D. Self-assembling nanoparticles usher in a new era of vaccine design. Cell. 2019, 176, 1245-1247.
- Nooraei, S.; Bahrulolum, H.; Hoseini, Z. S.; Katalani, C.; Hajizade, A.; Easton, A. J.; Ahmadian, G. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnology. 2021, 19, 59.
- Lua, L. H.; Connors, N. K.; Sainsbury, F.; Chuan, Y. P.; Wibowo, N.; Middelberg, A. P. Bioengineering virus-like particles as vaccines. Biotechnol Bioeng. 2014, 111, 425-440.
- Noad, R.; Roy, P. Virus-like particles as immunogens. Trends Microbiol. 2003, 11, 438-444.
- Balke, I.; Zeltins, A. Use of plant viruses and virus-like particles for the creation of novel vaccines. Adv Drug Deliv Rev. 2019, 145, 119-129.
- Patel, R.; Czapar, A. E.; Fiering, S.; Oleinick, N. L.; Steinmetz, N. F. Radiation therapy combined with cowpea mosaic virus nanoparticle in situ vaccination initiates immune-mediated tumor regression. ACS Omega. 2018, 3, 3702-3707.
- Deo, V. K.; Yoshimatsu, K.; Otsuki, T.; Dong, J.; Kato, T.; Park, E. Y. Display of Neospora caninum surface protein related sequence 2 on Rous sarcoma virus-derived gag protein virus-like particles. J Biotechnol. 2013, 165, 69-75.
- Deo, V. K.; Kato, T.; Park, E. Y. Chimeric virus-like particles made using GAG and M1 capsid proteins providing dual drug delivery and vaccination platform. Mol Pharm. 2015, 12, 839-845.
- Minkner, R.; Park, E. Y. Purification of virus-like particles (VLPs) expressed in the silkworm Bombyx mori. Biotechnol Lett. 2018, 40, 659- 666.
- Mohsen, M. O.; Zha, L.; Cabral-Miranda, G.; Bachmann, M. F. Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin Immunol. 2017, 34, 123-132.
- Boxus, M.; Fochesato, M.; Miseur, A.; Mertens, E.; Dendouga, N.; Brendle, S.; Balogh, K. K.; Christensen, N. D.; Giannini, S. L. Broad cross-protection is induced in preclinical models by a human papillomavirus vaccine composed of L1/L2 chimeric virus-like particles. J Virol. 2016, 90, 6314-6325.
- Herrin, D. M.; Coates, E. E.; Costner, P. J.; Kemp, T. J.; Nason, M. C.; Saharia, K. K.; Pan, Y.; Sarwar, U. N.; Holman, L.; Yamshchikov, G.; Koup, R. A.; Pang, Y. Y.; Seder, R. A.; Schiller, J. T.; Graham, B. S.; Pinto, L. A.; Ledgerwood, J. E. Comparison of adaptive and innate immune responses induced by licensed vaccines for human papillomavirus. Hum Vaccin Immunother. 2014, 10, 3446-3454.
- Eto, Y.; Saubi, N.; Ferrer, P.; Joseph, J. Designing chimeric virus-like particle-based vaccines for human papillomavirus and HIV: lessons learned. AIDS Rev. 2019, 21, 218-232.
- Chan, H. L.; Thompson, A.; Martinot-Peignoux, M.; Piratvisuth, T.; Cornberg, M.; Brunetto, M. R.; Tillmann, H. L.; Kao, J. H.; Jia, J. D.; Wedemeyer, H.; Locarnini, S.; Janssen, H. L.; Marcellin, P. Hepatitis B surface antigen quantification: why and how to use it in 2011 - a core group report. J Hepatol. 2011, 55, 1121-1131.
- Shouval, D.; Roggendorf, H.; Roggendorf, M. Enhanced immune response to hepatitis B vaccination through immunization with a Pre-S1/Pre-S2/S vaccine. Med Microbiol Immunol. 2015, 204, 57-68.
- Zuckerman, J. N.; Zuckerman, A. J.; Symington, I.; Du, W.; Williams, A.; Dickson, B.; Young, M. D. Evaluation of a new hepatitis B triple-antigen vaccine in inadequate responders to current vaccines. Hepatology. 2001, 34, 798-802.
- Pol, S.; Driss, F.; Michel, M. L.; Nalpas, B.; Berthelot, P.; Brechot, C. Specific vaccine therapy in chronic hepatitis B infection. Lancet. 1994, 344, 342.
- Kheirvari, M.; Liu, H.; Tumban, E. Virus-like particle vaccines and platforms for vaccine development. Viruses. 2023, 15, 1109.
- Madrid-Marina, V.; Torres-Poveda, K.; López-Toledo, G.; García- Carrancá, A. Advantages and disadvantages of current prophylactic vaccines against HPV. Arch Med Res. 2009, 40, 471-477.
- Blanco, J. C. G.; Fernando, L. R.; Zhang, W.; Kamali, A.; Boukhvalova, M. S.; McGinnes-Cullen, L.; Morrison, T. G. Alternative virus-like particle-associated prefusion f proteins as maternal vaccines for respiratory syncytial virus. J Virol. 2019, 93, e00914-00919.
- Park, B. R.; Bommireddy, R.; Chung, D. H.; Kim, K. H.; Subbiah, J.; Jung, Y. J.; Bhatnagar, N.; Pack, C. D.; Ramachandiran, S.; Reddy, S. J. C.; Selvaraj, P.; Kang, S. M. Hemagglutinin virus-like particles incorporated with membrane-bound cytokine adjuvants provide protection against homologous and heterologous influenza virus challenge in aged mice. Immun Ageing. 2023, 20, 20.
- Han, X.; Alameh, M. G.; Butowska, K.; Knox, J. J.; Lundgreen, K.; Ghattas, M.; Gong, N.; Xue, L.; Xu, Y.; Lavertu, M.; Bates, P.; Xu, J.; Nie, G.; Zhong, Y.; Weissman, D.; Mitchell, M. J. Adjuvant lipidoid-substituted lipid nanoparticles augment the immunogenicity of SARS-CoV-2 mRNA vaccines. Nat Nanotechnol. 2023, 18, 1105-1114.
- Elmowafy, M.; Al-Sanea, M. M. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies. Saudi Pharm J. 2021, 29, 999-1012.
- Hald Albertsen, C.; Kulkarni, J. A.; Witzigmann, D.; Lind, M.; Petersson, K.; Simonsen, J. B. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev. 2022, 188, 114416.
- Eygeris, Y.; Gupta, M.; Kim, J.; Sahay, G. Chemistry of lipid nanoparticles for RNA delivery. Acc Chem Res. 2022, 55, 2-12.
- Nguyen, T. X.; Huang, L.; Gauthier, M.; Yang, G.; Wang, Q. Recent advances in liposome surface modification for oral drug delivery. Nanomedicine (Lond). 2016, 11, 1169-1185.
- Wu, L.; Li, X.; Qian, X.; Wang, S.; Liu, J.; Yan, J. Lipid nanoparticle (LNP) delivery carrier-assisted targeted controlled release mRNA vaccines in tumor immunity. Vaccines. 2024, 12, 186.
- Tong, X.; Raffaele, J.; Feller, K.; Dornadula, G.; Devlin, J.; Boyd, D.; Loughney, J. W.; Shanter, J.; Rustandi, R. R. Correlating stability-indicating biochemical and biophysical characteristics with in vitro cell potency in mRNA LNP vaccine. Vaccines. 2024, 12, 169.
- Walsh, E. E.; Frenck, R. W., Jr.; Falsey, A. R.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Mulligan, M. J.; Bailey, R.; Swanson, K. A.; Li, P.; Koury, K.; Kalina, W.; Cooper, D.; Fontes- Garfias, C.; Shi, P. Y.; Türeci, Ö.; Tompkins, K. R.; Lyke, K. E.; Raabe, V.; Dormitzer, P. R.; Jansen, K. U.; Şahin, U.; Gruber, W. C. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. N Engl J Med. 2020, 383, 2439-2450.
- Polack, F. P.; Thomas, S. J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J. L.; Pérez Marc, G.; Moreira, E. D.; Zerbini, C.; Bailey, R.; Swanson, K. A.; Roychoudhury, S.; Koury, K.; Li, P.; Kalina, W. V.; Cooper, D.; Frenck, R. W., Jr.; Hammitt, L. L.; Türeci, Ö.; Nell, H.; Schaefer, A.; Ünal, S.; Tresnan, D. B.; Mather, S.; Dormitzer, P. R.; Şahin, U.; Jansen, K. U.; Gruber, W. C.; C4591001 Clinical Trial Group. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020, 383, 2603-2615.
- Soppimath, K. S.; Aminabhavi, T. M.; Kulkarni, A. R.; Rudzinski, W. E. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001, 70, 1-20.
- Döllefeld, H.; Hoppe, K.; Kolny, J.; Schilling, K.; Weller, H.; Eychmüller, A. Investigations on the stability of thiol stabilized semiconductor nanoparticles. Phys Chem Chem Phys. 2002, 4, 4747-4753.
- Sahdev, P.; Ochyl, L. J.; Moon, J. J. Biomaterials for nanoparticle vaccine delivery systems. Pharm Res. 2014, 31, 2563-2582.
- Peng, S.; Cao, F.; Xia, Y.; Gao, X. D.; Dai, L.; Yan, J.; Ma, G. Particulate alum via pickering emulsion for an enhanced COVID-19 vaccine adjuvant. Adv Mater. 2020, 32, e2004210.
- Moyer, T. J.; Kato, Y.; Abraham, W.; Chang, J. Y. H.; Kulp, D. W.; Watson, N.; Turner, H. L.; Menis, S.; Abbott, R. K.; Bhiman, J. N.; Melo, M. B.; Simon, H. A.; Herrera-De la Mata, S.; Liang, S.; Seumois, G.; Agarwal, Y.; Li, N.; Burton, D. R.; Ward, A. B.; Schief, W. R.; Crotty, S.; Irvine, D. J. Engineered immunogen binding to alum adjuvant enhances humoral immunity. Nat Med. 2020, 26, 430-440.
- Bai, S.; Jiang, H.; Song, Y.; Zhu, Y.; Qin, M.; He, C.; Du, G.; Sun, X. Aluminum nanoparticles deliver a dual-epitope peptide for enhanced anti-tumor immunotherapy. J Control Release. 2022, 344, 134-146.
- Yasin, D.; Sami, N.; Afzal, B.; Husain, S.; Naaz, H.; Ahmad, N.; Zaki, A.; Rizvi, M. A.; Fatma, T. Prospects in the use of gold nanoparticles as cancer theranostics and targeted drug delivery agents. Appl Nanosci. 2023, 13, 4361-4393.
- Dykman, L. A. Gold nanoparticles for preparation of antibodies and vaccines against infectious diseases. Expert Rev Vaccines. 2020, 19, 465- 477.
- Li, X.; Wang, X.; Ito, A. Tailoring inorganic nanoadjuvants towards next-generation vaccines. Chem Soc Rev. 2018, 47, 4954-4980.
- Zhu, M.; Du, L.; Zhao, R.; Wang, H. Y.; Zhao, Y.; Nie, G.; Wang, R. F. Cell-penetrating nanoparticles activate the inflammasome to enhance antibody production by targeting microtubule-associated protein 1-light chain 3 for degradation. ACS Nano. 2020, 14, 3703-3717.
- Sekimukai, H.; Iwata-Yoshikawa, N.; Fukushi, S.; Tani, H.; Kataoka, M.; Suzuki, T.; Hasegawa, H.; Niikura, K.; Arai, K.; Nagata, N. Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs. Microbiol Immunol. 2020, 64, 33-51.
- Taylor, U.; Barchanski, A.; Garrels, W.; Klein, S.; Kues, W.; Barcikowski, S.; Rath, D. Toxicity of gold nanoparticles on somatic and reproductive cells. Adv Exp Med Biol. 2012, 733, 125-133.
- Sonavane, G.; Tomoda, K.; Makino, K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B Biointerfaces. 2008, 66, 274-280.
- Pan, Y.; Leifert, A.; Ruau, D.; Neuss, S.; Bornemann, J.; Schmid, G.; Brandau, W.; Simon, U.; Jahnen-Dechent, W. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small. 2009, 5, 2067-2076.
- Baek, A.; Kwon, I. H.; Lee, D. H.; Choi, W. H.; Lee, S. W.; Yoo, J.; Heo, M. B.; Lee, T. G. Novel organoid culture system for improved safety assessment of nanomaterials. Nano Lett. 2024, 24, 805-813.
- Xu, B.; Li, S.; Shi, R.; Liu, H. Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduct Target Ther. 2023, 8, 435.
- Lee, J. Y.; Kim, M. K.; Nguyen, T. L.; Kim, J. Hollow Mesoporous Silica nanoparticles with extra-large mesopores for enhanced cancer vaccine. ACS Appl Mater Interfaces. 2020, 12, 34658-34666.
- Lérida-Viso, A.; Estepa-Fernández, A.; García-Fernández, A.; Martí- Centelles, V.; Martínez-Máñez, R. Biosafety of mesoporous silica nanoparticles; towards clinical translation. Adv Drug Deliv Rev. 2023, 201, 115049.
- Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater. 2012, 24, 1504-1534.
- Sadiq, S.; Khan, S.; Khan, I.; Khan, A.; Humayun, M.; Wu, P.; Usman, M.; Khan, A.; Alanazi, A. F.; Bououdina, M. A critical review on metal-organic frameworks (MOFs) based nanomaterials for biomedical applications: Designing, recent trends, challenges, and prospects. Heliyon. 2024, 10, e25521.
- Lu, X. Y.; Wu, D. C.; Li, Z. J.; Chen, G. Q. Polymer nanoparticles. Prog Mol Biol Transl Sci. 2011, 104, 299-323.
- McGinnes Cullen, L.; Luo, B.; Wen, Z.; Zhang, L.; Durr, E.; Morrison, T. G. The respiratory syncytial virus (RSV) G protein enhances the immune responses to the RSV F protein in an enveloped virus-like particle vaccine candidate. J Virol. 2023, 97, e0190022.
- Kumari, A.; Yadav, S. K.; Yadav, S. C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010, 75, 1-18.
- Kauffman, K. J.; Dorkin, J. R.; Yang, J. H.; Heartlein, M. W.; DeRosa, F.; Mir, F. F.; Fenton, O. S.; Anderson, D. G. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 2015, 15, 7300-7306.
- Pielichowska, K. Polymer nanocomposites: preparation, characterisation and applications. Nanomaterials (Basel). 2022, 12, 1900.
- Idrees, H.; Zaidi, S. Z. J.; Sabir, A.; Khan, R. U.; Zhang, X.; Hassan, S. U. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials (Basel). 2020, 10, 1970.
- Zielińska, A.; Carreiró, F.; Oliveira, A. M.; Neves, A.; Pires, B.; Venkatesh, D. N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A. M.; Santini, A.; Souto, E. B. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 2020, 25, 3731.
- Chen, H.; Wang, L.; Zhao, X.; Jiang, H.; Wu, M.; Ding, Y.; Jia, X.; Zhang, Y.; Li, T.; Zhang, Y.; Zhou, W.; Zheng, P.; Yang, Y.; Du, J. A polymer-based antigen carrier activates two innate immune pathways for adjuvant-free subunit vaccines. ACS Nano. 2024, 18, 9160-9175.
- Lu, H.; Zhang, S.; Wang, J.; Chen, Q. A review on polymer and lipid-based nanocarriers and its application to nano-pharmaceutical and food-based systems. Front Nutr. 2021, 8, 783831.
- Pati, R.; Shevtsov, M.; Sonawane, A. Nanoparticle vaccines against infectious diseases. Front Immunol. 2018, 9, 2224.
- Diaz-Arévalo, D.; Zeng, M. Chapter 7 - Nanoparticle-based vaccines: opportunities and limitations. In Nanopharmaceuticals, Shegokar, R., ed. Elsevier: 2020; pp 135-150.
- Al-Halifa, S.; Gauthier, L.; Arpin, D.; Bourgault, S.; Archambault, D. Nanoparticle-based vaccines against respiratory viruses. Front Immunol. 2019, 10, 22.
- Fonte, P.; Reis, S.; Sarmento, B. Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery. J Control Release. 2016, 225, 75-86.
- Wibowo, D.; Jorritsma, S. H. T.; Gonzaga, Z. J.; Evert, B.; Chen, S.; Rehm, B. H. A. Polymeric nanoparticle vaccines to combat emerging and pandemic threats. Biomaterials. 2021, 268, 120597.
- Koerner, J.; Horvath, D.; Herrmann, V. L.; MacKerracher, A.; Gander, B.; Yagita, H.; Rohayem, J.; Groettrup, M. PLGA-particle vaccine carrying TLR3/RIG-I ligand Riboxxim synergizes with immune checkpoint blockade for effective anti-cancer immunotherapy. Nat Commun. 2021, 12, 2935.
- Hamdy, S.; Haddadi, A.; Hung, R. W.; Lavasanifar, A. Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv Drug Deliv Rev. 2011, 63, 943-955.
- Patil, V.; Hernandez-Franco, J. F.; Yadagiri, G.; Bugybayeva, D.; Dolatyabi, S.; Feliciano-Ruiz, N.; Schrock, J.; Hanson, J.; Ngunjiri, J.; HogenEsch, H.; Renukaradhya, G. J. A split influenza vaccine formulated with a combination adjuvant composed of alpha-D-glucan nanoparticles and a STING agonist elicits cross-protective immunity in pigs. J Nanobiotechnology. 2022, 20, 477.
- Blakney, A. K.; McKay, P. F.; Hu, K.; Samnuan, K.; Jain, N.; Brown, A.; Thomas, A.; Rogers, P.; Polra, K.; Sallah, H.; Yeow, J.; Zhu, Y.; Stevens, M. M.; Geall, A.; Shattock, R. J. Polymeric and lipid nanoparticles for delivery of self-amplifying RNA vaccines. J Control Release. 2021, 338, 201-210.
- Yong, T.; Zhang, X.; Bie, N.; Zhang, H.; Zhang, X.; Li, F.; Hakeem, A.; Hu, J.; Gan, L.; Santos, H. A.; Yang, X. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat Commun. 2019, 10, 3838.
- Yang, W.; Guo, W.; Le, W.; Lv, G.; Zhang, F.; Shi, L.; Wang, X.; Wang, J.; Wang, S.; Chang, J.; Zhang, B. Albumin-bioinspired Gd:CuS nanotheranostic agent for in vivo photoacoustic/magnetic resonance imaging-guided tumor-targeted photothermal therapy. ACS Nano. 2016, 10, 10245-10257.
- Wang, Y.; Yang, T.; Ke, H.; Zhu, A.; Wang, Y.; Wang, J.; Shen, J.; Liu, G.; Chen, C.; Zhao, Y.; Chen, H. Smart albumin-biomineralized nanocomposites for multimodal imaging and photothermal tumor ablation. Adv Mater. 2015, 27, 3874-3882.
- Kadiyala, P.; Li, D.; Nuñez, F. M.; Altshuler, D.; Doherty, R.; Kuai, R.; Yu, M.; Kamran, N.; Edwards, M.; Moon, J. J.; Lowenstein, P. R.; Castro, M. G.; Schwendeman, A. High-density lipoprotein-mimicking nanodiscs for chemo-immunotherapy against glioblastoma multiforme. ACS Nano. 2019, 13, 1365-1384.
- Wang, D.; Tai, P. W. L.; Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019, 18, 358- 378.
- Zhou, X.; Zhang, X.; Han, S.; Dou, Y.; Liu, M.; Zhang, L.; Guo, J.; Shi, Q.; Gong, G.; Wang, R.; Hu, J.; Li, X.; Zhang, J. Yeast microcapsule-mediated targeted delivery of diverse nanoparticles for imaging and therapy via the oral route. Nano Lett. 2017, 17, 1056-1064.
- Koffler, J.; Zhu, W.; Qu, X.; Platoshyn, O.; Dulin, J. N.; Brock, J.; Graham, L.; Lu, P.; Sakamoto, J.; Marsala, M.; Chen, S.; Tuszynski, M. H. Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat Med. 2019, 25, 263-269.
- Wang, W.; Zhou, X.; Bian, Y.; Wang, S.; Chai, Q.; Guo, Z.; Wang, Z.; Zhu, P.; Peng, H.; Yan, X.; Li, W.; Fu, Y. X.; Zhu, M. Dual-targeting nanoparticle vaccine elicits a therapeutic antibody response against chronic hepatitis B. Nat Nanotechnol. 2020, 15, 406-416.
- Wang, L.; Wang, X.; Yang, F.; Liu, Y.; Meng, L.; Pang, Y.; Zhang, M.; Chen, F.; Pan, C.; Lin, S.; Zhu, X.; Leong, K. W.; Liu, J. Systemic antiviral immunization by virus-mimicking nanoparticles-decorated erythrocytes. Nano Today. 2021, 40, 101280.
- Chang, M.; Dong, C.; Huang, H.; Ding, L.; Feng, W.; Chen, Y. Nanobiomimetic medicine. Adv Funct Mater. 2022, 32, 2204791.
- Ji, P.; Sun, W.; Zhang, S.; Xing, Y.; Wang, C.; Wei, M.; Li, Q.; Ji, G.; Yang, G. Modular hydrogel vaccine for programmable and coordinate elicitation of cancer immunotherapy. Adv Sci (Weinh). 2023, 10, e2301789.
- Xing, L.; Fan, Y. T.; Shen, L. J.; Yang, C. X.; Liu, X. Y.; Ma, Y. N.; Qi, L. Y.; Cho, K. H.; Cho, C. S.; Jiang, H. L. pH-sensitive and specific ligand-conjugated chitosan nanogels for efficient drug delivery. Int J Biol Macromol. 2019, 141, 85-97.
- Chen, J. L.; Fries, C. N.; Berendam, S. J.; Rodgers, N. S.; Roe, E. F.; Wu, Y.; Li, S. H.; Jain, R.; Watts, B.; Eudailey, J.; Barfield, R.; Chan, C.; Moody, M. A.; Saunders, K. O.; Pollara, J.; Permar, S. R.; Collier, J. H.; Fouda, G. G. Self-assembling peptide nanofiber HIV vaccine elicits robust vaccine-induced antibody functions and modulates Fc glycosylation. Sci Adv. 2022, 8, eabq0273.