·
COMMENTARY
·

Peptide-assembled nanozymes: a promising strategy to combat antimicrobial resistance

Haoyang Du1 Jiaxin Liu1 Manjie Zhang1,2*
Show Less
1 Department of Pharmaceutics, College of Pharmacy, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
2 Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, China
Submitted: 3 February 2025 | Revised: 9 March 2025 | Accepted: 10 March 2025 | Published: 25 March 2025
Copyright © 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Funding
This work was financially supported by the National Natural Science Foundation of China (22002096), the China Postdoctoral Science Foundation (2023M730827), the Hei Longjiang Postdoctoral Science Foundation (LBH- 223123), and the Harbin Medical University High-level Introduction of Talent Research Start-up Fund (31011210004).
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

  1. Ikhimiukor O, Odih E, Donado-Godoy P, Okeke I. A bottom-up view of antimicrobial resistance transmission in developing countries. Nat Microbiol. 2022;7:757-765. doi: 10.1038/s41564-022-01124-w

 

  1. Thompson, T. The staggering death toll of drug-resistant bacteria. Nature. 2022. doi: 10.1038/d41586-022-00228-x

 

  1. Huan Y, Kong Q, Mou H, Yi H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front Microbiol. 2020;11:582779. doi: 10.3389/fmicb.2020.582779

 

  1. Ma Y, Guo Z, Xia B, et al. Identification of antimicrobial peptides from the human gut microbiome using deep learning. Nat Biotechnol. 2022;40:921-931. doi: 10.1038/s41587-022-01226-0

 

  1. O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. The Review on Antimicrobial Resistance; 2016.

 

  1. Ventola, C. The antibiotic resistance crisis: Part 1: Causes and threats. P T. 2015;40:277-283.

 

  1. Wang Q, Jiang J, Gao L. Catalytic antimicrobial therapy using nanozymes. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;14:e1769. doi: 10.1002/wnan.1769

 

  1. Mookherjee N, Anderson M, Haagsman H, Davidson D. Antimicrobial host defence peptides: Functions and clinical potential. Nat Rev Drug Discov. 2020;19:311-332. doi: 10.1038/s41573-019-0058-8

 

  1. Yuan Y, Chen L, Song K, et al. Stable peptide-assembled nanozyme mimicking dual antifungal actions. Nat Commun. 2024;15:5636. doi: 10.1038/s41467-024-50094-6

 

  1. Yulizar Y, Wahyuningsih N, Asri ND, Watarai H. Investigation on the synergistic complexation of Ni(II) with 1,10-phenanthroline and dithizone at hexane-water interface using centrifugal liquid membrane-spectrophotometry. Makara J Sci. 2012;16:169-177. doi: 10.7454/mss.v16i3.1478

 

  1. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583-589. doi: 10.1038/s41586-021-03819-2

 

  1. Tunyasuvunakool K, Adler J, Wu Z, et al. Highly accurate protein structure prediction for the human proteome. Nature. 2021;596:590-596. doi: 10.1038/s41586-021-03828-1

 

  1. Ragonis-Bachar P, Axel G, Blau S, Ben-Tal N, Kolodny R, Landau M. What can AlphaFold do for antimicrobial amyloids? Proteins. 2024;92:265-281. doi: 10.1002/prot.26618

 

  1. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. The MARTINI force field: Coarse grained model for biomolecular simulations. J Phys Chem B. 2007;111:7812-7824. doi: 10.1021/jp071097f

 

  1. Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4:435-447. doi: 10.1021/ct700301q

 

  1. Rappe AK, Casewit CJ, Colwell KS, Goddard WA 3rd, Skiff, WM. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc. 1992;114:10024-10035. doi: 10.1021/ja00051a040

 

  1. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh ewald method. J Chem Phys. 1995;103:8577-8593. doi: 10.1063/1.470117

 

  1. Patel RA, Webb MA. Data-driven design of polymer-based biomaterials: High-throughput simulation, experimentation, and machine learning. ACS Appl Bio Mater. 2024;7:510-527. doi: 10.1021/acsabm.2c00962

 

  1. Elliott AG, Huang JX, Neve S, et al. An amphipathic peptide with antibiotic activity against multidrug-resistant Gram-negative bacteria. Nat Commun. 2020;11:3184. doi: 10.1038/s41467-020-16950-x

 

  1. Fjell C, Hiss J, Hancock R, Schneider G. Designing antimicrobial peptides: Form follows function. Nat Rev Drug Discov. 2011;11:37-51. doi: 10.1038/nrd3591
Conflict of interest
The authors declare no competing financial interest.
Share
Back to top