·
ORIGINAL RESEARCH ARTICLE
·

Optimization and biocompatibility analyses of fused filament fabrication-printed polylactic acid-silicon nitride scaffolds with enhanced mechanical properties

Lovin K. John1 Ramu Murugan1* Sarat Singamneni2 Banu Pradheepa Kamarajan3
Show Less
1 Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India
2 Department of Mechanical Engineering, School of Engineering, Auckland University of Technology, Auckland, New Zealand
3 Department of Biotechnology, PSG College of Technology, Coimbatore, Tamil Nadu, India
BMT 2025 , 6(2), 212–222; https://doi.org/10.12336/bmt.25.00014
Submitted: 7 April 2025 | Revised: 25 May 2025 | Accepted: 26 May 2025 | Published: 20 June 2025
Copyright © 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Fused filament fabrication (FFF) in additive manufacturing has emerged as a potential technology in the development of tissue engineering scaffolds of precise, complex geometries. The choice of material and process parameters is significant in determining their properties, such as mechanical strength. Polymer-ceramic composites with exceptional bioactivity have the potential for FFF applications in fabricating scaffolds. In this study, polylactic acid (PLA) composite scaffolds reinforced with silicon nitride (Si3N4) particles in various weight ratios (97:03, 95:05, and 93:07 weight%) were developed using FFF technology. Taguchi’s orthogonal array and grey relational analysis were employed to optimize three parameters (polymer-reinforcement ratio, infill density, and layer thickness) to analyze mechanical strength – through tensile, compressive, flexural, and impact tests – surface morphology using scanning electron microscopy, and biocompatibility through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT assay). The optimal formulation of 95:05 wt.%, 0.17 mm layer height, and 100% infill density demonstrated superior mechanical properties with a tensile strength of 47.52 MPa, flexural strength of 67.3 MPa, compressive strength of 71.57 MPa, and impact strength of 2.63 kJ/m2. Analysis of variance revealed layer thickness as the most influential factor (41.7%) impacting mechanical properties, followed by PLA: Si3N4 ratio and infill density. MTT assay and immunofluorescent staining analysis revealed that the optimal formulations enhanced cell viability and proliferation compared to controls. 

Keywords
Polymer ceramic composite
Fused filament fabrication
Grey relational analysis
Biocompatibility
Mechanical properties
Taguchi orthogonal array
Funding
None.
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

  1. Torrado AR, Shemelya CM, English JD, Lin Y, Wicker BR, Roberson AD. Characterizing the effect of additives to ABS on the mechanical property anisotropy of specimens fabricated by material extrusion 3D printing. Addit Manuf. 2015;6:16-29. doi: 10.1016/j.addma.2015.02.001

 

  1. Virgin PBT Fr V0 Particle Granule Pellet PBT 15% Glass Fiber Compounds. Available from: https://keyuanplastic.en.made-in-china.com/product/ saprhrfpgtcq/china-virgin-pbt-fr-v0-particle-granule-pellet-pbt-15- glass-fiber-compounds.html [Last accessed on 2024 Mar 12].

 

  1. Frp/Grp Grating. 2022. Available from: https://fibertech.co.in/frp-grp-grating.html?gad_source=1&gclid=cj0kcqjw4cs-bhdgarisabg4_ j0ualqmrm1fakvgfu0grmdx917n5cuc1iolsdnbzhe8frwcene3je 8aavivealw_wcb [Last accessed on 2024 Mar 12].

 

  1. Mayekar PC. Accelerating the Biodegradation of Poly (Lactic Acid) at Mesophilic Temperatures [dissertation]. Michigan: Michigan State University; 2024.

 

  1. Tekinalp HL, Kunc V, Velez-Garcia GM, et al. Highly oriented carbon fiber-polymer composites via additive manufacturing. Compos Sci Technol. 2014;105:144-150. doi: 10.1016/j.compscitech.2014.10.009

 

  1. Jayashuriya M, Gautam S, Aravinth AN, Vasanth G, Murugan R. Studies on the effect of part geometry and process parameter on the dimensional deviation of additive manufactured part using ABS material. Prog Addit Manuf. 2022;7(6):1183-1193. doi: 10.1007/s40964-022-00292-9

 

  1. Amithesh SR, Shanmugasundaram B, Kamath, S, Adhithyan SS, Murugan R. Analysis of dimensional quality in FDM printed Nylon 6 parts. Prog Addit Manuf. 2024;9(4):1225-1238. doi: 10.1007/s40964-023-00515-7

 

  1. Kangishwar S, Radhika N, Sheik AA, Chavali A, Hariharan S. A comprehensive review on polymer matrix composites: Material selection, fabrication, and application. Polym Bull. 2023;80(1):47-87. doi: 10.1007/s00289-022-04087-4

 

  1. Aumnate C, Pongwisuthiruchte A, Pattananuwat P, Potiyaraj P. Fabrication of ABS/graphene oxide composite filament for fused filament fabrication (FFF) 3D printing. Adv Mater Sci Eng. 2018;1:1-9. doi: 10.1155/2018/2830437

 

  1. Khatri B, Lappe K, Habedank M, Mueller T, Megnin C, Hanemann T. Fused deposition modeling of ABS-barium titanate composites: A simple route towards tailored dielectric devices. Polymers (Basel). 2018;10(6):666. doi: 10.3390/polym10060666

 

  1. Divakar H, Nagaraja R, Puttaswamaiah S, Guruprasad H. Mechanical characterization of thermoplastic ABS/glass fibre reinforced polymer matrix composites. Int J Eng Res Technol. 2015;4:1127-1131. doi: 10.17577/IJERTV4IS051122

 

  1. Singh R, Kumar R, Singh I. Investigations on 3D printed thermosetting and ceramic-reinforced recycled thermoplastic-based functional prototypes. J Thermoplast Compos Mater. 2021;34(8):1103-1122. doi: 10.1177/0892705719864623

 

  1. Yilmazer U. Tensile, flexural and impact properties of a thermoplastic matrix reinforced by glass fiber and glass bead hybrids. Compos Sci Technol. 1992;44(2):119-125. doi: 10.1016/0266-3538(92)90104-B

 

  1. Wang G, Zhang D, Li B, Wan G, Zhao G, Zhang A. Strong and thermal-resistance glass fiber-reinforced polylactic acid (PLA) composites enabled by heat treatment. Int J Biol Macromol. 2019;129:448-459. doi: 10.1016/j.ijbiomac.2019.02.020

 

  1. Ranjbar M, Dehghan Noudeh G, Hashemipour MA, Mohamadzadeh I. A systematic study and effect of PLA/Al2O3 nanoscaffolds as dental resins: Mechanochemical properties. Artif Cells Nanomed Biotechnol. 2019;47(1):201-209. doi: 10.1080/21691401.2018.1548472

 

  1. Kurtycz P, Ciach T, Olszyna A, et al. Electrospun poly (L-lactic) acid/ nanoalumina (PLA/Al2O3) composite fiber mats with potential biomedical application-investigation of cytotoxicity. Fibers Polym. 2013;14:578-583. doi: 10.1007/s12221-013-0578-5

 

  1. Liu W, Wu N, Pochiraju, K. Shape recovery characteristics of SiC/C/ PLA composite filaments and 3D printed parts. Compos A Appl Sci Manuf. 2018;108:1-11. doi: 10.1016/j.compositesa.2018.02.017

 

  1. Yu S, Kim DK, Park C, Hong SM, Koo CM. Thermal conductivity behavior of SiC-Nylon 6, 6 and hBN-Nylon 6, 6 composites. Res Chem Intermed. 2014;40:33-40. doi: 10.1007/s11164-013-1452-1

 

  1. Benabid FZ, Mallem OK, Zouai F, Cagiao ME, Benachour D. Effect of the mechanical treatment of alumina on thermal, morphological and dielectric properties of LDPE/Al2O3 composites. S Afr J Chem. 2018;71:150-154.

 

  1. Dhabale R, Jatti VS. A bio-material: Mechanical behaviour of LDPE-Al2O3-TiO2. IOP Conf Ser Mater Sci Eng. 2016;149:012043. doi: 10.1088/1757-899X/149/1/012043

 

  1. John LK, Murugan R, Singamneni S. Impact of quasi-isotropic raster layup on the mechanical behaviour of fused filament fabrication parts. High Perform Polym. 2022;34(1):77-86. doi: 10.1177/09540083211041954

 

  1. John LK, Ramu M, Singamneni S, Binudas N. Strength evaluation of polymer ceramic composites: A comparative study between injection molding and fused filament fabrication techniques. Prog Addit Manuf. 2025;10(1):339-347. doi: 10.1007/s40964-024-00626-9

 

  1. Pourhajrezaei S, Abbas Z, Khalili MA, et al. Bioactive polymers: A comprehensive review on bone grafting biomaterials. Int J Biol Macromol. 2024;278:134615. doi: 10.1016/j.ijbiomac.2024.134615

 

  1. Farag MM. Recent trends on biomaterials for tissue regeneration applications. J Mater Sci. 2023;58(2):527-558. doi: 10.1007/s10853-022-08102-x

 

  1. Cao S, Bo R, Zhang Y. Polymeric scaffolds for regeneration of central/ peripheral nerves and soft connective tissues. Adv NanoBiomed Res. 2023;3(3):2200147. doi: 10.1002/anbr.202200147

 

  1. O’brien FJ. Biomaterials and scaffolds for tissue engineering. Mater Today. 2011;14(3):88-95. doi: 10.1016/S1369-7021(11)70058-X

 

  1. Lasprilla AJ, Martinez GA, Lunelli BH, Jardini AL, Maciel Filho R. Poly-lactic acid synthesis for application in biomedical devices-A review. Biotechnol Adv. 2012;30(1):321-328. doi: 10.1016/j.biotechadv.2011.06.019

 

  1. Bos RRM, Rozema FB, Boering G, et al. Degradation of and tissue reaction to biodegradable poly (L-lactide) for use as internal fixation of fractures: A study in rats. Biomaterials. 1991;12(1):32-36. doi: 10.1016/0142-9612(91)90128-W

 

  1. Biswal T. Biopolymers for tissue engineering applications: A review. Mater Today Proc. 2021;41:397-402. doi: 10.1016/j.matpr.2020.09.628

 

  1. Sagadevan S, Schirhagl R, Rahman MZ, et al. Recent advancements in polymer matrix nanocomposites for bone tissue engineering applications. J Drug Deliv Sci Technol. 2023;82:104313. doi: 10.1016/j.jddst.2023.104313

 

  1. Ning F, Cong W, Qiu J, Wei J, Wang S. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos B Eng. 2015;80:369-378. doi: 10.1016/j.compositesb.2015.06.013

 

  1. Chou YC, Lee D, Chang TM, et al. Development of a three-dimensional (3D) printed biodegradable cage to convert morselized corticocancellous bone chips into a structured cortical bone graft. Int J Mol Sci. 2016;17(4):595. doi: 10.3390/ijms17040595

 

  1. Warnke PH, Seitz H, Warnke F, et al. Ceramic scaffolds produced by computer‐assisted 3D printing and sintering: Characterization and biocompatibility investigations. J Biomed Mater Res B Appl Biomater. 2010;93(1):212-217. doi: 10.1002/jbm.b.31577

 

  1. Hedayati SK, Behravesh AH, Hasannia S, Saed AB, Akhoundi B. 3D printed PCL scaffold reinforced with continuous biodegradable fiber yarn: A study on mechanical and cell viability properties. Polym Test. 2020;83:106347. doi: 10.1016/j.polymertesting.2020.106347

 

  1. Chen SY, Cho YC, Yang TS, et al. A tailored biomimetic hydrogel as potential bioink to print a cell scaffold for tissue engineering applications: Printability and cell viability evaluation. Appl Sci. 2021;11(2):829. doi: 10.3390/app11020829

 

  1. Laeng J, Khan ZA, Khu SY. Optimizing flexible behaviour of bow prototype using Taguchi approach. J Appl Sci. 2006;6(3):622-630. doi: 10.3923/jas.2006.622.630

 

  1. Liu X, Zhang M, Li S, Si L, Peng J, Hu Y. Mechanical property parametric appraisal of fused deposition modeling parts based on the gray Taguchi method. Int J Adv Manuf Technol. 2017;89:2387-2397. doi: 10.1007/s00170-016-9263-3

 

  1. Lee BH, Abdullah J, Khan ZA. Optimization of rapid prototyping parameters for production of flexible ABS object. J Mater Process Technol. 2005;169(1):54-61. doi: 10.1016/j.jmatprotec.2005.02.259

 

  1. Deng X, Zeng Z, Peng B, Yan S, Ke W. Mechanical properties optimization of poly-ether-ether-ketone via fused deposition modeling. Materials (Basel). 2018;11(2):216. doi: 10.3390/ma11020216

 

  1. Dong G, Wijaya G, Tang Y, Zhao YF. Optimizing process parameters of fused deposition modeling by Taguchi method for the fabrication of lattice structures. Addit Manuf. 2018;19:62-72. doi: 10.1016/j.addma.2017.11.004

 

  1. Fitzharris ER, Watt I, Rosen DW, Shofner ML. Interlayer bonding improvement of material extrusion parts with polyphenylene sulfide using the Taguchi method. Addit Manuf. 2018;24:287-297. doi: 10.1016/j.addma.2018.10.003

 

  1. Cimbala JM. Taguchi Orthogonal Arrays. Pennsylvania: Penn State University; 2014. p. 1-3.
Conflict of interest
The authors declare that there is no conflict of interest for the present work.
Share
Back to top