Empowering of novel anti-tumor formulations with quinone-based active natural products
Cancer remains one of the leading causes of death worldwide, representing a significant threat to human health. Consequently, there is an urgent need to develop effective treatment strategies with low toxicity. Quinone-based natural products have garnered considerable attention in the field of anticancer research due to their distinctive chemical structures. These compounds play a crucial role in treating various cancers and in overcoming chemotherapy resistance through several mechanisms, including the inhibition of cell proliferation and migration, as well as the modulation of multiple signaling pathways. However, their clinical application is limited by severe side effects, which arise from certain physicochemical properties, such as poor water solubility and low biocompatibility. The advent of nanotechnology has led to the development of nanomedicine delivery systems, offering a groundbreaking approach to overcome these limitations. Nanocarriers, characterized by their excellent biocompatibility, favorable pharmacokinetics, and high drug-loading capacities, enhance the bioavailability and targeting of natural products while reducing adverse effects. Therefore, integrating quinone-based natural products with nanocarrier delivery systems has proven to be an effective anticancer strategy. This approach not only improves the absorption of drugs with poor bioavailability but also significantly reduces side effects. Various nanodelivery systems, including micelles, liposomes, inorganic nanoparticles, and biomimetic nanocarriers, are particularly effective in delivering quinone-based natural products due to their unique physical and chemical properties, thereby enhancing their solubility and stability. In addition, targeted modifications, intelligent controlled release, and combination therapy strategies have significantly improved their bioavailability and antitumor efficacy. This review systematically examines the antitumor potential of quinone-based natural products and provides a comprehensive overview of the current research and clinical application prospects of their nanodelivery systems in cancer treatment. It aims to summarize the current progress and clinical prospects of integrating these compounds with nanocarrier-based drug delivery systems in cancer treatment.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
- Lemos TL, Monte FJ, Santos AK, et al. Quinones from plants of northeastern Brazil: Structural diversity, chemical transformations, NMR data and biological activities. Nat Prod Res. 2007;21(6):529-550. doi: 10.1080/14786410601130604
- Patel OPS, Beteck RM, Legoabe LJ. Antimalarial application of quinones: A recent update. Eur J Med Chem. 2021;210(2):113084. doi: 10.1016/j.ejmech.2020.113084
- Gomes DCN, Wellisson DSMJ, Martins DCJ. Quinones: Biosynthesis, characterization of (13) C spectroscopical data and pharmacological activities. Chem Biodivers. 2023;20(12):e202301365. doi: 10.1002/cbdv.202301365
- Fang WT, Deng AP, Ren ZL, et al. Research progress on quality evaluation of Salviae Miltiorrhizae Radix et Rhizoma(Danshen). Zhongguo Zhong Yao Za Zhi. 2018;43(6):1077-1085. doi: 10.19540/j.cnki.cjcmm.20180109.004
- Khan MA, Tania M, Fu S, Fu J. Thymoquinone, as an anticancer molecule: From basic research to clinical investigation. Oncotarget. 2017;8(31):51907-51919. doi: 10.18632/oncotarget.17206
- Huang X, Jin L, Deng H, et al. Research and development of natural product tanshinone I: Pharmacology, total synthesis, and structure modifications. Front Pharmacol. 2022;13:920411. doi: 10.3389/fphar.2022.920411
- Siddamurthi S, Gutti G, Jana S, Kumar A, Singh SK. Anthraquinone: A promising scaffold for the discovery and development of therapeutic agents in cancer therapy. Future Med Chem. 2020;12(11):1037-1069. doi: 10.4155/fmc-2019-0198
- Xie Y, Shen X, Xu F, Liang X. Research progress of nano-delivery systems for the active ingredients from traditional Chinese medicine. Phytochem Anal. 2024;35(4):1-14. doi: 10.1002/pca.3381
- Tripathi SK, Panda M, Biswal BK. Emerging role of plumbagin: Cytotoxic potential and pharmaceutical relevance towards cancer therapy. Food Chem Toxicol. 2019;125(3):566-582. doi: 10.1016/j.fct.2019.01.018
- Yadav S, Sharma A, Nayik GA, et al. Review of shikonin and derivatives: Isolation, chemistry, biosynthesis, pharmacology and toxicology. Front Pharmacol. 2022;13:905755. doi: 10.3389/fphar.2022.905755
- Zhang P, Liu W, Wang Y. The mechanisms of tanshinone in the treatment of tumors. Front Pharmacol. 2023;14:1282203. doi: 10.3389/fphar.2023.1282203
- Zhang L, Zhang G, Xu S, Song Y. Recent advances of quinones as a privileged structure in drug discovery. Eur J Med Chem. 2021;223(15):113632. doi: 10.1016/j.ejmech.2021.113632
- Ying HZ, Yu CH, Chen HK, et al. Quinonoids: Therapeutic potential for lung cancer treatment. Biomed Res Int. 2020;2020:2460565. doi: 10.1155/2020/2460565
- Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20-37. doi: 10.1038/nrc.2016.108
- Jahangir MA, Jain P, Verma R, et al. Transdermal nutraceuticals delivery system for CNS disease. Cns Neurol Disord Drug Targets. 2022;21(10):977-993. doi: 10.2174/1871527321666220112154051
- Laohavisit A, Wakatake T, Ishihama N, et al. Quinone perception in plants via leucine-rich-repeat receptor-like kinases. Nature. 2020;587(7832):92-97. doi: 10.1038/s41586-020-2655-4
- Luo N, Zhang K, Li X, Hu Y, Guo L. Tanshinone IIA destabilizes SLC7A11 by regulating PIAS4-mediated SUMOylation of SLC7A11 through KDM1A, and promotes ferroptosis in breast cancer. J Adv Res. 2024;69(15):313-327. doi: 10.1016/j.jare.2024.04.009
- Boulos JC, Rahama M, Hegazy MF, Efferth T. Shikonin derivatives for cancer prevention and therapy. Cancer Lett. 2019;459(20):248-267. doi: 10.1016/j.canlet.2019.04.033
- Shrimali D, Shanmugam MK, Kumar AP, et al. Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer. Cancer Lett. 2013;341(2):139-149. doi: 10.1016/j.canlet.2013.08.023
- Zhang S, Gao Q, Li W, et al. Shikonin inhibits cancer cell cycling by targeting Cdc25s. BMC Cancer. 2019;19:20. doi: 10.1186/s12885-018-5220-x
- Yang L, Li J, Xu L, et al. Rhein shows potent efficacy against non-small-cell lung cancer through inhibiting the STAT3 pathway. Cancer Manag Res. 2019;11:1167-1176. doi: 10.2147/CMAR.S171517
- Alhmied F, Alammar A, Alsultan B, Alshehri M, Pottoo FH. Molecular mechanisms of thymoquinone as anticancer agent. Comb Chem High T Scr. 2021;24(10):1644-1653. doi: 10.2174/1386207323999201027225305
- Ueno N, Kiyokawa N, Hung M. Growth suppression of low HER-2/ neu-expressing breast cancer cell line MDA-MB-435 by tyrosine kinase inhibitor emodin. Oncol Rep. 1996;3(3):509-511. doi: 10.3892/or.3.3.509
- Xie J, Liu J, Liu H, et al. The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line. Acta Pharm Sin B. 2015;5(6):554-563. doi: 10.1016/j.apsb.2015.07.008
- Ni M, Zhou J, Zhu Z, et al. Shikonin and cisplatin synergistically overcome cisplatin resistance of ovarian cancer by inducing ferroptosis via upregulation of HMOX1 to promote Fe2+ accumulation. Phytomedicine. 2023;112(5):154701. doi: 10.1016/j.phymed.2023.154701
- Liu D, Zhu K, Guo T, et al. Chrysophanol: A promising natural compound in cancer therapy-Mechanistic insights and future perspectives. Pharmacol Res. 2024;210(12):107502.doi: 10.1016/j.phrs.2024.107502
- Hou Y, Zhong B, Zhao L, et al. A small molecule cryptotanshinone induces non-enzymatic NQO1-dependent necrosis in cancer cells through the JNK1/2/Iron/PARP/calcium pathway. Acta Pharm Sin B. 2025;15(2):991-1006. doi: 10.1016/j.apsb.2024.12.005
- Lu B, Gong X, Wang Z, et al. Shikonin induces glioma cell necroptosis in vitro by ROS overproduction and promoting RIP1/RIP3 necrosome formation. Acta Pharmacol Sin. 2017;38(11):1543-1553. doi: 10.1038/aps.2017.112
- Liu T, Sun X, Cao Z. Shikonin-induced necroptosis in nasopharyngeal carcinoma cells via ROS overproduction and upregulation of RIPKI/ RIPK3/MLKL expression. Oncotargets Ther. 2019;12:2605-2614. doi: 10.2147/OTT.S200740
- Wang G, Li Y, Guo Z, He Q, Liu Z, Deng B. Tanshinone I stimulates pyroptosis of cisplatin-resistant gastric cancer cells by activating the NF-κB/Caspase-3(8)/GSDME signaling pathway. DNA Cell Biol. 2024;43(4):185-196. doi: 10.1089/dna.2023.0293
- Wang F, Jin S, Mayca PF, et al. Chemical screen identifies shikonin as a broad DNA damage response inhibitor that enhances chemotherapy through inhibiting ATM and ATR. Acta Pharm Sin B. 2022;12(3):1339-1350. doi: 10.1016/j.apsb.2021.08.025
- Guo XP, Zhang XY, Zhang SD. Clinical trial on the effects of shikonin mixture on later stage lung cancer. Zhong XI Yi Jie He Za Zhi. 1991;11(10):598-9, 580.
- Wang Z, Yin J, Li M, et al. Combination of shikonin with paclitaxel overcomes multidrug resistance in human ovarian carcinoma cells in a P-gp-independent manner through enhanced ROS generation. Chin Med. 2019;14:7. doi: 10.1186/s13020-019-0231-3
- Sun Q, Gong T, Liu M, et al. Shikonin, a naphthalene ingredient: Therapeutic actions, pharmacokinetics, toxicology, clinical trials and pharmaceutical researches. Phytomedicine. 2022;94(1):153805. doi: 10.1016/j.phymed.2021.153805
- Silakari P, Priyanka, Piplani P. p-Benzoquinone as a privileged scaffold of pharmacological significance: A review. Mini Rev Med Chem. 2020;20(16):1586-1609. doi: 10.2174/1389557520666200429101451
- Singh N, Mahmood U, Kaul VK, Gupta AP, Jirovetz L. A new alkylated benzoquinone from rhizomes of Iris kumaonensis. Nat Prod Res. 2006;20(1):75-78. doi: 10.1080/14786410500045721
- Krylova NG, Kulahava TA, Cheschevik VT, Dremza IK, Semenkova GN, Zavodnik IB. Redox regulation of mitochondrial functional activity by quinones. Physiol Int. 2016;103(4):439-458. doi: 10.1556/2060.103.2016.4.4
- Batra M, Kriplani P, Batra C, Ojha KG. An efficient synthesis and biological activity of substituted p-benzoquinones. Bioorg Med Chem. 2006;14(24):8519-8526. doi: 10.1016/j.bmc.2006.08.036
- Aumeeruddy MZ, Mahomoodally MF. Combating breast cancer using combination therapy with 3 phytochemicals: Piperine, sulforaphane, and thymoquinone. Cancer Am Cancer Soc. 2019;125(10):1600-1611. doi: 10.1002/cncr.32022
- Woo CC, Hsu A, Kumar AP, Sethi G, Tan KH. Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: The role of p38 MAPK and ROS. PLoS One. 2013;8(10):e75356. doi: 10.1371/journal.pone.0075356
- Sakalar C, Izgi K, Iskender B, et al. The combination of thymoquinone and paclitaxel shows anti-tumor activity through the interplay with apoptosis network in triple-negative breast cancer. Tumour Biol. 2016;37(4):4467-4477. doi: 10.1007/s13277-015-4307-0
- Hook I, Mills C, Sheridan H. Bioactive Naphthoquinones from Higher Plants Studies in Natural Products Chemistry. Netherlands: Elsevier Science; 2014. p. 119-160.
- Wellington KW. Understanding cancer and the anticancer activities of naphthoquinones - a review. Rsc Adv. 2015;5(26):20309-20338. doi: 10.1039/c4ra13547d
- Brockmann, H. The constitution of Alkannin, Shikonin and Alkannan. Justus Liebigs Ann Chem. 1936;521(1):1-47. doi:10.1002/jlac.19365210102
- Guo C, He J, Song X, et al. Pharmacological properties and derivatives of shikonin-a review in recent years. Pharmacol Res. 2019;149(11):104463. doi: 10.1016/j.phrs.2019.104463
- Yang H, Zhou P, Huang H, et al. Shikonin exerts antitumor activity via proteasome inhibition and cell death induction in vitro and in vivo. Int J Cancer. 2009;124(10):2450-2459. doi: 10.1002/ijc.24195
- Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005;1(2):112-119. doi: 10.1038/nchembio711
- Xuan Y, Hu X. Naturally-occurring shikonin analogues - a class of necroptotic inducers that circumvent cancer drug resistance. Cancer Lett. 2009;274(2):233-242. doi: 10.1016/j.canlet.2008.09.029
- Wu WL, Chang WL, Chen CF. Cytotoxic activities of tanshinones against human carcinoma cell lines. Am J Chin Med. 1991;19(3-4):207-216. doi: 10.1142/S0192415X91000284
- Jiang Z, Gao W, Huang L. Tanshinones, critical pharmacological components in Salvia miltiorrhiza. Front Pharmacol. 2019;10:202. doi: 10.3389/fphar.2019.00202
- Zhang Z, Zhang J, Jin L, Song T, Wu G, Gao J. Tanshinone IIA interacts with DNA by minor groove-binding. Biol Pharm Bull. 2008;31(12):2342-2345. doi: 10.1248/bpb.31.2342
- Szymczyk P, Majewska M, Nowak J. Proteins and DNA sequences interacting with tanshinones and tanshinone derivatives. Int J Mol Sci. 2025;26(2):848. doi: 10.3390/ijms26020848
- Li Z, Zou J, Cao D, Ma X. Pharmacological basis of tanshinone and new insights into tanshinone as a multitarget natural product for multifaceted diseases. Biomed Pharmacother. 2020;130(10):110599. doi: 10.1016/j.biopha.2020.110599
- Zhang W, Liu C, Li J, et al. Tanshinone IIA: New perspective on the anti-tumor mechanism of a traditional natural medicine. Am J Chin Med. 2022;50(1):209-239. doi: 10.1142/S0192415X22500070
- Tian W, Wang C, Li D, Hou H. Novel anthraquinone compounds as anticancer agents and their potential mechanism. Future Med Chem. 2020;12(7):627-644. doi: 10.4155/fmc-2019-0322
- Adnan M, Rasul A, Hussain G, et al. Physcion and physcion 8-O-beta- D-glucopyranoside: Natural anthraquinones with potential anticancer activities. Curr Drug Targets. 2021;22(5):488-504. doi: 10.2174/1389450121999201013154542
- Dong X, Fu J, Yin X, et al. Emodin: A review of its pharmacology, toxicity and pharmacokinetics. Phytother Res. 2016;30(8):1207-1218. doi: 10.1002/ptr.5631
- Huang Q, Lu G, Shen HM, Chung MC, Ong CN. Anti-cancer properties of anthraquinones from rhubarb. Med Res Rev. 2007;27(5):609-630. doi: 10.1002/med.20094
- Halpern AB, Othus M, Huebner EM, et al. Mitoxantrone, etoposide and cytarabine following epigenetic priming with decitabine in adults with relapsed/refractory acute myeloid leukemia or other high-grade myeloid neoplasms: A phase 1/2 study. Leukemia. 2017;31(12):2560-2567. doi: 10.1038/leu.2017.165
- Xu J, Liu D, Niu H, et al. Resveratrol reverses Doxorubicin resistance by inhibiting epithelial-mesenchymal transition (EMT) through modulating PTEN/Akt signaling pathway in gastric cancer. J Exp Clin Cancer Res. 2017;36(1):19. doi: 10.1186/s13046-016-0487-8
- Liu L, Mu LM, Yan Y, et al. The use of functional epirubicin liposomes to induce programmed death in refractory breast cancer. Int J Nanomedicine. 2017;12:4163-4176. doi: 10.2147/IJN.S133194
- Cao S, Li H, Ye X, et al. Shikonin induces the apoptosis and pyroptosis of EGFR-T790M-mutant drug-resistant non-small cell lung cancer cells via the degradation of cyclooxygenase-2. Eur J Med Res. 2024;29(1):611. doi: 10.1186/s40001-024-02187-7
- Lu C, Zhang Z, Fan Y, Wang X, Qian J, Bian Z. Shikonin induces ferroptosis in osteosarcomas through the mitochondrial ROS-regulated HIF-1α/HO-1 axis. Phytomedicine. 2024;135(14):156139. doi: 10.1016/j.phymed.2024.156139
- Ding B, Lin C, Liu Q, et al. Tanshinone IIA attenuates neuroinflammation via inhibiting RAGE/NF-κB signaling pathway in vivo and in vitro. J Neuroinflamm. 2020;17(1):1-17. doi: 10.1186/s12974-020-01981-4
- Kaur K, Singh A, Sharma H, Punj S, Bedi N. Formulation strategies and therapeutic applications of shikonin and related derivatives. Recent Adv Drug Deliv Formul. 2022;16(1):55-67. doi: 10.2174/2667387816666220302112201
- Zhang F, Pan T, Wu X, Gao X, Li Z, Ren X. Non-cytotoxic doses of shikonin inhibit lipopolysaccharide-induced TNF-α expression via activation of the AMP-activated protein kinase signaling pathway. Exp Ther Med. 2020;20(5):45. doi: 10.3892/etm.2020.9173
- Jia Y, Yao D, Bi H, et al. Salvia miltiorrhiza Bunge (Danshen) based nano-delivery systems for anticancer therapeutics. Phytomedicine. 2024;128(7):155521. doi: 10.1016/j.phymed.2024.155521
- Yu X, Lin S, Zhou Z, et al. Role of P-glycoprotein in the intestinal absorption of tanshinone IIA, a major active ingredient in the root of Salvia miltiorrhiza Bunge. Curr Drug Metab. 2007;8(4):325-340. doi: 10.2174/138920007780655450
- Qiu C, Zhang JZ, Wu B, et al. Advanced application of nanotechnology in active constituents of traditional Chinese medicines. J Nanobiotechnol. 2023;21(1):456. doi: 10.1186/s12951-023-02165-x
- Sumsakul W, Plengsuriyakarn T, Na-Bangchang K. Pharmacokinetics, toxicity, and cytochrome P450 modulatory activity of plumbagin. BMC Pharmacol Toxicol. 2016;17(1):50. doi: 10.1186/s40360-016-0094-5
- Chaurasia S, Patel RR, Chaubey P, Kumar N, Khan G, Mishra B. Lipopolysaccharide based oral nanocarriers for the improvement of bioavailability and anticancer efficacy of curcumin. Carbohydr Polym. 2015;130(16):9-17. doi: 10.1016/j.carbpol.2015.04.062
- Lepeltier E, Rijo P, Rizzolio F, et al. Nanomedicine to target multidrug resistant tumors. Drug Resist Updat. 2020;52(5):100704. doi: 10.1016/j.drup.2020.100704
- Su C, Liu Y, Li R. Absorption, distribution, metabolism and excretion of the biomaterials used in Nanocarrier drug delivery systems. Adv Drug Deliv Rev. 2019;143(6):97-114. doi: 10.1016/j.addr.2019.06.008
- Gavas S, Quazi S, Karpinski TM. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res Lett. 2021;16(1):173. doi: 10.1186/s11671-021-03628-6
- Li S, Zhang T, Xu W, et al. Sarcoma-targeting peptide-decorated polypeptide nanogel intracellularly delivers shikonin for upregulated osteosarcoma necroptosis and diminished pulmonary metastasis. Theranostics. 2018;8(5):1361-1375. doi: 10.7150/thno.18299
- Peng J, Hu X, Fan S, et al. Inhibition of mitochondrial biosynthesis using a “right-side-out” membrane-camouflaged micelle to facilitate the therapeutic effects of shikonin on triple-negative breast cancer. Adv Healthc Mater. 2022;11(18):e2200742. doi: 10.1002/adhm.202200742
- Tang L, Yin Y, Cao Y, et al. Extracellular vesicles-derived hybrid nanoplatforms for amplified CD47 blockade-based cancer immunotherapy. Adv Mater. 2023;35(35):2303835. doi: 10.1002/adma.202303835
- Jänicke P, Lennicke C, Meister A, Seliger B, Wessjohann LA, Kaluđerović GN. Fluorescent spherical mesoporous silica nanoparticles loaded with emodin: Synthesis, cellular uptake and anticancer activity. Mater Sci Eng C. 2021;119(2):111619. doi: 10.1016/j.msec.2020.111619
- Song Y, Sheng Z, Xu Y, et al. Magnetic liposomal emodin composite with enhanced killing efficiency against breast cancer. Biomater Sci. 2019;7(3):867-875. doi: 10.1039/c8bm01530a
- Wang S, Chen T, Chen R, Hu Y, Chen M, Wang Y. Emodin loaded solid lipid nanoparticles: Preparation, characterization and antitumor activity studies. Int J Pharmaceut. 2012;430(1-2):238-246. doi: 10.1016/j.ijpharm.2012.03.027
- Lv Y, Cao Y, Li P, et al. Ultrasound-triggered destruction of folate-functionalized mesoporous silica nanoparticle-loaded microbubble for targeted tumor therapy. Adv Healthc Mater. 2017;6(18):1700354. doi: 10.1002/adhm.201700354
- Hu X, Zhang J, Deng L, Hu H, Hu J, Zheng G. Galactose-modified ph-sensitive niosomes for controlled release and hepatocellular carcinoma target delivery of tanshinone IIA. Aaps Pharmscitech. 2021;22(3):96. doi: 10.1208/s12249-021-01973-4
- Zhu Y, Yue M, Guo T, et al. PEI-PEG-coated mesoporous silica nanoparticles enhance the antitumor activity of tanshinone IIA and serve as a gene transfer vector. Evid Based Complement Alternat Med. 2021;2021:6756763. doi: 10.1155/2021/6756763
- Cagel M, Tesan FC, Bernabeu E, et al. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. Eur J Pharm Biopharm. 2017;113(4):211-228. doi: 10.1016/j.ejpb.2016.12.019
- Chen F, Zhang J, He Y, Fang X, Wang Y, Chen M. Glycyrrhetinic acid-decorated and reduction-sensitive micelles to enhance the bioavailability and anti-hepatocellular carcinoma efficacy of tanshinone IIA. Biomater Sci. 2016;4(1):167-182. doi: 10.1039/c5bm00224a
- Su Y, Huang N, Chen D, et al. Successful in vivo hyperthermal therapy toward breast cancer by Chinese medicine shikonin-loaded thermosensitive micelle. Int J Nanomedicine. 2017;12:4019-4035. doi: 10.2147/IJN.S132639
- Cheng K, Zhou J, Zhao Y, et al. pH-responsive and CD44-targeting polymer micelles based on CD44p-conjugated amphiphilic block copolymer PEG-b-HES-b-PLA for delivery of emodin to breast cancer cells. Nanotechnology. 2022;33(27):275604. doi: 10.1088/1361-6528/ac5f9a
- Hu K, Li X, Tan Z, Shi Y. Simple ROS-responsive micelles loaded Shikonin for efficient ovarian cancer targeting therapy by disrupting intracellular redox homeostasis. Eur J Pharm Biopharm. 2024;204(11):114525. doi: 10.1016/j.ejpb.2024.114525
- Liang W, Fan Y, Liu Y, et al. ROS/pH dual-sensitive emodin-chlorambucil co-loaded micelles enhance anti-tumor effect through combining oxidative damage and chemotherapy. Int J Pharm. 2023;647(18):123537. doi: 10.1016/j.ijpharm.2023.123537
- Wang D, Sun F, Lu C, et al. Inulin based glutathione-responsive delivery system for colon cancer treatment. Int J Biol Macromol. 2018;111(6):1264-1272. doi: 10.1016/j.ijbiomac.2018.01.071
- Huang G, Chen H, Dong Y, et al. Superparamagnetic iron oxide nanoparticles: Amplifying ROS stress to improve anticancer drug efficacy. Theranostics. 2013;3(2):116-126. doi: 10.7150/thno.5411
- Song Y, Li D, Lu Y, et al. Ferrimagnetic mPEG-b-PHEP copolymer micelles loaded with iron oxide nanocubes and emodin for enhanced magnetic hyperthermia-chemotherapy. Natl Sci Rev. 2020;7(4):723-736. doi: 10.1093/nsr/nwz201
- Hou X, Ai X, Liu Z, et al. Wheat germ agglutinin modified mixed micelles overcome the dual barrier of mucus/enterocytes for effective oral absorption of shikonin and gefitinib. Drug Deliv Transl Res. 2024;15(1):325-342. doi: 10.1007/s13346-024-01602-0
- Li J, Zhao M, Xu Y, Hu X, Dai Y, Wang D. Hybrid micelles codelivering shikonin and IDO-1 siRNA enhance immunotherapy by remodeling immunosuppressive tumor microenvironment. Int J Pharm. 2021;597(6):120310. doi: 10.1016/j.ijpharm.2021.120310
- Dai L, Li X, Duan X, et al. A pH/ROS cascade-responsive charge-reversal nanosystem with self-amplified drug release for synergistic oxidation-chemotherapy. Adv Sci. 2019;6(4):1801807. doi: 10.1002/advs.201801807
- Tang L, Liu XX, Yang XD, Tan S, Zou ZW. A compound formulation of EGF-modified paclitaxel micelles and EGF-modified emodin micelles enhance the therapeutic effect of ovarian cancer. J Liposome Res. 2023;33(1):89-101. doi: 10.1080/08982104.2022.2086568
- Blanco E, Bey EA, Khemtong C, et al. Beta-lapachone micellar nanotherapeutics for non-small cell lung cancer therapy. Cancer Res. 2010;70(10):3896-3904. doi: 10.1158/0008-5472.CAN-09-3995
- Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009;30(11):592-599. doi: 10.1016/j.tips.2009.08.004
- Meng L, Ren J, Liu Z, Zhao Y. Hyaluronic acid-coated shikonin liposomes for the treatment of triple-negative breast cancer via targeting tumor cells and amplification of oxidative stress. J Drug Deliv Sci Technol. 2022;70(4):103193. doi: 10.1016/j.jddst.2022.103193
- Luo K, Yang L, Yan C, et al. A dual-targeting liposome enhances triple-negative breast cancer chemoimmunotherapy through inducing immunogenic cell death and inhibiting STAT3 activation. Small. 2023;19(40):2302834. doi: 10.1002/smll.202302834
- Wang T, Yin X, Lu Y, Shan W, Xiong S. Formulation, antileukemia mechanism, pharmacokinetics, and biodistribution of a novel liposomal emodin. Int J Nanomedicine. 2012;7:2325-2337. doi: 10.2147/IJN.S31029
- Chen R, Wang S, Zhang J, Chen M, Wang Y. Aloe-emodin loaded solid lipid nanoparticles: Formulation design and in vitro anti-cancer study. Drug Deliv. 2015;22(5):666-674. doi: 10.3109/10717544.2014.882446
- Feng H, Zhu Y, Fu Z, Li D. Preparation, characterization, and in vivo study of rhein solid lipid nanoparticles for oral delivery. Chem Biol Drug Des. 2017;90(5):867-872. doi: 10.1111/cbdd.13007
- Sunil Kumar MR, Aithal BK, Udupa N, et al. Formulation of plumbagin loaded long circulating pegylated liposomes: In vivo evaluation in C57BL/6J mice bearing B16F1 melanoma. Drug Deliv. 2011;18(7):511-522. doi: 10.3109/10717544.2011.595840
- Rachamalla HK, Bhattacharya S, Ahmad A, et al. Enriched pharmacokinetic behavior and antitumor efficacy of thymoquinone by liposomal delivery. Nanomedicine (Lond). 2021;16(8):641-656. doi: 10.2217/nnm-2020-0470
- Kontogiannopoulos KN, Assimopoulou AN, Dimas K, Papageorgiou VP. Shikonin-loaded liposomes as a new drug delivery system: Physicochemical characterization and in vitro cytotoxicity. Eur J Lipid Sci Tech. 2011;113(9):1113-1123. doi: 10.1002/ejlt.201100104
- Eskandani M, Nazemiyeh H. Self-reporter shikonin-Act-loaded solid lipid nanoparticle: Formulation, physicochemical characterization and geno/cytotoxicity evaluation. Eur J Pharm Sci. 2014;59(9):49-57. doi: 10.1016/j.ejps.2014.04.009
- Li J, Zhao M, Sun M, et al. Multifunctional nanoparticles boost cancer immunotherapy based on modulating the immunosuppressive tumor microenvironment. Acs Appl Mater Interfaces. 2020;12(45):50734-50747. doi: 10.1021/acsami.0c14909
- Wu S, Zhu X, Zhang X, et al. A thermoresponsive metabolic nanomodulator for achieving photochemotherapy-sensitized cancer immunotherapy. Chem Eng J. 2024;499(21):155593. doi: 10.1016/j.cej.2024.155593
- Li X, Jia X, Niu H. Nanostructured lipid carriers co-delivering lapachone and doxorubicin for overcoming multidrug resistance in breast cancer therapy. Int J Nanomedicine. 2018;13:4107-4119. doi: 10.2147/IJN.S163929
- Xie W, Li Y, Guo Z, et al. FePd Nanozyme- and SKN-encapsulated functional lipid nanoparticles for cancer nanotherapy via ROS-boosting necroptosis. Acs Appl Mater Interfaces. 2024;16(15):18411-18421. doi: 10.1021/acsami.3c18497
- Sakpakdeejaroen I, Somani S, Laskar P, Mullin M, Dufes C. Regression of melanoma following intravenous injection of plumbagin entrapped in transferrin-conjugated, lipid-polymer hybrid nanoparticles. Int J Nanomedicine. 2021;16:2615-2631. doi: 10.2147/IJN.S293480
- N’Diaye M, Vergnaud-Gauduchon J, Nicolas V, et al. Hybrid lipid polymer nanoparticles for combined chemo- and photodynamic therapy. Mol Pharm. 2019;16(9):4045-4058. doi: 10.1021/acs.molpharmaceut.9b00797
- Yang HZ, Chen JJ, Zhang L, et al. A dual responsive nitric oxide/beta-lapachone co-delivery platform for redox imbalance-enhanced tumor therapy. Eur J Pharm Biopharm. 2024;201(8):114348. doi: 10.1016/j.ejpb.2024.114348
- Saeed U, Mahmood R, Fatima B, et al. Novel thymohydroquinone gallate derivative loaded ligand modified quantum dots as pH-sensitive multi-modal theragnostic agent for cancer treatment. Eur J Pharm Biopharm. 2024;200(7):114312. doi: 10.1016/j.ejpb.2024.114312
- Jeong SY, Park SJ, Yoon SM, et al. Systemic delivery and preclinical evaluation of Au nanoparticle containing beta-lapachone for radiosensitization. J Control Release. 2009;139(3):239-245. doi: 10.1016/j.jconrel.2009.07.007
- Bhattacharjee M, Ghosh A, Das S, et al. Systemic codelivery of thymoquinone and doxorubicin by targeted mesoporous silica nanoparticle sensitizes doxorubicin-resistant breast cancer by interfering between the MDR1/P-gp and miR 298 crosstalk. Acs Biomater Sci Eng. 2024;10(10):6314-6331. doi: 10.1021/acsbiomaterials.4c01081
- Zhang Y, Pan H, Yu C, et al. Phytoestrogen-derived multifunctional ligands for targeted therapy of breast cancer. Asian J Pharm Sci. 2023;18(4):100827. doi: 10.1016/j.ajps.2023.100827
- Ren S, Song L, Tian Y, et al. Emodin-conjugated PEGylation of Fe3O4 nanoparticles for FI/MRI dual-modal imaging and therapy in pancreatic cancer. Int J Nanomedicine. 2021;16:7463-7478. doi: 10.2147/IJN.S335588
- Liang J, Tian X, Zhou M, et al. Shikonin and chitosan-silver nanoparticles synergize against triple-negative breast cancer through RIPK3-triggered necroptotic immunogenic cell death. Biomaterials. 2024;309(6):122608. doi: 10.1016/j.biomaterials.2024.122608
- Zhao P, Gong L, Chang L, et al. Multifunctional Fe-based coordination polymer nano-bomb modified with beta-lapachone and CaO2 for targeted tumor dual chemodynamic therapy with enhanced ferroptosis and H2O2 self-supply. J Nanobiotechnology. 2024;22(1):3. doi: 10.1186/s12951-023-02287-2
- Feng W, Shi W, Liu S, et al. Fe(III)-Shikonin supramolecular nanomedicine for combined therapy of tumor via ferroptosis and necroptosis. Adv Healthc Mater. 2022;11(2):e2101926. doi: 10.1002/adhm.202101926
- Feng W, Shi W, Wang Z, et al. Enhancing tumor therapy of Fe(III)- shikonin supramolecular nanomedicine via triple ferroptosis amplification. Acs Appl Mater Inter. 2022;14(33):37540-37552. doi: 10.1021/acsami.2c11130
- Zhu X, Zheng L, Zhao P, et al. Fe/Cu bimetallic nanozyme Co-assembled with 177]lu and tanshinone for quadruple-synergistic tumor-specific therapy. Adv Healthc Mater. 2024;14:e2402696. doi: 10.1002/adhm.202402696
- Shi W, Feng W, Li S, et al. Ferroptosis and necroptosis produced autologous tumor cell lysates Co-delivering with combined immnoadjuvants as personalized in situ nanovaccines for antitumor immunity. Acs Nano. 2023;17(15):14475-14493. doi: 10.1021/acsnano.3c00901
- Asrorov AM, Gu Z, Li F, Liu L, Huang Y. Biomimetic camouflage delivery strategies for cancer therapy. Nanoscale. 2021;13(19):8693-8706. doi: 10.1039/d1nr01127h
- Wu M, Ling W, Wei J, et al. Biomimetic photosensitizer nanocrystals trigger enhanced ferroptosis for improving cancer treatment. J Control Release. 2022;352(12):1116-1133. doi: 10.1016/j.jconrel.2022.11.026
- Zhang W, Li L, Wu Y, et al. Biomimetic iron-based nanoparticles remodel immunosuppressive tumor microenvironment for metabolic immunotherapy. Int J Nanomedicine. 2024;19:9333-9349. doi: 10.2147/IJN.S473463
- Liu W, Wu J, Ji X, et al. Advanced biomimetic nanoreactor for specifically killing tumor cells through multi-enzyme cascade. Theranostics. 2020;10(14):6245-6260. doi: 10.7150/thno.45456
- Wang H, Tang Y, Fang Y, et al. Reprogramming tumor immune microenvironment (TIME) and metabolism via biomimetic targeting codelivery of shikonin/JQ1. Nano Lett. 2019;19(5):2935-2944. doi: 10.1021/acs.nanolett.9b00021
- Cui J, Wang X, Li J, et al. Immune exosomes loading self-assembled nanomicelles traverse the blood-brain barrier for chemo-immunotherapy against glioblastoma. ACS Nano. 2023;17(2):1464-1484. doi: 10.1021/acsnano.2c10219
- Han S, Bi S, Guo T, et al. Nano co-delivery of plumbagin and dihydrotanshinone i reverses immunosuppressive TME of liver cancer. J Control Release. 2022;348(8):250-263. doi: 10.1016/j.jconrel.2022.05.057
- Soni P, Kaur J, Tikoo K. Dual drug-loaded paclitaxel-thymoquinone nanoparticles for effective breast cancer therapy. J Nanopart Res. 2015;17(1):1-12. doi: 10.1007/s11051-014-2821-4
- Li H, Tong Y, Bai L, et al. Lactoferrin functionalized PEG-PLGA nanoparticles of shikonin for brain targeting therapy of glioma. Int J Biol Macromol. 2018;107(2):204-211. doi: 10.1016/j.ijbiomac.2017.08.155
- Peng J, Zhou W, Xia X, et al. Encapsulation of acetylshikonin by polyamidoamine dendrimers for preparing prominent nanoparticles. AAPS Pharmscitech. 2014;15(2):425-433. doi: 10.1208/s12249-014-0074-2
- Jiang X, Ma M, Li M, et al. Preparation and evaluation of novel emodin-loaded stearic acid-g-chitosan oligosaccharide nanomicelles. Nanoscale Res Lett. 2020;15(1):93. doi: 10.1186/s11671-020-03304-1
- Wang X, Guo Y, Qiu L, et al. Preparation and evaluation of carboxymethyl chitosan-rhein polymeric micelles with synergistic antitumor effect for oral delivery of paclitaxel. Carbohydr Polym. 2019;206(4):121-131. doi: 10.1016/j.carbpol.2018.10.096
- Huang Y, Lu J, Gao X, et al. PEG-derivatized embelin as a dual functional carrier for the delivery of paclitaxel. Bioconjug Chem. 2012;23(7):1443-1451. doi: 10.1021/bc3000468