Messenger RNA therapy in bone and joint diseases: Rationale, delivery systems, and applications
Bone and joint diseases, including bone fractures, osteoarthritis, and bone tumors, pose significant health challenges due to their debilitating effects on the musculoskeletal system. Conservative therapy and surgical treatment do not always achieve satisfactory outcomes in orthopedics, especially for degenerative bone and joint diseases. Messenger RNA (mRNA) therapy refers to the production of functional proteins and peptides by introducing mRNA into the body. The success of mRNA vaccines during the COVID-19 pandemic highlights the unique advantages of mRNA therapy, including biocompatibility, avoidance of genomic integration, and flexible, sustained delivery. These features make mRNA therapy a versatile therapeutic modality for the treatment of orthopedic diseases. In this review, we first provide an overview of the latest advances in mRNA therapy. We introduce structural modifications of mRNA and advanced gene-editing technologies, including modifications to nucleosides, mRNA domains, and codon sequences. We then discuss the development of mRNA delivery systems, such as nanomaterials, biomimetic carriers, and hydrogels, which enhance mRNA stability, reduce immunogenicity, and improve targeted delivery. This review also explores the application of mRNA therapy in orthopedic diseases, with a particular focus on its utilization in treating bone tumors and degenerative disorders. Despite promising developments, several challenges remain, including optimizing delivery efficiency, prolonging protein expression, and addressing tissue-specific barriers. Accordingly, the current limitations and future directions of mRNA therapy in orthopedic applications are emphasized. In conclusion, mRNA therapy holds great promise and may open new avenues for the treatment of orthopedic diseases and related fields.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
- Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics--developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759-780. doi: 10.1038/nrd4278
- Kallen KJ, Heidenreich R, Schnee M, et al. A novel, disruptive vaccination technology: Self-adjuvanted RNActive(®) vaccines. Hum Vaccin Immunother. 2013;9(10):2263-2276. doi: 10.4161/hv.25181
- Sasso JM, Ambrose BJB, Tenchov R, et al. The progress and promise of RNA medicine-an arsenal of targeted treatments. J Med Chem. 2022;65(10):6975-7015. doi: 10.1021/acs.jmedchem.2c00024
- Qin T, Zhang G, Zheng Y, et al. A population of stem cells with strong regenerative potential discovered in deer antlers. Science. 2023;379(6634):840-847. doi: 10.1126/science.add0488
- Gómez-Barrena E, Padilla-Eguiluz N, Rosset P, et al. Early efficacy evaluation of mesenchymal stromal cells (MSC) combined to biomaterials to treat long bone non-unions. Injury. 2020;51 Suppl 1:S63-S73. doi: 10.1016/j.injury.2020.02.070
- Chan JMK, Villarreal G, Jin WW, Stepan T, Burstein H, Wahl SM. Intraarticular gene transfer of TNFR: Fc suppresses experimental arthritis with reduced systemic distribution of the gene product. Mol Ther. 2002;6(6):727-736. doi: 10.1006/mthe.2002.0808
- Evans CH, Robbins PD, Ghivizzani SC, et al. Gene transfer to human joints: Progress toward a gene therapy of arthritis. Proc Natl Acad Sci. 2005;102(24):8698-8703. doi: 10.1073/pnas.0502854102
- Maeder ML, Gersbach CA. Genome-editing technologies for gene and cell therapy. Mol Ther J Am Soc Gene Ther. 2016;24(3):430-446. doi: 10.1038/mt.2016.10
- High KA, Roncarolo MG. Gene therapy. N Engl J Med. 2019;381(5):455-464. doi: 10.1056/NEJMra1706910
- Evans CH, Ghivizzani SC, Robbins PD. Arthritis gene therapy’s first death. Arthritis Res Ther. 2008;10(3):110. doi: 10.1186/ar2411
- Rohner E, Yang R, Foo KS, Goedel A, Chien KR. Unlocking the promise of mRNA therapeutics. Nat Biotechnol. 2022;40(11):1586-1600. doi: 10.1038/s41587-022-01491-z
- Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science. 2018;359(6372):eaan4672. doi: 10.1126/science.aan4672
- Kaur K, Hadas Y, Kurian AA, et al. Direct reprogramming induces vascular regeneration post muscle ischemic injury. Mol Ther. 2021;29(10):3042-3058. doi: 10.1016/j.ymthe.2021.07.014
- Li Z, Zhao P, Zhang Y, et al. Exosome-based Ldlr gene therapy for familial hypercholesterolemia in a mouse model. Theranostics. 2021;11(6):2953-2965. doi: 10.7150/thno.49874
- You Y, Tian Y, Yang Z, et al. Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy. Nat Biomed Eng. 2023;7(7):887-900. doi: 10.1038/s41551-022-00989-w
- Kranz LM, Diken M, Haas H, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534(7607):396-401. doi: 10.1038/nature18300
- Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261-279. doi: 10.1038/nrd.2017.243
- Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering the messenger: Advances in technologies for therapeutic mRNA delivery. Mol Ther J AmSoc Gene Ther. 2019;27(4):710-728. doi: 10.1016/j.ymthe.2019.02.012
- Sayour EJ, Boczkowski D, Mitchell DA, Nair SK. Cancer mRNA vaccines: Clinical advances and future opportunities. Nat Rev Clin Oncol. 2024;21(7):489-500. doi: 10.1038/s41571-024-00902-1
- He Q, Gao H, Tan D, Zhang H, Wang JZ. mRNA cancer vaccines: Advances, trends and challenges. Acta Pharm Sin B. 2022;12(7):2969-2989. doi: 10.1016/j.apsb.2022.03.011
- Torralba D, Martín-Cófreces NB, Sanchez-Madrid F. Mechanisms of polarized cell-cell communication of T lymphocytes. Immunol Lett. 2019;209:11-20. doi: 10.1016/j.imlet.2019.03.009
- Wu D, Hu L, Wang X, et al. Clinical development of mRNA therapies against solid tumors. J Hematol Oncol. 2023;16(1):75. doi: 10.1186/s13045-023-01457-x
- Yang R, Cui J. Advances and applications of RNA vaccines in tumor treatment. Mol Cancer. 2024;23(1):226. doi: 10.1186/s12943-024-02141-5
- Lin L, Pei Y, Li Z, Luo D. Progress and challenges of mRNA vaccines. Interdiscip Med. 2023;1(1):e20220008. doi: 10.1002/INMD.20220008
- mRNA vaccine slows melanoma recurrence. Cancer Discov. 2023;13(6):1278. doi: 10.1158/2159-8290.CD-NB2023-0028
- Sittplangkoon C, Alameh MG, Weissman D, et al. mRNA vaccine with unmodified uridine induces robust type I interferon-dependent anti-tumor immunity in a melanoma model. Front Immunol. 2022;13:983000. doi: 10.3389/fimmu.2022.983000
- Waghela IN, Mallory KL, Taylor JA, et al. Exploring in vitro expression and immune potency in mice using mRNA encoding the Plasmodium falciparum malaria antigen, CelTOS. Front Immunol. 2022;13:1026052. doi: 10.3389/fimmu.2022.1026052
- Tockary TA, Abbasi S, Matsui-Masai M, et al. Comb-structured mRNA vaccine tethered with short double-stranded RNA adjuvants maximizes cellular immunity for cancer treatment. Proc Natl Acad Sci U S A. 2023;120(29):e2214320120. doi: 10.1073/pnas.2214320120
- Bird L. mRNA vaccine for treating pancreatic cancer. Nat Rev Immunol. 2023;23(7):413. doi: 10.1038/s41577-023-00899-1
- Cafri G, Gartner JJ, Zaks T, et al. mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. J Clin Invest. 2020;130(11):5976-5988. doi: 10.1172/JCI134915
- Guo M, Duan X, Peng X, et al. A lipid-based LMP2-mRNA vaccine to treat nasopharyngeal carcinoma. Nano Res. 2023;16(4):5357-5367. doi: 10.1007/s12274-022-5254-x
- Cao Q, Fang H, Tian H. mRNA vaccines contribute to innate and adaptive immunity to enhance immune response in vivo. Biomaterials. 2024;310:122628. doi: 10.1016/j.biomaterials.2024.122628
- Wang T, Tang Y, Tao Y, Zhou H, Ding D. Nucleic acid drug and delivery techniques for disease therapy: Present situation and future prospect. Interdiscip Med. 2024;2(1):e20230041. doi: 10.1002/INMD.20230041
- Shi Y, Shi M, Wang Y, You J. Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications. Signal Transduct Target Ther. 2024;9(1):322. doi: 10.1038/s41392-024-02002-z
- Liu C, Shi Q, Huang X, Koo S, Kong N, Tao W. mRNA-based cancer therapeutics. Nat Rev Cancer. 2023;23(8):526-543. doi: 10.1038/s41568-023-00586-2
- Saxton RA, Glassman CR, Garcia KC. Emerging principles of cytokine pharmacology and therapeutics. Nat Rev Drug Discov. 2023;22(1):21-37. doi: 10.1038/s41573-022-00557-6
- Chen J, Tan J, Li J, et al. Genetically engineered biomimetic nanoparticles for targeted delivery of mRNA to treat rheumatoid arthritis. Small Methods. 2023;7:e2300678. doi: 10.1002/smtd.202300678
- Lin YX, Wang Y, Ding J, et al. Reactivation of the tumor suppressor PTEN by mRNA nanoparticles enhances antitumor immunity in preclinical models. Sci Transl Med. 2021;13(599):eaba9772. doi: 10.1126/scitranslmed.aba9772
- Yan H, Hu Y, Akk A, et al. Induction of WNT16 via peptide-mRNA nanoparticle-based delivery maintains cartilage homeostasis. Pharmaceutics. 2020;12(1):73. doi: 10.3390/pharmaceutics12010073
- Zhou H, Liao Y, Han X, et al. ROS-responsive nanoparticle delivery of mRNA and photosensitizer for combinatorial cancer therapy. Nano Lett. 2023;23(9):3661-3668. doi: 10.1021/acs.nanolett.2c03784
- Dong Z, Huang Z, Li S, et al. Nanoparticles (NPs)-mediated systemic mRNA delivery to reverse trastuzumab resistance for effective breast cancer therapy. Acta Pharm Sin B. 2023;13(3):955-966. doi: 10.1016/j.apsb.2022.09.021
- Kon E, Ad-El N, Hazan-Halevy I, Stotsky-Oterin L, Peer D. Targeting cancer with mRNA-lipid nanoparticles: Key considerations and future prospects. Nat Rev Clin Oncol. 2023;20(11):739-754. doi: 10.1038/s41571-023-00811-9
- Olivera I, Bolaños E, Gonzalez-Gomariz J, et al. mRNAs encoding IL-12 and a decoy-resistant variant of IL-18 synergize to engineer T cells for efficacious intratumoral adoptive immunotherapy. Cell Rep Med. 2023;4(3):100978. doi: 10.1016/j.xcrm.2023.100978
- Liu JQ, Zhang C, Zhang X, et al. Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy. J Control Release. 2022;345:306-313. doi: 10.1016/j.jconrel.2022.03.021
- Hewitt SL, Bai A, Bailey D, et al. Durable anticancer immunity from intratumoral administration of IL-23, IL-36γ, and OX40L mRNAs. Sci Transl Med. 2019;11(477):eaat9143. doi: 10.1126/scitranslmed.aat9143
- Hochmann S, Mittermeir M, Santic R, et al. Evaluation of modified Interferon alpha mRNA constructs for the treatment of non-melanoma skin cancer. Sci Rep. 2018;8(1):12954. doi: 10.1038/s41598-018-31061-w
- Hotz C, Wagenaar TR, Gieseke F, et al. Local delivery of mRNA-encoded cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Sci Transl Med. 2021;13(610):eabc7804. doi: 10.1126/scitranslmed.abc7804
- Chien KR, Zangi L, Lui KO. Synthetic chemically modified mRNA (modRNA): Toward a new technology platform for cardiovascular biology and medicine. Cold Spring Harb Perspect Med. 2015;5(1):a014035. doi: 10.1101/cshperspect.a014035
- Mandal PK, Rossi DJ. Reprogramming human fibroblasts to pluripotency using modified mRNA. Nat Protoc. 2013;8(3):568-582. doi: 10.1038/nprot.2013.019
- Kormann MSD, Hasenpusch G, Aneja MK, et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol. 2011;29(2):154-157. doi: 10.1038/nbt.1733
- Van Der Jeught K, Joe PT, Bialkowski L, et al. Intratumoral administration of mRNA encoding a fusokine consisting of IFN-β and the ectodomain of the TGF-β receptor II potentiates antitumor immunity. Oncotarget. 2014;5(20):10100-10113. doi: 10.18632/oncotarget.2463
- Bialkowski L, Van Weijnen A, Van Der Jeught K, et al. Intralymphatic mRNA vaccine induces CD8 T-cell responses that inhibit the growth of mucosally located tumours. Sci Rep. 2016;6(1):22509. doi: 10.1038/srep22509
- Jansen Y, Kruse V, Corthals J, et al. A randomized controlled phase II clinical trial on mRNA electroporated autologous monocyte-derived dendritic cells (TriMixDC-MEL) as adjuvant treatment for stage III/IV melanoma patients who are disease-free following the resection of macrometastases. Cancer Immunol Immunother. 2020;69(12):2589-2598. doi: 10.1007/s00262-020-02618-4
- Wang W, Chen L, Zhang Y, et al. Adipose-derived stem cells enriched with therapeutic mRNA TGF-β3 and IL-10 synergistically promotescar-less wound healing in preclinical models. Bioeng Transl Med. 2024;9(2):e10620. doi: 10.1002/btm2.10620
- Kim M, Oh J, Lee Y, et al. Delivery of self-replicating messenger RNA into the brain for the treatment of ischemic stroke. J Control Release. 2022;350:471-485. doi: 10.1016/j.jconrel.2022.08.049
- Jericó D, Córdoba KM, Jiang L, et al. mRNA-based therapy in a rabbit model of variegate porphyria offers new insights into the pathogenesis of acute attacks. Mol Ther Nucleic Acids. 2021;25:207-219. doi: 10.1016/j.omtn.2021.05.010
- Bu T, Li Z, Hou Y, et al. Exosome-mediated delivery of inflammation-responsive Il-10 mRNA for controlled atherosclerosis treatment. Theranostics. 2021;11(20):9988-10000. doi: 10.7150/thno.64229
- Karikó K, Muramatsu H, Ludwig J, Weissman D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 2011;39(21):e142. doi: 10.1093/nar/gkr695
- Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: The impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23(2):165-175. doi: 10.1016/j.immuni.2005.06.008
- Zhang Y, Gao Z, Yang X, Xu Q, Lu Y. Leveraging high-throughput screening technologies in targeted mRNA delivery. Mater Today Bio. 2024;26:101101. doi: 10.1016/j.mtbio.2024.101101
- Boo SH, Kim YK. The emerging role of RNA modifications in the regulation of mRNA stability. Exp Mol Med. 2020;52(3):400-408. doi: 10.1038/s12276-020-0407-z
- Yang G, Sun Z, Zhang N. Reshaping the role of m6A modification in cancer transcriptome: A review. Cancer Cell Int. 2020;20:353. doi: 10.1186/s12935-020-01445-y
- Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell. 2017;169(7):1187-1200. doi: 10.1016/j.cell.2017.05.045
- Yang X, Yang Y, Sun BF, et al. 5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res. 2017;27(5):606-625. doi: 10.1038/cr.2017.55
- Wang X, Zhao BS, Roundtree IA, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 2015;161(6):1388-1399. doi: 10.1016/j.cell.2015.05.014
- Du H, Zhao Y, He J, et al. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex. Nat Commun. 2016;7(1):12626. doi: 10.1038/ncomms12626
- Park OH, Ha H, Lee Y, et al. Endoribonucleolytic cleavage of m6A-containing RNAs by RNase P/MRP complex. Mol Cell. 2019;74(3):494-507.e8. doi: 10.1016/j.molcel.2019.02.034
- Frye M, Harada BT, Behm M, He C. RNA modifications modulate gene expression during development. Science. 2018;361(6409):1346-1349. doi: 10.1126/science.aau1646
- Hoernes TP, Hüttenhofer A, Erlacher MD. mRNA modifications: Dynamic regulators of gene expression? RNA Biol. 2016;13(9):760-765. doi: 10.1080/15476286.2016.1203504
- Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18(1):31-42. doi: 10.1038/nrm.2016.132
- Boulias K, Toczydłowska-Socha D, Hawley BR, et al. Identification of the m6Am methyltransferase PCIF1 reveals the location and functions of m6Am in the transcriptome. Mol Cell. 2019;75(3):631-643.e8. doi: 10.1016/j.molcel.2019.06.006
- Mauer J, Luo X, Blanjoie A, et al. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature. 2017;541(7637):371-375. doi: 10.1038/nature21022
- Karijolich J, Yu YT. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature. 2011;474(7351):395-398. doi: 10.1038/nature10165
- Thess A, Grund S, Mui BL, et al. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol Ther J Am Soc Gene Ther. 2015;23(9):1456-1464. doi: 10.1038/mt.2015.103
- Sun H, Li K, Liu C, Yi C. Regulation and functions of non-m6A mRNA modifications. Nat Rev Mol Cell Biol. 2023;24:714-731. doi: 10.1038/s41580-023-00622-x
- Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, et al. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature. 2016;530(7591):441-446. doi: 10.1038/nature16998
- Li X, Xiong X, Wang K, et al. Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nat Chem Biol. 2016;12(5):311-316. doi: 10.1038/nchembio.2040
- Monroe J, Eyler DE, Mitchell L, et al. N1-Methylpseudouridine and pseudouridine modifications modulate mRNA decoding during translation. Nat Commun. 2024;15(1):8119. doi: 10.1038/s41467-024-51301-0
- Nance KD, Meier JL. Modifications in an emergency: The role of N1-methylpseudouridine in COVID-19 vaccines. ACS Cent Sci. 2021;7(5):748-756. doi: 10.1021/acscentsci.1c00197
- Karikó K, Muramatsu H, Welsh FA, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008;16(11):1833-1840. doi: 10.1038/mt.2008.200
- Parr CJC, Wada S, Kotake K, et al. N 1-Methylpseudouridine substitution enhances the performance of synthetic mRNA switches in cells. Nucleic Acids Res. 2020;48(6):e35. doi: 10.1093/nar/gkaa070
- Krienke C, Kolb L, Diken E, et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science. 2021;371(6525):145-153. doi: 10.1126/science.aay3638
- Asrani KH, Farelli JD, Stahley MR, et al. Optimization of mRNA untranslated regions for improved expression of therapeutic mRNA. RNA Biol. 2018;15:756-762. doi: 10.1080/15476286.2018.1450054
- Ryczek N, Łyś A, Makałowska I. The functional meaning of 5’UTR in protein-coding genes. Int J Mol Sci. 2023;24(3):2976. doi: 10.3390/ijms24032976
- Lyabin DN, Eliseeva IA, Ovchinnikov LP. YB-1 synthesis is regulated by mTOR signaling pathway. PLoS One. 2012;7(12):e52527. doi: 10.1371/journal.pone.0052527
- Lyabin DN, Doronin AN, Eliseeva IA, Guens GP, Kulakovskiy IV, Ovchinnikov LP. Alternative forms of Y-box binding protein 1 and YB-1 mRNA. PLoS One. 2014;9(8):e104513. doi: 10.1371/journal.pone.0104513
- Castillo-Hair S, Fedak S, Wang B, et al. Optimizing 5’UTRs for mRNA-delivered gene editing using deep learning. Nat Commun. 2024;15(1):5284. doi: 10.1038/s41467-024-49508-2
- Sample PJ, Wang B, Reid DW, et al. Human 5’ UTR design and variant effect prediction from a massively parallel translation assay. Nat Biotechnol. 2019;37(7):803-809. doi: 10.1038/s41587-019-0164-5
- Agarwal V, Kelley DR. The genetic and biochemical determinants of mRNA degradation rates in mammals. Genome Biol. 2022;23(1):245. doi: 10.1186/s13059-022-02811-x
- Svitkin YV, Cheng YM, Chakraborty T, Presnyak V, John M, Sonenberg N. N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density. Nucleic Acids Res. 2017;45(10):6023-6036. doi: 10.1093/nar/gkx135
- Tang X, Huo M, Chen Y, et al. A novel deep generative model for mRNA vaccine development: Designing 5′ UTRs with N1-methyl-pseudouridine modification. Acta Pharm Sin B. 2024;14(4):1814-1826.doi: 10.1016/j.apsb.2023.11.003
- Mayr C. What Are 3’ UTRs doing? Cold Spring Harb Perspect Biol. 2019;11(10):a034728. doi: 10.1101/cshperspect.a034728
- Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. Proliferating cells express mRNAs with shortened 3’ untranslated regions and fewer microRNA target sites. Science. 2008;320(5883):1643-1647. doi: 10.1126/science.1155390
- Li H, Cao Y, Ye J, et al. Engineering brain-derived neurotrophic factor mRNA delivery for the treatment of Alzheimer’s disease. Chem Eng J. 2023;466:143152. doi: 10.1016/j.cej.2023.143152
- Yue Y, Liu J, Cui X, et al. VIRMA mediates preferential m6A mRNA methylation in 3’UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 2018;4:10. doi: 10.1038/s41421-018-0019-0
- Werner M, Purta E, Kaminska KH, et al. 2′-O-ribose methylation of cap2 in human: Function and evolution in a horizontally mobile family. Nucleic Acids Res. 2011;39(11):4756-4768. doi: 10.1093/nar/gkr038
- Bollu A, Peters A, Rentmeister A. Chemo-enzymatic modification of the 5′ cap to study mRNAs. Acc Chem Res. 2022;55(9):1249-1261. doi: 10.1021/acs.accounts.2c00059
- Topisirovic I, Svitkin YV, Sonenberg N, Shatkin AJ. Cap and cap-binding proteins in the control of gene expression. Wiley Interdiscip Rev RNA. 2011;2(2):277-298. doi: 10.1002/wrna.52
- Bélanger F, Stepinski J, Darzynkiewicz E, Pelletier J. Characterization of hMTr1, a human Cap1 2’-O-ribose methyltransferase. J Biol Chem. 2010;285(43):33037-33044. doi: 10.1074/jbc.M110.155283
- Zhao Z, Qing Y, Dong L, et al. QKI shuttles internal m7G-modified transcripts into stress granules and modulates mRNA metabolism. Cell. 2023;186(15):3208-3226.e27. doi: 10.1016/j.cell.2023.05.047
- Bollu A, Schepers H, Klöcker N, Erguven M, Lawrence-Dörner AM, Rentmeister A. Visible light activates coumarin-caged mRNA for cytoplasmic cap methylation in cells. Chem Weinh Bergstr Ger. 2024;30(2):e202303174. doi: 10.1002/chem.202303174
- Klöcker N, Weissenboeck FP, van Dülmen M, Špaček P, Hüwel S, Rentmeister A. Photocaged 5’ cap analogues for optical control of mRNA translation in cells. Nat Chem. 2022;14(8):905-913. doi: 10.1038/s41557-022-00972-7
- Berger MR, Alvarado R, Kiss DL. mRNA 5’ ends targeted by cytoplasmic recapping cluster at CAGE tags and select transcripts are alternatively spliced. FEBS Lett. 2019;593(7):670-679. doi: 10.1002/1873-3468.13349
- Abbas YM, Laudenbach BT, Martínez-Montero S, et al. Structure of human IFIT1 with capped RNA reveals adaptable mRNA binding and mechanisms for sensing N1 and N2 ribose 2′-O methylations. Proc Natl Acad Sci. 2017;114(11):E2106-E2115. doi: 10.1073/pnas.1612444114
- Eisen TJ, Eichhorn SW, Subtelny AO, et al. The dynamics of cytoplasmic mRNA metabolism. Mol Cell. 2020;77(4):786-799.e10. doi: 10.1016/j.molcel.2019.12.005
- Garneau NL, Wilusz J, Wilusz CJ. The highways and byways of mRNA decay. Nat Rev Mol Cell Biol. 2007;8(2):113-126. doi: 10.1038/nrm2104
- Jalkanen AL, Coleman SJ, Wilusz J. Determinants and implications of mRNA poly(A) tail size-Does this protein make my tail look big? Semin Cell Dev Biol. 2014;34:24-32. doi: 10.1016/j.semcdb.2014.05.018
- Trepotec Z, Geiger J, Plank C, Aneja MK, Rudolph C. Segmented poly(A) tails significantly reduce recombination of plasmid DNA without affecting mRNA translation efficiency or half-life. RNA N Y N. 2019;25(4):507-518. doi: 10.1261/rna.069286.118
- Liu Y, Zhao H, Shao F, Zhang Y, Nie H, Zhang J, et al. Remodeling of maternal mRNA through poly(A) tail orchestrates human oocyte-to-embryo transition. Nat Struct Mol Biol. 2023;30(2):200-215. doi:10.1038/s41594-022-00908-2
- Lee K, Cho K, Morey R, Cook-Andersen H. An extended wave of global mRNA deadenylation sets up a switch in translation regulation across the mammalian oocyte-to-embryo transition. Cell Rep. 2024;43(2):113710. doi: 10.1016/j.celrep.2024.113710
- Berlanga JJ, Baass A, Sonenberg N. Regulation of poly(A) binding protein function in translation: Characterization of the Paip2 homolog, Paip2B. RNA. 2006;12(8):1556-1568. doi: 10.1261/rna.106506
- Hong KY, Lee SH, Gu S, et al. The bent conformation of poly(A)- binding protein induced by RNA-binding is required for its translational activation function. RNA Biol. 2017;14(3):370-377. doi: 10.1080/15476286.2017.1280224
- Lee SH, Oh J, Park J, et al. Poly(A) RNA and Paip2 act as allosteric regulators of poly(A)-binding protein. Nucleic Acids Res. 2014;42(4):2697-2707. doi: 10.1093/nar/gkt1170
- Aditham A, Shi H, Guo J, et al. Chemically modified mocRNAs for highly efficient protein expression in mammalian cells. ACS Chem Biol. 2022;17(12):3352-3366. doi: 10.1021/acschembio.1c00569
- Chen H, Liu D, Guo J, et al. Branched chemically modified poly(A) tails enhance the translation capacity of mRNA. Nat Biotechnol. 2025;43(2):194-203. doi: 10.1038/s41587-024-02174-7
- Presnyak V, Alhusaini N, Chen YH, et al. Codon optimality is a major determinant of mRNA stability. Cell. 2015;160(6):1111-1124. doi: 10.1016/j.cell.2015.02.029
- Hanson G, Coller J. Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol. 2018;19(1):20-30. doi: 10.1038/nrm.2017.91
- Verbeke R, Hogan MJ, Loré K, Pardi N. Innate immune mechanisms of mRNA vaccines. Immunity. 2022;55(11):1993-2005. doi: 10.1016/j.immuni.2022.10.014
- Kudla G, Lipinski L, Caffin F, Helwak A, Zylicz M. High guanine and cytosine content increases mRNA levels in mammalian cells. PLoS Biol. 2006;4(6):e180. doi: 10.1371/journal.pbio.0040180
- Courel M, Clément Y, Bossevain C, et al. GC content shapes mRNA storage and decay in human cells. eLife. 2019;8:e49708. doi: 10.7554/eLife.49708
- Gaj T, Sirk SJ, Shui SL, Liu J. Genome-editing technologies: Principles and applications. Cold Spring Harb Perspect Biol. 2016;8(12):a023754. doi: 10.1101/cshperspect.a023754
- Popovitz J, Sharma R, Hoshyar R, Soo Kim B, Murthy N, Lee K. Gene editing therapeutics based on mRNA delivery. Adv Drug Deliv Rev. 2023;200:115026. doi: 10.1016/j.addr.2023.115026
- Abbasi S, Uchida S, Toh K, et al. Co-encapsulation of Cas9 mRNA and guide RNA in polyplex micelles enables genome editing in mouse brain. J Control Release. 2021;332:260-268. doi: 10.1016/j.jconrel.2021.02.026
- Álvarez EG, Demeulemeester J, Otero P, et al. Aberrant integration of Hepatitis B virus DNA promotes major restructuring of human hepatocellular carcinoma genome architecture. Nat Commun. 2021;12(1):6910. doi: 10.1038/s41467-021-26805-8
- Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4(5):346-358. doi: 10.1038/nrg1066
- Adams D, Gonzalez-Duarte A, O’Riordan WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018;379(1):11-21. doi: 10.1056/NEJMoa1716153
- Rai R, Alwani S, Badea I. Polymeric nanoparticles in gene therapy: New avenues of design and optimization for delivery applications. Polymers (Basel). 2019;11(4):745. doi: 10.3390/polym11040745
- Kiaie SH, Majidi Zolbanin N, Ahmadi A, et al. Recent advances in mRNA-LNP therapeutics: Immunological and pharmacological aspects. J Nanobiotechnology. 2022;20(1):276. doi: 10.1186/s12951-022-01478-7
- Kim J, Jozic A, Lin Y, et al. Engineering lipid nanoparticles for enhanced intracellular delivery of mRNA through inhalation. ACS Nano. 2022;16(9):14792-14806. doi: 10.1021/acsnano.2c05647
- Billingsley MM, Singh N, Ravikumar P, Zhang R, June CH, Mitchell MJ. Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering. Nano Lett. 2020;20(3):1578-1589. doi: 10.1021/acs.nanolett.9b04246
- Sharova LV, Sharov AA, Nedorezov T, Piao Y, Shaik N, Ko MSH. Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res. 2009;16(1):45-58. doi: 10.1093/dnares/dsn030
- Kaczmarek JC, Patel AK, Kauffman KJ, et al. Polymer-lipid nanoparticles for systemic delivery of mRNA to the lungs. Angew Chem Int Ed Engl. 2016;55(44):13808-13812. doi: 10.1002/anie.201608450
- Perez-Garcia CG, Diaz-Trelles R, Vega JB, et al. Development of an mRNA replacement therapy for phenylketonuria. Mol Ther Nucleic Acids. 2022;28:87-98. doi: 10.1016/j.omtn.2022.02.020
- Cao J, Choi M, Guadagnin E, et al. mRNA therapy restores euglycemia and prevents liver tumors in murine model of glycogen storage disease. Nat Commun. 2021;12(1):3090. doi: 10.1038/s41467-021-23318-2
- Roseman DS, Khan T, Rajas F, et al. G6PC mRNA therapy positively regulates fasting blood glucose and decreases liver abnormalities in a mouse model of glycogen storage disease 1a. Mol Ther. 2018;26(3):814-821. doi: 10.1016/j.ymthe.2018.01.006
- Guan S, Darmstädter M, Xu C, Rosenecker J. In vitro investigations on optimizing and nebulization of IVT-mRNA formulations for potential pulmonary-based alpha-1-antitrypsin deficiency treatment. Pharmaceutics. 2021;13(8):1281. doi: 10.3390/pharmaceutics13081281
- Karadagi A, Cavedon AG, Zemack H, et al. Systemic modified messenger RNA for replacement therapy in alpha 1-antitrypsin deficiency. Sci Rep. 2020;10(1):7052. doi: 10.1038/s41598-020-64017-0
- Qiu M, Li Y, Bloomer H, Xu Q. Developing biodegradable lipid nanoparticles for intracellular mRNA delivery and genome editing. Acc Chem Res. 2021;54(21):4001-4011. doi: 10.1021/acs.accounts.1c00500
- Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat Nanotechnol. 2020;15(4):313-320. doi: 10.1038/s41565-020-0669-6
- Parhiz H, Shuvaev VV, Pardi N, et al. PECAM-1 directed re-targeting of exogenous mRNA providing two orders of magnitude enhancement of vascular delivery and expression in lungs independent of apolipoprotein E-mediated uptake. J Control Release. 2018;291:106-115. doi: 10.1016/j.jconrel.2018.10.015
- Xue L, Zhao G, Gong N, et al. Combinatorial design of siloxane-incorporated lipid nanoparticles augments intracellular processing for tissue-specific mRNA therapeutic delivery. Nat Nanotechnol. 2025;20(1):132-143. doi: 10.1038/s41565-024-01747-6
- Xue L, Gong N, Shepherd SJ, et al. Rational design of bisphosphonate lipid-like materials for mRNA delivery to the bone microenvironment. J Am Chem Soc. 2022;144(22):9926-9937. doi: 10.1021/jacs.2c02706
- Operti MC, Bernhardt A, Sincari V, et al. Industrial scale manufacturing and downstream processing of PLGA-based nanomedicines suitable for fully continuous operation. Pharmaceutics. 2022;14(2):276. doi: 10.3390/pharmaceutics14020276
- Yang W, Mixich L, Boonstra E, Cabral H. Polymer‐based mRNA delivery strategies for advanced therapies. Adv Healthc Mater. 2023;12(15):2202688. doi: 10.1002/adhm.202202688
- Suzuki K, Miura Y, Mochida Y, et al. Glucose transporter 1-mediated vascular translocation of nanomedicines enhances accumulation and efficacy in solid tumors. J Control Release. 2019;301:28-41. doi: 10.1016/j.jconrel.2019.02.021
- Qin S, Tang X, Chen Y, et al. mRNA-based therapeutics: Powerful and versatile tools to combat diseases. Signal Transduct Target Ther. 2022;7(1):166. doi: 10.1038/s41392-022-01007-w
- Boonstra E, Hatano H, Miyahara Y, Uchida S, Goda T, Cabral H. A proton/macromolecule-sensing approach distinguishes changes in biological membrane permeability during polymer/lipid-based nucleic acid delivery. J Mater Chem B. 2021;9(21):4298-4302. doi: 10.1039/D1TB00645B
- Ren J, Cao Y, Li L, et al. Self-assembled polymeric micelle as a novel mRNA delivery carrier. J Control Release. 2021;338:537-547. doi: 10.1016/j.jconrel.2021.08.061
- Oh J, Kim SM, Lee EH, et al. Messenger RNA/polymeric carrier nanoparticles for delivery of heme oxygenase-1 gene in the post-ischemic brain. Biomater Sci. 2020;8(11):3063-3071. doi: 10.1039/d0bm00076k
- Dunn AW, Kalinichenko VV, Shi D. Highly efficient in vivo targeting of the pulmonary endothelium using novel modifications of polyethylenimine: An importance of charge. Adv Healthc Mater. 2018;7(23):1800876. doi: 10.1002/adhm.201800876
- Haque AKMA, Dewerth A, Antony JS, et al. Chemically modified hCFTR mRNAs recuperate lung function in a mouse model of cystic fibrosis. Sci Rep. 2018;8(1):16776. doi: 10.1038/s41598-018-34960-0
- Patel AK, Kaczmarek JC, Bose S, et al. Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv Mater. 2019;31(8):1805116. doi: 10.1002/adma.201805116
- Mukherjee A, Waters AK, Kalyan P, Achrol AS, Kesari S, Yenugonda VM. Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives. Int J Nanomedicine. 2019;14:1937-1952. doi: 10.2147/IJN.S198353
- Siewert CD, Haas H, Cornet V, et al. Hybrid biopolymer and lipid nanoparticles with improved transfection efficacy for mRNA. Cells. 2020;9(9):2034. doi: 10.3390/cells9092034
- Andretto V, Repellin M, Pujol M, et al. Hybrid core-shell particles for mRNA systemic delivery. J Control Release. 2023;353:1037-1049. doi: 10.1016/j.jconrel.2022.11.042
- Sharifnia Z, Bandehpour M, Hamishehkar H, Mosaffa N, Kazemi B, Zarghami N. In-vitro transcribed mRNA delivery using PLGA/PEI nanoparticles into human monocyte-derived dendritic cells. Iran J Pharm Res. 2019;18(4):1659-1675. doi: 10.22037/ijpr.2019.1100872
- Shin S, Ahn YR, Kim M, Choi J, Kim H, Kim HO. Mammalian cell membrane hybrid polymersomes for mRNA delivery. ACS Appl Mater Interfaces. 2024;16(16):20232-20224. doi: 10.1021/acsami.4c00843
- Park JH, Mohapatra A, Zhou J, et al. Virus-mimicking cell membrane-coated nanoparticles for cytosolic delivery of mRNA. Angew Chem Int Ed Engl. 2022;61(2):e202113671. doi: 10.1002/anie.202113671
- Liu S, Cheng Q, Wei T, et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing. Nat Mater. 2021;20(5):701-710. doi: 10.1038/s41563-020-00886-0
- Saiding Q, Zhang Z, Chen S, et al. Nano-bio interactions in mRNA nanomedicine: Challenges and opportunities for targeted mRNA delivery. Adv Drug Deliv Rev. 2023;203:115116. doi: 10.1016/j.addr.2023.115116
- Huang Y, Nieh MP, Chen W, Lei Y. Outer membrane vesicles (OMVs) enabled bio-applications: A critical review. Biotechnol Bioeng. 2022;119(1):34-47. doi: 10.1002/bit.27965
- Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from Gram-negative bacteria: Biogenesis and functions. Nat Rev Microbiol. 2015;13(10):605-619. doi: 10.1038/nrmicro3525
- Li Y, Ma X, Yue Y, et al. Rapid surface display of mRNA antigens by bacteria-derived outer membrane vesicles for a personalized tumor vaccine. Adv Mater Deerfield Beach Fla. 2022;34(20):e2109984. doi: 10.1002/adma.202109984
- Knopp Y, Geis FK, Heckl D, et al. Transient retrovirus-based CRISPR/ Cas9 all-in-one particles for efficient, targeted gene knockout. Mol Ther Nucleic Acids. 2018;13:256-274. doi: 10.1016/j.omtn.2018.09.006
- Yin D, Ling S, Wang D, et al. Targeting herpes simplex virus with CRISPR-Cas9 cures herpetic stromal keratitis in mice. Nat Biotechnol. 2021;39(5):567-577. doi: 10.1038/s41587-020-00781-8
- Annabi N, Tamayol A, Uquillas JA, et al. 25th Anniversary article: Rational design and applications of hydrogels in regenerative medicine. Adv Mater. 2014;26(1):85-124. doi: 10.1002/adma.201303233
- Patel S, Athirasala A, Menezes PP, et al. Messenger RNA delivery for tissue engineering and regenerative medicine applications. Tissue Eng Part A. 2019;25(1-2):91-112. doi: 10.1089/ten.tea.2017.0444
- Pan J, Tian H, Xu S, et al. Sustained delivery of chemically modified mRNA encoding amelogenin from self-assembling hydrogels for periodontal regeneration. Compos Part B Eng. 2024;271:111162. doi: 10.1016/j.compositesb.2023.111162
- Steinle H, Ionescu TM, Schenk S, et al. Incorporation of synthetic mRNA in injectable chitosan-alginate hybrid hydrogels for local and sustained expression of exogenous proteins in cells. Int J Mol Sci. 2018;19(5):1313. doi: 10.3390/ijms19051313
- Fu X, Chen T, Song Y, et al. mRNA delivery by a pH‐responsive DNA nano‐hydrogel. Small. 2021;17(29):2101224. doi: 10.1002/smll.202101224
- Jia F, Huang W, Yin Y, et al. Stabilizing RNA nanovaccines with transformable hyaluronan dynamic hydrogel for durable cancer immunotherapy. Adv Funct Mater. 2023;33(3):2204636. doi: 10.1002/adfm.202204636
- Wang J, Wang Y, Lu M, et al. Biomimetic triplet messenger RNA formulation in mxene hydrogel microneedles for wound healing. Aggregate. 2024;6:e700. doi: 10.1002/agt2.700
- Nam SH, Park J, Koo H. Recent advances in selective and targeted drug/ gene delivery systems using cell-penetrating peptides. Arch Pharm Res. 2023;46(1):18-34. doi: 10.1007/s12272-022-01425-y
- Yokoo H, Oba M, Uchida S. Cell-penetrating peptides: Emerging tools for mRNA delivery. Pharmaceutics. 2021;14(1):78. doi: 10.3390/pharmaceutics14010078
- Udhayakumar VK, De Beuckelaer A, McCaffrey J, et al. Arginine-rich peptide-based mRNA nanocomplexes efficiently instigate cytotoxic T cell immunity dependent on the amphipathic organization of the peptide. Adv Healthc Mater. 2017;6(13):1601412. doi: 10.1002/adhm.201601412
- Lu Y, Li Z, Li L, et al. Highly effective rheumatoid arthritis therapy by peptide-promoted nanomodification of mesenchymal stem cells. Biomaterials. 2022;283:121474. doi: 10.1016/j.biomaterials.2022.121474
- Yu F, Gong D, Yan D, et al. Enhanced adipose-derived stem cells with IGF-1-modified mRNA promote wound healing following corneal injury. Mol Ther J Am Soc Gene Ther. 2023;31(8):2454-2471. doi: 10.1016/j.ymthe.2023.05.002
- Yu F, Witman N, Yan D, et al. Human adipose-derived stem cells enriched with VEGF-modified mRNA promote angiogenesis and long-term graft survival in a fat graft transplantation model. Stem Cell Res Ther. 2020;11(1):490. doi: 10.1186/s13287-020-02008-8
- Geng Y, Duan H, Xu L, et al. BMP-2 and VEGF-A modRNAs in collagen scaffold synergistically drive bone repair through osteogenic and angiogenic pathways. Commun Biol. 2021;4(1):82. doi: 10.1038/s42003-020-01606-9
- O’Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol. 2020;21(10):585-606. doi: 10.1038/s41580-020-0251-y
- Xu X, Xu L, Wen C, Xia J, Zhang Y, Liang Y. Programming assembly of biomimetic exosomes: An emerging theranostic nanomedicine platform. Mater Today Bio. 2023;22:100760. doi: 10.1016/j.mtbio.2023.100760
- Liang Y, Xu X, Xu L, et al. Chondrocyte-specific genomic editing enabled by hybrid exosomes for osteoarthritis treatment. Theranostics. 2022;12(11):4866-4878. doi: 10.7150/thno.69368
- Kojima R, Bojar D, Rizzi G, et al. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat Commun. 2018;9(1):1305. doi: 10.1038/s41467-018-03733-8
- Wan T, Zhong J, Pan Q, Zhou T, Ping Y, Liu X. Exosome-mediated delivery of Cas9 ribonucleoprotein complexes for tissue-specific gene therapy of liver diseases. Sci Adv. 2022;8(37):eabp9435. doi: 10.1126/sciadv.abp9435
- Khan H, Pan JJ, Li Y, Zhang Z, Yang GY. Native and bioengineered exosomes for ischemic stroke therapy. Front Cell Dev Biol. 2021;9:619565. doi: 10.3389/fcell.2021.619565
- Jia G, Han Y, An Y, et al. NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials. 2018;178:302-316. doi: 10.1016/j.biomaterials.2018.06.029
- Hong F, Zhang F, Liu Y, Yan H. DNA origami: Scaffolds for creating higher order structures. Chem Rev. 2017;117(20):12584-12640. doi: 10.1021/acs.chemrev.6b00825
- Rothemund PWK. Folding DNA to create nanoscale shapes and patterns. Nature. 2006;440(7082):297-302. doi: 10.1038/nature04586
- Liu Y, Wang R, Chen Q, et al. Organ-specific gene expression control using DNA origami-based nanodevices. Nano Lett. 2024;24(27):8410-8417. doi: 10.1021/acs.nanolett.4c02104
- Hu M, Feng C, Yuan Q, et al. Lantern-shaped flexible RNA origami for Smad4 mRNA delivery and growth suppression of colorectal cancer. Nat Commun. 2023;14(1):1307. doi: 10.1038/s41467-023-37020-y
- Giannoudis PV, Jones E, Einhorn TA. Fracture healing and bone repair. Injury. 2011;42(6):549-550. doi: 10.1016/j.injury.2011.03.037
- Santolini E, West R, Giannoudis PV. Risk factors for long bone fracture non-union: A stratification approach based on the level of the existing scientific evidence. Injury. 2015;46 Suppl 8:S8-S19. doi: 10.1016/S0020-1383(15)30049-8
- Silva BC, Bilezikian JP. New approaches to the treatment of osteoporosis. Annu Rev Med. 2011;62:307-322. doi: 10.1146/annurev-med-061709-145401
- Yang J, Shi P, Tu M, et al. Bone morphogenetic proteins: Relationship between molecular structure and their osteogenic activity. Food Sci Hum Wellness. 2014;3(3-4):127-135. doi: 10.1016/j.fshw.2014.12.002
- Cheng H, Jiang W, Phillips FM, et al. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPS): J Bone Jt Surg Am. 2003;85(8):1544-1552. doi: 10.2106/00004623-200308000-00017
- Tannoury CA, An HS. Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery. Spine J. 2014;14(3):552-559. doi: 10.1016/j.spinee.2013.08.060
- James AW, LaChaud G, Shen J, et al. A review of the clinical side effects of bone morphogenetic protein-2. Tissue Eng Part B Rev. 2016;22(4):284-297. doi: 10.1089/ten.teb.2015.0357
- De La Vega RE, Atasoy-Zeybek A, Panos JA, Van Griensven M, Evans CH, Balmayor ER. Gene therapy for bone healing: lessons learnedand new approaches. Transl Res. 2021;236:1-16. doi: 10.1016/j.trsl.2021.04.009
- Elangovan S, Khorsand B, Do AV, et al. Chemically modified RNA activated matrices enhance bone regeneration. J Control Release Soc. 2015;218:22-28. doi: 10.1016/j.jconrel.2015.09.050
- Badieyan ZS, Berezhanskyy T, Utzinger M, et al. Transcript-activated collagen matrix as sustained mRNA delivery system for bone regeneration. J Control Release. 2016;239:137-148. doi: 10.1016/j.jconrel.2016.08.037
- De La Vega RE, Van Griensven M, Zhang W, et al. Efficient healing of large osseous segmental defects using optimized chemically modified messenger RNA encoding BMP-2. Sci Adv. 2022;8(7):eabl6242. doi: 10.1126/sciadv.abl6242
- Yang Z, Li X, Gan X, et al. Hydrogel armed with Bmp2 mRNA-enriched exosomes enhances bone regeneration. J Nanobiotechnology. 2023;21(1):119. doi: 10.1186/s12951-023-01871-w
- Ma Y, Sun L, Zhang J, et al. Exosomal mRNAs for angiogenic-osteogenic coupled bone repair. Adv Sci Weinh Baden-Wurtt Ger. 2023;10(33):e2302622. doi: 10.1002/advs.202302622
- Wang P, Logeart-Avramoglou D, Petite H, et al. Co-delivery of NS1 and BMP2 mRNAs to murine pluripotent stem cells leads to enhanced BMP-2 expression and osteogenic differentiation. Acta Biomater. 2020;108:337-346. doi: 10.1016/j.actbio.2020.03.045
- Khorsand B, Elangovan S, Hong L, Dewerth A, Kormann MSD, Salem AK. A comparative study of the bone regenerative effect of chemically modified RNA encoding BMP-2 or BMP-9. AAPS J. 2017;19(2):438-446. doi: 10.1208/s12248-016-0034-8
- Ni M. [Update and interpretation of 2021 National Comprehensive Cancer Network (NCCN) “Clinical Practice Guidelines for Bone Tumors”]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2021;35(9):1186-1191. doi: 10.7507/1002-1892.202103073
- Zhao X, Wu Q, Gong X, Liu J, Ma Y. Osteosarcoma: A review of current and future therapeutic approaches. Biomed Eng Online. 2021;20(1):24. doi: 10.1186/s12938-021-00860-0
- Tang L, Niu X, Wang Z, et al. Anlotinib for recurrent or metastatic primary malignant bone tumor: A multicenter, single-arm trial. Front Oncol. 2022;12:811687. doi: 10.3389/fonc.2022.811687
- PDQ pediatric treatment editorial board. osteosarcoma treatment (PDQ®): Patient version. In: PDQ Cancer Information Summaries. National Cancer Institute (US); 2002. Available from: https://www.ncbi.nlm.nih. gov/books/NBK65942 [Last accessed on 2024 Nov 20].
- Vijayamurugan N, Bakhshi S. Review of management issues in relapsed osteosarcoma. Expert Rev Anticancer Ther. 2014;14(2):151-161. doi: 10.1586/14737140.2014.863453
- Miao W, Chen J, Jia L, Ma J, Song D. The m6A methyltransferase METTL3 promotes osteosarcoma progression by regulating the m6A level of LEF1. Biochem Biophys Res Commun. 2019;516(3):719-725. doi: 10.1016/j.bbrc.2019.06.128
- Zhou L, Yang C, Zhang N, Zhang X, Zhao T, Yu J. Silencing METTL3 inhibits the proliferation and invasion of osteosarcoma by regulating ATAD2. Biomed Pharmacother. 2020;125:109964. doi: 10.1016/j.biopha.2020.109964
- Chen DS, Mellman I. Oncology meets immunology: The cancer-immunity cycle. Immunity. 2013;39(1):1-10. doi: 10.1016/j.immuni.2013.07.012
- Huang D, Chen X, Zeng X, et al. Targeting regulator of G protein signaling 1 in tumor-specific T cells enhances their trafficking to breast cancer. Nat Immunol. 2021;22(7):865-879. doi: 10.1038/s41590-021-00939-9
- Lehner M, Götz G, Proff J, et al. Redirecting T cells to Ewing’s sarcoma family of tumors by a chimeric NKG2D receptor expressed by lentiviral transduction or mRNA transfection. PLoS One. 2012;7(2):e31210. doi: 10.1371/journal.pone.0031210
- Yu Z, Qian J, Wu J, Gao J, Zhang M. Allogeneic mRNA-based electrotransfection of autologous dendritic cells and specific antitumor effects against osteosarcoma in rats. Med Oncol Northwood Lond Engl. 2012;29(5):3440-3448. doi: 10.1007/s12032-012-0312-y
- Yu Z, Sun H, Zhang T, Yang T, Long H, Ma B. Specific antitumor effects of tumor vaccine produced by autologous dendritic cells transfected with allogeneic osteosarcoma total RNA through electroporation in rats. Cancer Biol Ther. 2009;8(10):973-980. doi: 10.4161/cbt.8.10.8281
- Segaliny AI, Cheng JL, Farhoodi HP, et al. Combinatorial targeting of cancer bone metastasis using mRNA engineered stem cells. EBioMedicine. 2019;45:39-57. doi: 10.1016/j.ebiom.2019.06.047
- Lam PY, Omer N, Wong JKM, et al. Enhancement of anti‐sarcoma immunity by NK cells engineered with mRNA for expression of a EphA2‐targeted CAR. Clin Transl Med. 2025;15(1):e70140. doi: 10.1002/ctm2.70140
- Hwang HS, Kim HA. Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int J Mol Sci. 2015;16(11):26035-26054. doi: 10.3390/ijms161125943
- DeJulius CR, Walton BL, Colazo JM, et al. Engineering approaches for RNA-based and cell-based osteoarthritis therapies. Nat Rev Rheumatol. 2024;20(2):81-100. doi: 10.1038/s41584-023-01067-4
- Aini H, Itaka K, Fujisawa A, et al. Messenger RNA delivery of a cartilage-anabolic transcription factor as a disease-modifying strategy for osteoarthritis treatment. Sci Rep. 2016;6:18743. doi: 10.1038/srep18743
- Deng J, Fukushima Y, Nozaki K, et al. Anti-inflammatory therapy for temporomandibular joint osteoarthritis using mRNA medicine encoding interleukin-1 receptor antagonist. Pharmaceutics. 2022;14(9):1785. doi: 10.3390/pharmaceutics14091785
- Wu H, Peng Z, Xu Y, et al. Engineered adipose-derived stem cells with IGF-1-modified mRNA ameliorates osteoarthritis development. Stem Cell Res Ther. 2022;13(1):19. doi: 10.1186/s13287-021-02695-x
- Kong K, Li B, Chang Y, et al. Delivery of FGF18 using mRNA-LNP protects the cartilage against degeneration via alleviating chondrocyte senescence. J Nanobiotechnology. 2025;23(1):34. doi: 10.1186/s12951-025-03103-9
- Oichi T, Taniguchi Y, Oshima Y, Tanaka S, Saito T. Pathomechanism of intervertebral disc degeneration. JOR SPINE. 2020;3(1):e1076. doi: 10.1002/jsp2.1076
- Kepler CK, Ponnappan RK, Tannoury CA, Risbud MV, Anderson DG. The molecular basis of intervertebral disc degeneration. Spine J. 2013;13(3):318-330. doi: 10.1016/j.spinee.2012.12.003
- Roughley PJ, Melching LI, Heathfield TF, Pearce RH, Mort JS. The structure and degradation of aggrecan in human intervertebral disc. Eur Spine J. 2006;15(S3):326-332 doi: 10.1007/s00586-006-0127-7
- Watson-Levings RS, Palmer GD, Levings PP, Dacanay EA, Evans CH, Ghivizzani SC. Gene therapy in orthopaedics: Progress and challenges in pre-clinical development and translation. Front Bioeng Biotechnol. 2022;10:901317. doi:10.3389/fbioe.2022.901317
- Chang CC, Tsou HK, Chang HH, et al. Runx1 messenger RNA delivered by polyplex nanomicelles alleviate spinal disc hydration loss in a rat disc degeneration model. Int J Mol Sci. 2022;23(1):565. doi: 10.3390/ijms23010565
- Lin CY, Crowley ST, Uchida S, Komaki Y, Kataoka K, Itaka K. Treatment of intervertebral disk disease by the administration of mRNA encoding a cartilage-anabolic transcription factor. Mol Ther Nucleic Acids. 2019;16:162-171. doi: 10.1016/j.omtn.2019.02.012
- Lavy C, Marks P, Dangas K, Todd N. Cauda equina syndrome-a practical guide to definition and classification. Int Orthop. 2022;46(2):165-169. doi: 10.1007/s00264-021-05273-1
- Vallejo Benalcazar NS, Ucar Terrén A, Robles García JE, Ponz González M, Zudaire Bergera JJ, Berián Polo JM. Value of computerized axialtomography in the diagnosis of idiopathic retroperitoneal fibrosis. Apropos of 2 new cases. Arch Esp Urol. 1986;39(1):22-26.
- Saberi M, Zhang X, Mobasheri A. Targeting mitochondrial dysfunction with small molecules in intervertebral disc aging and degeneration. GeroScience. 2021;43(2):517-537. doi: 10.1007/s11357-021-00341-1
- Whiles E, Shafafy R, Valsamis EM, et al. The management of symptomatic lumbar disc herniation in pregnancy: A systematic review. Glob Spine J. 2020;10(7):908-918. doi: 10.1177/2192568219886264
- Mitha R, Nadeem SF, Bukhari SS, Shamim SM. Management of symptomatic disc herniation in pregnancy: A case report and literature review. Surg Neurol Int. 2021;12:215. doi: 10.25259/SNI_907_2020
- Bachmeier BE, Nerlich A, Mittermaier N, et al. Matrix metalloproteinase expression levels suggest distinct enzyme roles during lumbar disc herniation and degeneration. Eur Spine J 2009;18(11):1573-1586. doi: 10.1007/s00586-009-1031-8
- Bydon M, Moinuddin FM, Yolcu YU, et al. Lumbar intervertebral disc mRNA sequencing identifies the regulatory pathway in patients with disc herniation and spondylolisthesis. Gene. 2020;750:144634. doi: 10.1016/j.gene.2020.144634
- Zhao W, Wei J, Ji X, Jia E, Li J, Huo J. Machine learning algorithm predicts fibrosis-related blood diagnosis markers of intervertebral disc degeneration. BMC Med Genomics. 2023;16(1):274. doi: 10.1186/s12920-023-01705-6
- Sen CK, Gordillo GM, Roy S, et al. Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair Regen. 2009;17(6):763-771. doi: 10.1111/j.1524-475X.2009.00543.x
- Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci Transl Med. 2014;6(265):265sr6. doi: 10.1126/scitranslmed.3009337
- Li J, Chen H, Zhang D, Xie J, Zhou X. The role of stromal cell-derived factor 1 on cartilage development and disease. Osteoarthritis Cartilage. 2021;29(3):313-322. doi: 10.1016/j.joca.2020.10.010
- Evans CH, Huard J. Gene therapy approaches to regenerating the musculoskeletal system. Nat Rev Rheumatol. 2015;11(4):234-242. doi: 10.1038/nrrheum.2015.28
- Luo Z, Bian Y, Zheng R, et al. Combination of chemically modified SDF-1α mRNA and small skin improves wound healing in diabetic rats with full-thickness skin defects. Cell Prolif. 2022;55(12):e13318. doi: 10.1111/cpr.13318
- Luo Z, Bian Y, Zheng G, et al. Chemically modified SDF-1α mRNA promotes random flap survival by activating the SDF-1α/CXCR4 axis in rats. Front Cell Dev Biol. 2021;9:623959. doi: 10.3389/fcell.2021.623959
- Ai X, Luo R, Wang H, et al. Vascular endothelial growth factor a modified mRNA engineered cellular electrospun membrane complexes promotes mouse skin wound repair. Mater Today Bio. 2023;22:100776. doi: 10.1016/j.mtbio.2023.100776
- Ohata Y, Takeyari S, Nakano Y, et al. Comprehensive genetic analyses using targeted next-generation sequencing and genotype-phenotype correlations in 53 Japanese patients with osteogenesis imperfecta. Osteoporos Int. 2019;30(11):2333-2342. doi: 10.1007/s00198-019-05076-6
- Marini JC, Forlino A, Bächinger HP, et al. Osteogenesis imperfecta. Nat Rev Dis Primer. 2017;3:17052. doi: 10.1038/nrdp.2017.52
- Sillence DO, Rimoin DL, Danks DM. Clinical variability in osteogenesis imperfecta-variable expressivity or genetic heterogeneity. Birth Defects Orig Artic Ser. 1979;15(5B):113-129.
- Forlino A, Marini JC. Osteogenesis imperfecta. Lancet. 2016;387(10028):1657-1671. doi: 10.1016/S0140-6736(15)00728-X
- Yang YS, Sato T, Chaugule S, et al. AAV-based gene editing of type 1 collagen mutation to treat osteogenesis imperfecta. Mol Ther Nucleic Acids. 2024;35(1):102111. doi: 10.1016/j.omtn.2023.102111
- Khorsand B, Elangovan S, Hong L, Kormann MSD, Salem AK. A bioactive collagen membrane that enhances bone regeneration. J Biomed Mater Res B Appl Biomater. 2019;107(6):1824-1832. doi: 10.1002/jbm.b.34275
- Lu J, Jiang G. The journey of CAR-T therapy in hematological malignancies. Mol Cancer. 2022;21(1):194. doi: 10.1186/s12943-022-01663-0
- Gottschlich A, Thomas M, Grünmeier R, et al. Single-cell transcriptomic atlas-guided development of CAR-T cells for the treatment of acute myeloid leukemia. Nat Biotechnol. 2023;41(11):1618-1632. doi: 10.1038/s41587-023-01684-0
- Huang Z, Chavda VP, Bezbaruah R, Dhamne H, Yang DH, Zhao HB. CAR T-Cell therapy for the management of mantle cell lymphoma. Mol Cancer. 2023;22(1):67. doi: 10.1186/s12943-023-01755-5
- Lokugamage MP, Vanover D, Beyersdorf J, et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat Biomed Eng. 2021;5(9):1059-1068. doi: 10.1038/s41551-021-00786-x
- Wu J, Wu W, Zhou B, Li B. Chimeric antigen receptor therapy meets mRNA technology. Trends Biotechnol. 2024;42(2):228-240. doi: 10.1016/j.tibtech.2023.08.005
- Sturm L, Schwemberger B, Menzel U, et al. In vitro evaluation of a nanoparticle-based mRNA delivery system for cells in the joint. Biomedicines. 2021;9(7):794. doi: 10.3390/biomedicines9070794
- Wei J, Zhang L, Ding Y, et al. Progranulin promotes diabetic fracture healing in mice with type 1 diabetes. Ann N Y Acad Sci. 2020;1460(1):43-56. doi: 10.1111/nyas.14208
- Alblowi J, Tian C, Siqueira MF, et al. Chemokine expression is upregulated in chondrocytes in diabetic fracture healing. Bone. 2013;53(1):294-300. doi: 10.1016/j.bone.2012.12.006