·
REVIEW
·

Osteochondral scaffolds for early treatment of cartilage defects in osteoarthritic joints: from bench to clinic

Maryam Tamaddon1 Helena Gilja1 Ling Wang2 J. Miguel Oliveira3,4,5 Xiaodan Sun6 Rongwei Tan7 Chaozong Liu1*
Show Less
1 Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, UK
2 State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
3 3B’s Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Portugal
4 ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
5 The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Portugal
6 School of Materials Science and Engineering, Tsinghua University, Beijing, China
7 Shenzhen Lando Biomaterials Co. Ltd. Merchants Guangming Science Park, Shenzhen, Guangdong Province, China
Submitted: 30 June 2020 | Revised: 14 September 2020 | Accepted: 25 September 2020 | Published: 28 December 2020
Copyright © 2020 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Osteoarthritis is a degenerative joint disease, typified by the loss in the quality of cartilage and bone at the interface of a synovial joint, resulting in pain, stiffness and reduced mobility. The current surgical treatment for advanced stages of the disease is joint replacement, where the non-surgical therapeutic options or less invasive surgical treatments are no longer effective. These are major surgical procedures which have a substantial impact on patients’ quality of life and lifetime risk of requiring revision surgery. Treatments using regenerative methods such as tissue engineering methods have been established and are promising for the early treatment of cartilage degeneration in osteoarthritis joints. In this approach, 3-dimensional scaffolds (with or without cells) are employed to provide support for tissue growth. However, none of the currently available tissue engineering and regenerative medicine products promotes satisfactory durable regeneration of large cartilage defects. Herein, we discuss the current regenerative treatment options for cartilage and osteochondral (cartilage and underlying subchondral bone) defects in the articulating joints. We further identify the main hurdles in osteochondral scaffold development for achieving satisfactory and durable regeneration of osteochondral tissues. The evolution of the osteochondral scaffolds - from monophasic to multiphasic constructs - is overviewed and the osteochondral scaffolds that have progressed to clinical trials are examined with respect to their clinical performances and their potential impact on the clinical practices. Development of an osteochondral scaffold which bridges the gap between small defect treatment and joint replacement is still a grand challenge. Such scaffold could be used for early treatment of cartilage and osteochondral defects at early stage of osteoarthritis and could either negate or delay the need for joint replacements.

Keywords
cartilage injury ; osteoarthritis ; osteochondral scaffold ; regenerative medicine ; subchondral defect ; tissue engineering
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

1. Hunter, D. J.; Schofield, D.; Callander, E. The individual and socioeconomic impact of osteoarthritis. Nat Rev Rheumatol. 2014, 10, 437-441.
2. Loeser, R. F.; Goldring, S. R.; Scanzello, C. R.; Goldring, M. B. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012, 64, 1697-1707.
3. Lories, R. J.; Luyten, F. P. The bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol. 2011, 7, 43-49.
4. Longley, R.; Ferreira, A. M.; Gentile, P. Recent approaches to the manufacturing of biomimetic multi-phasic scaffolds for osteochondral regeneration. Int J Mol Sci. 2018, 19, 1755.
5. Goldring, S. R.; Goldring, M. B. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk. Nat Rev Rheumatol. 2016, 12, 632-644.
6. Williams, F. M. K.; Spector, T. D. Osteoarthritis. Medicine. 2006, 34, 364-368.
7. Roberts, S.; Weightman, B.; Urban, J.; Chappell, D. Mechanical and biochemical properties of human articular cartilage in osteoarthritic femoral heads and in autopsy specimens. J Bone Joint Surg Br. 1986, 68, 278-288.
8. Findlay, D. M. Vascular pathology and osteoarthritis. Rheumatology (Oxford). 2007, 46, 1763-1768.
9. Findlay, D. M.; Kuliwaba, J. S. Bone-cartilage crosstalk: a conversation for understanding osteoarthritis. Bone Res. 2016, 4, 16028.
10. Burr, D. B.; Gallant, M. A. Bone remodelling in osteoarthritis. Nat Rev Rheumatol. 2012, 8, 665-673.
11. Goldring, M. B.; Goldring, S. R. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci. 2010, 1192, 230-237.
12. Tamaddon, M.; Wang, L.; Liu, Z.; Liu, C. Osteochondral tissue repair in osteoarthritic joints: clinical challenges and opportunities in tissue engineering. Bio-design and manufacturing. 2018, 1, 101-114.
13. Luyten, F. P.; Denti, M.; Filardo, G.; Kon, E.; Engebretsen, L. Definition and classification of early osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc. 2012, 20, 401-406.
14. Madry, H.; Kon, E.; Condello, V.; Peretti, G. M.; Steinwachs, M.; Seil, R.; Berruto, M.; Engebretsen, L.; Filardo, G.; Angele, P. Early osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc. 2016, 24, 1753-1762.
15. Kellgren, J. H.; Lawrence, J. S. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957, 16, 494-502.
16. Kohn, M. D.; Sassoon, A. A.; Fernando, N. D. Classifications in brief: Kellgren-Lawrence classification of osteoarthritis. Clin Orthop Relat Res. 2016, 474, 1886-1893.
17. Casula, V.; Hirvasniemi, J.; Lehenkari, P.; Ojala, R.; Haapea, M.; Saarakkala, S.; Lammentausta, E.; Nieminen, M. T. Association between quantitative MRI and ICRS arthroscopic grading of articular cartilage. Knee Surg Sports Traumatol Arthrosc. 2016, 24, 2046-2054.
18. Brittberg, M.; Winalski, C. S. Evaluation of cartilage injuries and repair. J Bone Joint Surg Am. 2003, 85-A Suppl 2, 58-69.
19. Nelson, A. E.; Allen, K. D.; Golightly, Y. M.; Goode, A. P.; Jordan, J. M. A systematic review of recommendations and guidelines for the management of osteoarthritis: The chronic osteoarthritis management initiative of the U.S. bone and joint initiative. Semin Arthritis Rheum. 2014, 43, 701-712.
20. Giannini, S.; Buda, R.; Grigolo, B.; Vannini, F. Autologous chondrocyte transplantation in osteochondral lesions of the ankle joint. Foot Ankle Int. 2001, 22, 513-517.
21. Giannini, S.; Vannini, F. Operative treatment of osteochondral lesions of the talar dome: current concepts review. Foot Ankle Int. 2004, 25, 168-175.
22. Rothrauff, B. B.; Murawski, C. D.; Angthong, C.; Becher, C.; Nehrer, S.; Niemeyer, P.; Sullivan, M.; Valderrabano, V.; Walther, M.; Ferkel, R. D. Scaffold-based therapies: Proceedings of the International Consensus Meeting on Cartilage Repair of the Ankle. Foot Ankle Int. 2018, 39, 41s-47s.
23. Vannini, F.; Filardo, G.; Kon, E.; Roffi, A.; Marcacci, M.; Giannini, S. Scaffolds for cartilage repair of the ankle joint: The impact on surgical practice. Foot Ankle Surg. 2013, 19, 2-8.
24. Yousefi, A. M.; Hoque, M. E.; Prasad, R. G.; Uth, N. Current strategies in multiphasic scaffold design for osteochondral tissue engineering: A review. J Biomed Mater Res A. 2015, 103, 2460-2481.
25. Tamaddon, M.; Liu, C. Enhancing biological and biomechanical fixation of osteochondral scaffold: a grand challenge. Adv Exp Med Biol. 2018, 1059, 255-298.
26. Yan, L.; Oliveira, J. M.; Oliveira, A. L.; Reis, R. L. Current concepts and challenges in osteochondral tissue engineering and regenerative medicine. ACS Biomater Sci Eng. 2015.
27. Hirahara, A. M.; Mueller, K. W. Jr. BioCartilage: A new biomaterial to treat chondral lesions. Sports Med Arthrosc Rev. 2015, 23, 143-148.
28. Melton, J. T.; Wilson, A. J.; Chapman-Sheath, P.; Cossey, A. J. TruFit CB bone plug: chondral repair, scaffold design, surgical technique and early experiences. Expert Rev Med Devices. 2010, 7, 333-341.
29. Ye, K.; Di Bella, C.; Myers, D. E.; Choong, P. F. The osteochondral dilemma: review of current management and future trends. ANZ J Surg. 2014, 84, 211-217.
30. Salzmann, G. M.; Niemeyer, P.; Steinwachs, M.; Kreuz, P. C.; Südkamp, N. P.; Mayr, H. O. Cartilage repair approach and treatment characteristics across the knee joint: a European survey. Arch Orthop Trauma Surg. 2011, 131, 283-291.
31. Kreuz, P. C.; Erggelet, C.; Steinwachs, M. R.; Krause, S. J.; Lahm, A.; Niemeyer, P.; Ghanem, N.; Uhl, M.; Südkamp, N. Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthroscopy. 2006, 22, 1180-1186.
32. Kreuz, P. C.; Steinwachs, M. R.; Erggelet, C.; Krause, S. J.; Konrad, G.; Uhl, M.; Südkamp, N. Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage. 2006, 14, 1119-1125.
33. Salzmann, G. M.; Sah, B.; Südkamp, N. P.; Niemeyer, P. Clinical outcome following the first-line, single lesion microfracture at the knee joint. Arch Orthop Trauma Surg. 2013, 133, 303-310.
34. Angele, P.; Niemeyer, P.; Steinwachs, M.; Filardo, G.; Gomoll, A. H.; Kon,E.; Zellner, J.; Madry, H. Chondral and osteochondral operative treatment in early osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2016, 24, 1743-1752.
35. Bentley, G.; Bhamra, J. S.; Gikas, P. D.; Skinner, J. A.; Carrington, R.; Briggs, T. W. Repair of osteochondral defects in joints--how to achieve success. Injury. 2013, 44 Suppl 1, S3-10.
36. Brittberg, M.; Lindahl, A.; Nilsson, A.; Ohlsson, C.; Isaksson, O.; Peterson, L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994, 331, 889-895.
37. Knutsen, G.; Drogset, J. O.; Engebretsen, L.; Grøntvedt, T.; Isaksen, V.; Ludvigsen, T. C.; Roberts, S.; Solheim, E.; Strand, T.; Johansen, O. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am. 2007, 89, 2105-2112.
38. Nixon, A. J.; Sparks, H. D.; Begum, L.; McDonough, S.; Scimeca, M. S.; Moran, N.; Matthews, G. L. Matrix-induced autologous chondrocyte implantation (MACI) using a cell-seeded collagen membrane improves cartilage healing in the equine model. J Bone Joint Surg Am. 2017, 99, 1987-1998.
39. Bartlett, W.; Skinner, J. A.; Gooding, C. R.; Carrington, R. W.; Flanagan, A. M.; Briggs, T. W.; Bentley, G. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br. 2005, 87, 640-645.
40. Behrens, P.; Bitter, T.; Kurz, B.; Russlies, M. Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI)--5-year follow-up. Knee. 2006, 13, 194-202.
41. Ventura, A.; Memeo, A.; Borgo, E.; Terzaghi, C.; Legnani, C.; Albisetti, W. Repair of osteochondral lesions in the knee by chondrocyte implantation using the MACI technique. Knee Surg Sports Traumatol Arthrosc. 2012, 20, 121-126.
42. Oliveira, J.; Pina, S.; Reis, R. L.; Roman, J. S. Osteochondral Tissue Engineering: Challenges, Current Strategies, and Technological Advances. Springer International Publishing. 2018.
43. NICE. Autologous chondrocyte implantation for treating symptomatic articular cartilage defects of the knee. Report No. Technology appraisal guidance. 2017.
44. Filardo, G.; Kon, E.; Roffi, A.; Di Martino, A.; Marcacci, M. Scaffold-based repair for cartilage healing: a systematic review and technical note. Arthroscopy. 2013, 29, 174-186.
45. Filardo, G.; Kon, E.; Perdisa, F.; Tetta, C.; Di Martino, A.; Marcacci, M. Arthroscopic mosaicplasty: long-term outcome and joint degeneration progression. Knee. 2015, 22, 36-40.
46. Filardo, G.; Kon, E.; Perdisa, F.; Balboni, F.; Marcacci, M. Autologous osteochondral transplantation for the treatment of knee lesions: results and limitations at two years’ follow-up. Int Orthop. 2014, 38, 1905-1912.
47. Hangody, L.; Dobos, J.; Baló, E.; Pánics, G.; Hangody, L. R.; Berkes, I. Clinical experiences with autologous osteochondral mosaicplasty in an athletic population: a 17-year prospective multicenter study. Am J Sports Med. 2010, 38, 1125-1133.
48. Shasha, N.; Krywulak, S.; Backstein, D.; Pressman, A.; Gross, A. E. Long-term follow-up of fresh tibial osteochondral allografts for failed tibial plateau fractures. J Bone Joint Surg Am. 2003, 85-A Suppl 2, 33-39.
49. Berruto, M.; Delcogliano, M.; de Caro, F.; Carimati, G.; Uboldi, F.; Ferrua, P.; Ziveri, G.; De Biase, C. F. Treatment of large knee osteochondral lesions with a biomimetic scaffold: results of a multicenter study of 49 patients at 2-year follow-up. Am J Sports Med. 2014, 42, 1607-1617.
50. Jeon, J. E.; Vaquette, C.; Klein, T. J.; Hutmacher, D. W. Perspectives in multiphasic osteochondral tissue engineering. Anat Rec (Hoboken). 2014, 297, 26-35.
51. Gotterbarm, T.; Richter, W.; Jung, M.; Berardi Vilei, S.; Mainil-Varlet, P.; Yamashita, T.; Breusch, S. J. An in vivo study of a growth-factor enhanced, cell free, two-layered collagen-tricalcium phosphate in deep osteochondral defects. Biomaterials. 2006, 27, 3387-3395.
52. Ahn, S.; Yoon, H.; Kim, G.; Kim, Y.; Lee, S.; Chun, W. Designed three-dimensional collagen scaffolds for skin tissue regeneration. Tissue Eng Part C Methods. 2010, 16, 813-820.
53. Marquass, B.; Somerson, J. S.; Hepp, P.; Aigner, T.; Schwan, S.; Bader, A.; Josten, C.; Zscharnack, M.; Schulz, R. M. A novel MSC-seeded triphasic construct for the repair of osteochondral defects. J Orthop Res. 2010, 28, 1586-1599.
54. Sartori, M.; Pagani, S.; Ferrari, A.; Costa, V.; Carina, V.; Figallo, E.; Maltarello, M. C.; Martini, L.; Fini, M.; Giavaresi, G. A new bi-layered scaffold for osteochondral tissue regeneration: In vitro and in vivo preclinical investigations. Mater Sci Eng C Mater Biol Appl. 2017, 70, 101-111.
55. Crovace, A. M.; Giancamillo, A. D.; Gervaso, F.; Mangiavini, L.; Zani, D.; Scalera, F.; Palazzo, B.; Izzo, D.; Agnoletto, M.; Domenicucci, M.; Sosio, C.; Sannino, A.; Giancamillo, M. D.; Peretti, G. M. Evaluation of in vivo response of three biphasic scaffolds for osteochondral tissue regeneration in a sheep model. Vet Sci. 2019, 6, 90.
56. Liu, X.; Wei, Y.; Xuan, C.; Liu, L.; Lai, C.; Chai, M.; Zhang, Z.; Wang, L.; Shi, X. A biomimetic biphasic osteochondral scaffold with layer-specific release of stem cell differentiation inducers for the reconstruction of osteochondral defects. Adv Healthc Mater. 2020, e2000076.
57. Filardo, G.; Perdisa, F.; Gelinsky, M.; Despang, F.; Fini, M.; Marcacci, M.; Parrilli, A. P.; Roffi, A.; Salamanna, F.; Sartori, M.; Schütz, K.; Kon, E. Novel alginate biphasic scaffold for osteochondral regeneration: an in vivo evaluation in rabbit and sheep models. J Mater Sci Mater Med. 2018, 29, 74.
58. Vainieri, M. L.; Lolli, A.; Kops, N.; D’Atri, D.; Eglin, D.; Yayon, A.; Alini, M.; Grad, S.; Sivasubramaniyan, K.; van Osch, G. Evaluation of biomimetic hyaluronic-based hydrogels with enhanced endogenous cell recruitment and cartilage matrix formation. Acta Biomater. 2020, 101, 293-303.
59. Frenkel, S. R.; Bradica, G.; Brekke, J. H.; Goldman, S. M.; Ieska, K.; Issack, P.; Bong, M. R.; Tian, H.; Gokhale, J.; Coutts, R. D.; Kronengold, R. T. Regeneration of articular cartilage--evaluation of osteochondral defect repair in the rabbit using multiphasic implants. Osteoarthritis Cartilage. 2005, 13, 798-807.
60. Feng, X.; Xu, P.; Shen, T.; Zhang, Y.; Ye, J.; Gao, C. Influence of pore architectures of silk fibroin/collagen composite scaffolds on the regeneration of osteochondral defects in vivo. J Mater Chem B. 2020, 8, 391-405.
61. Pérez-Silos, V.; Moncada-Saucedo, N. K.; Peña-Martínez, V.; Lara-Arias, J.; Marino-Martínez, I. A.; Camacho, A.; Romero-Díaz, V. J.; Lara Banda, M.; García-Ruiz, A.; Soto-Dominguez, A.; Rodriguez-Rocha, H.; López-Serna, N.; Tuan, R. S.; Lin, H.; Fuentes-Mera, L. A cellularized biphasic implant based on a bioactive silk fibroin promotes integration and tissue organization during osteochondral defect repair in a porcine model. Int J Mol Sci. 2019, 20, 5145.
62. Shao, X. X.; Hutmacher, D. W.; Ho, S. T.; Goh, J. C.; Lee, E. H. Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials. 2006, 27, 1071-1080.
63. Zheng, P.; Hu, X.; Lou, Y.; Tang, K. A rabbit model of osteochondral regeneration using three-dimensional printed polycaprolactone-hydroxyapatite scaffolds coated with umbilical cord blood mesenchymal stem cells and chondrocytes. Med Sci Monit. 2019, 25, 7361-7369.
64. Cui, W.; Wang, Q.; Chen, G.; Zhou, S.; Chang, Q.; Zuo, Q.; Ren, K.; Fan, W. Repair of articular cartilage defects with tissue-engineered osteochondral composites in pigs. J Biosci Bioeng. 2011, 111, 493-500.
65. Reyes, R.; Delgado, A.; Sánchez, E.; Fernández, A.; Hernández, A.; Evora, C. Repair of an osteochondral defect by sustained delivery of BMP-2 or TGFβ1 from a bilayered alginate-PLGA scaffold. J Tissue Eng Regen Med. 2014, 8, 521-533.
66. Qi, Y.; Du, Y.; Li, W.; Dai, X.; Zhao, T.; Yan, W. Cartilage repair using mesenchymal stem cell (MSC) sheet and MSCs-loaded bilayer PLGA scaffold in a rabbit model. Knee Surg Sports Traumatol Arthrosc. 2014, 22, 1424-1433.
67. Duan, P.; Pan, Z.; Cao, L.; Gao, J.; Yao, H.; Liu, X.; Guo, R.; Liang, X.; Dong, J.; Ding, J. Restoration of osteochondral defects by implanting bilayered poly(lactide-co-glycolide) porous scaffolds in rabbit joints for 12 and 24 weeks. J Orthop Translat. 2019, 19, 68-80.
68. Niederauer, G. G.; Slivka, M. A.; Leatherbury, N. C.; Korvick, D. L.; Harroff, H. H.; Ehler, W. C.; Dunn, C. J.; Kieswetter, K. Evaluation of multiphase implants for repair of focal osteochondral defects in goats. Biomaterials. 2000, 21, 2561-2574.
69. Kumbhar, J. V.; Jadhav, S. H.; Bodas, D. S.; Barhanpurkar-Naik, A.; Wani, M. R.; Paknikar, K. M.; Rajwade, J. M. In vitro and in vivo studies of a novel bacterial cellulose-based acellular bilayer nanocomposite scaffold for the repair of osteochondral defects. Int J Nanomedicine. 2017, 12, 6437-6459.
70. Gotterbarm, T.; Breusch, S. J.; Jung, M.; Streich, N.; Wiltfang, J.; Berardi Vilei, S.; Richter, W.; Nitsche, T. Complete subchondral bone defect regeneration with a tricalcium phosphate collagen implant and osteoinductive growth factors: a randomized controlled study in Göttingen minipigs. J Biomed Mater Res B Appl Biomater. 2014, 102, 933-942.
71. O’Brien, F. J. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011, 14, 88-95.
72. Tamaddon, M.; Samizadeh, S.; Wang, L.; Blunn, G.; Liu, C. Intrinsic osteoinductivity of porous titanium scaffold for bone tissue engineering. Int J Biomater. 2017, 2017, 5093063.
73. Chang, Y. S.; Gu, H. O.; Kobayashi, M.; Oka, M. Comparison of the bony ingrowth into an osteochondral defect and an artificial osteochondral composite device in load-bearing joints. Knee. 1998, 5, 205-213.
74. Duan, X.; Zhu, X.; Dong, X.; Yang, J.; Huang, F.; Cen, S.; Leung, F.; Fan, H.; Xiang, Z. Repair of large osteochondral defects in a beagle model with a novel type I collagen/glycosaminoglycan-porous titanium biphasic scaffold. Mater Sci Eng C Mater Biol Appl. 2013, 33, 3951-3957.
75. Bal, B. S.; Rahaman, M. N.; Jayabalan, P.; Kuroki, K.; Cockrell, M. K.; Yao, J. Q.; Cook, J. L. In vivo outcomes of tissue-engineered osteochondral grafts. J Biomed Mater Res B Appl Biomater. 2010, 93, 164-174.
76. Mrosek, E. H.; Schagemann, J. C.; Chung, H. W.; Fitzsimmons, J. S.; Yaszemski, M. J.; Mardones, R. M.; O’Driscoll, S. W.; Reinholz, G. G. Porous tantalum and poly-epsilon-caprolactone biocomposites for osteochondral defect repair: preliminary studies in rabbits. J Orthop Res. 2010, 28, 141-148.
77. Kang, H.; Zeng, Y.; Varghese, S. Functionally graded multilayer scaffolds for in vivo osteochondral tissue engineering. Acta Biomater. 2018, 78, 365-377.
78. Kon, E.; Filardo, G.; Shani, J.; Altschuler, N.; Levy, A.; Zaslav, K.; Eisman, J. E.; Robinson, D. Osteochondral regeneration with a novel aragonite-hyaluronate biphasic scaffold: up to 12-month follow-up study in a goat model. J Orthop Surg Res. 2015, 10, 81.
79. Carmont, M. R.; Carey-Smith, R.; Saithna, A.; Dhillon, M.; Thompson, P.; Spalding, T. Delayed incorporation of a TruFit plug: perseverance is recommended. Arthroscopy. 2009, 25, 810-814.
80. Spalding, T.; Carey-Smith, R.; Carmont, M.; Dunn, K. TruFit plugs for articular cartilage repair in the knee: 2 year experience, results and MRI appearances. Arthroscopy. 2009, 25, e32-e33.
81. Dhollander, A. A.; Liekens, K.; Almqvist, K. F.; Verdonk, R.; Lambrecht, S.; Elewaut, D.; Verbruggen, G.; Verdonk, P. C. A pilot study of the use of an osteochondral scaffold plug for cartilage repair in the knee and how to deal with early clinical failures. Arthroscopy. 2012, 28, 225-233.
82. Joshi, N.; Reverte-Vinaixa, M.; Díaz-Ferreiro, E. W.; Domínguez-Oronoz, R. Synthetic resorbable scaffolds for the treatment of isolated patellofemoral cartilage defects in young patients: magnetic resonance imaging and clinical evaluation. Am J Sports Med. 2012, 40, 1289-1295.
83. Pearce, C. J.; Gartner, L. E.; Mitchell, A.; Calder, J. D. Synthetic osteochondral grafting of ankle osteochondral lesions. Foot Ankle Surg. 2012, 18, 114-118.
84. Bekkers, J. E.; Bartels, L. W.; Vincken, K. L.; Dhert, W. J.; Creemers, L. B.; Saris, D. B. Articular cartilage evaluation after TruFit plug implantation analyzed by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). Am J Sports Med. 2013, 41, 1290-1295.
85. Getgood, A. M.; Kew, S. J.; Brooks, R.; Aberman, H.; Simon, T.; Lynn, A. K.; Rushton, N. Evaluation of early-stage osteochondral defect repair using a biphasic scaffold based on a collagen-glycosaminoglycan biopolymer in a caprine model. Knee. 2012, 19, 422-430.

87. Kusano, T.; Jakob, R. P.; Gautier, E.; Magnussen, R. A.; Hoogewoud, H.; Jacobi, M. Treatment of isolated chondral and osteochondral defects in the knee by autologous matrix-induced chondrogenesis (AMIC). Knee Surg Sports Traumatol Arthrosc. 2012, 20, 2109-2115.  
88. Gille, J.; Behrens, P.; Volpi, P.; de Girolamo, L.; Reiss, E.; Zoch, W.; Anders, S. Outcome of autologous matrix induced chondrogenesis (AMIC) in cartilage knee surgery: data of the AMIC Registry. Arch Orthop Trauma Surg. 2013, 133, 87-93.  
89. Dhollander, A.; Moens, K.; Van der Maas, J.; Verdonk, P.; Almqvist, K. F.; Victor, J. Treatment of patellofemoral cartilage defects in the knee by autologous matrix-induced chondrogenesis (AMIC). Acta Orthop Belg. 2014, 80, 251-259.  
90. Kon, E.; Filardo, G.; Perdisa, F.; Di Martino, A.; Busacca, M.; Balboni, F.; Sessa, A.; Marcacci, M. A one-step treatment for chondral and osteochondral knee defects: clinical results of a biomimetic scaffold implantation at 2 years of follow-up. J Mater Sci Mater Med. 2014, 25, 2437-2444.  
91. Kon, E.; Filardo, G.; Perdisa, F.; Venieri, G.; Marcacci, M. Clinical results of multilayered biomaterials for osteochondral regeneration. J Exp Orthop. 2014, 1, 10.  
92. Kon, E.; Filardo, G.; Di Martino, A.; Busacca, M.; Moio, A.; Perdisa, F.; Marcacci, M. Clinical results and MRI evolution of a nano-composite multilayered biomaterial for osteochondral regeneration at 5 years. Am J Sports Med. 2014, 42, 158-165.  
93. Marcacci, M.; Filardo, G.; Kon, E. Treatment of cartilage lesions: what works and why? Injury. 2013, 44 Suppl 1, S11-15.  
94. Kon, E.; Delcogliano, M.; Filardo, G.; Busacca, M.; Di Martino, A.; Marcacci, M. Novel nano-composite multilayered biomaterial for osteochondral regeneration: a pilot clinical trial. Am J Sports Med. 2011, 39, 1180-1190.  
95. Kon, E.; Delcogliano, M.; Filardo, G.; Pressato, D.; Busacca, M.; Grigolo, B.; Desando, G.; Marcacci, M. A novel nano-composite multi-layered biomaterial for treatment of osteochondral lesions: technique note and an early stability pilot clinical trial. Injury. 2010, 41, 693-701.   
96. Kon, E.; Delcogliano, M.; Filardo, G.; Fini, M.; Giavaresi, G.; Francioli, S.; Martin, I.; Pressato, D.; Arcangeli, E.; Quarto, R.; Sandri, M.; Marcacci, M. Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res. 2010, 28, 116-124.   
97. Young, R. Orthopaedics this week. https://ryortho.com/2019/05/getting-cartilage-repair-right-after-25-years/. Accessed by May 30, 2019.  
98. Kon, E.; Drobnic, M.; Davidson, P. A.; Levy, A.; Zaslav, K. R.; Robinson, D. Chronic posttraumatic cartilage lesion of the knee treated with an acellular osteochondral-regenerating implant: case history with rehabilitation guidelines. J Sport Rehabil. 2014, 23, 270-275.  
99. Collagen solutions plc positive eight-year results of ChondroMimetic® cartilage repair clinical study. https://ir.collagensolutions.com/content/news/2018/210218. Accessed by February 21, 2018.  
100. Degen, R. M.; Tetreault, D.; Mahony, G. T.; Williams, R. J. Acute delamination of commercially available decellularized osteochondral allograft plugs: a report of two cases. Cartilage. 2016, 7, 316-321.  
101. Farr, J.; Gracitelli, G. C.; Shah, N.; Chang, E. Y.; Gomoll, A. H. High failure rate of a decellularized osteochondral allograft for the treatment of cartilage lesions. Am J Sports Med. 2016, 44, 2015-2022.  
102. Bishop, M. E.; Seigo, M. A.; Hadley, C. J.; Freedman, K. B. Failure after osteochondral allograft transplantation with the chondrofix implant: a report of two cases. JBJS Case Connect. 2018, 8, e86.  
103. Trattnig, S.; Ohel, K.; Mlynarik, V.; Juras, V.; Zbyn, S.; Korner, A. Morphological and compositional monitoring of a new cell-free cartilage repair hydrogel technology - GelrinC by MR using semi-quantitative MOCART scoring and quantitative T2 index and new zonal T2 index calculation. Osteoarthritis Cartilage. 2015, 23, 2224-2232.  
104. Kon, E.; Filardo, G.; Brittberg, M.; Busacca, M.; Condello, V.; Engebretsen, L.; Marlovits, S.; Niemeyer, P.; Platzer, P.; Posthumus, M.; Verdonk, P.; Verdonk, R.; Victor, J.; van der Merwe, W.; Widuchowski, W.; Zorzi, C.; Marcacci, M. A multilayer biomaterial for osteochondral regeneration shows superiority vs microfractures for the treatment of osteochondral lesions in a multicentre randomized trial at 2 years. Knee Surg Sports Traumatol Arthrosc. 2018, 26, 2704-2715.  
105. Delcogliano, M.; de Caro, F.; Scaravella, E.; Ziveri, G.; De Biase, C. F.; Marotta, D.; Marenghi, P.; Delcogliano, A. Use of innovative biomimetic scaffold in the treatment for large osteochondral lesions of the knee. Knee Surg Sports Traumatol Arthrosc. 2014, 22, 1260-1269.  
106. Christensen, B. B.; Foldager, C. B.; Jensen, J.; Jensen, N. C.; Lind, M. Poor osteochondral repair by a biomimetic collagen scaffold: 1- to 3-year clinical and radiological follow-up. Knee Surg Sports Traumatol Arthrosc. 2016, 24, 2380-2387.  
107. Albano, D.; Martinelli, N.; Bianchi, A.; Messina, C.; Malerba, F.; Sconfienza, L. M. Clinical and imaging outcome of osteochondral lesions of the talus treated using autologous matrix-induced chondrogenesis technique with a biomimetic scaffold. BMC Musculoskelet Disord. 2017, 18, 306.  
108. Williams, R. J.; Gamradt, S. C. Articular cartilage repair using a resorbable matrix scaffold. Instr Course Lect. 2008, 57, 563-571.  
109. Saithna, A.; Arbuthnot, J.; Almazedi, B.; Spalding, T. Does acl reconstruction with accelerated rehabilitation influence the outcome of concomitant meniscal repair? Orthop Proc. 2010, 92-B, 423-423.  
110. Verhaegen, J.; Clockaerts, S.; Van Osch, G. J.; Somville, J.; Verdonk, P.; Mertens, P. TruFit Plug for Repair of Osteochondral Defects-Where Is the Evidence? Systematic Review of Literature. Cartilage. 2015, 6, 12-19.  
111. Madry, H.; van Dijk, C. N.; Mueller-Gerbl, M. The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc. 2010, 18, 419-433.  
112. Flachsmann, E. R.; Broom, N. D.; Oloyede, A. A biomechanical investigation of unconstrained shear failure of the osteochondral region under impact loading. Clin Biomech (Bristol, Avon). 1995, 10, 156-165.  
113. Radin, E. L.; Rose, R. M. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res. 1986, 34-40.  
114. Brix, M.; Kaipel, M.; Kellner, R.; Schreiner, M.; Apprich, S.; Boszotta, H.; Windhager, R.; Domayer, S.; Trattnig, S. Successful osteoconduction but limited cartilage tissue quality following osteochondral repair by a cell-free multilayered nano-composite scaffold at the knee. Int Orthop. 2016, 40, 625-632.  
115. Guilak, F.; Butler, D. L.; Goldstein, S. A. Functional tissue engineering: the role of biomechanics in articular cartilage repair. Clin Orthop Relat Res. 2001, S295-305.  
116. Setton, L. A.; Elliott, D. M.; Mow, V. C. Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an experimental model of joint degeneration. Osteoarthritis Cartilage. 1999, 7, 2-14.  
117. Pal, S. Mechanical properties of biological materials. In Design of Artificial Human Joints & Organs, Pal, S., ed. Springer US: Boston, MA, 2014; pp 23-40.  
118. Kubicek, M.; Florian, Z. Stress strain analysis of knee joint. Eng Mech. 2009, 16, 315-322.  
119. Liu, C; Blunn, G. Osteochondral scaffold. WO Patent publication No. WO 2017/118863 A1. World Intellectual Property Organization International Bureau.  
120. Getgood, A.; Henson, F.; Skelton, C.; Brooks, R.; Guehring, H.; Fortier, L. A.; Rushton, N. Osteochondral tissue engineering using a biphasic collagen/GAG scaffold containing rhFGF18 or BMP-7 in an ovine model. J Exp Orthop. 2014, 1, 13.  
121. Levingstone, T. J.; Ramesh, A.; Brady, R. T.; Brama, P. A. J.; Kearney, C.; Gleeson, J. P.; O’Brien, F. J. Cell-free multi-layered collagen-based scaffolds demonstrate layer specific regeneration of functional osteochondral tissue in caprine joints. Biomaterials. 2016, 87, 69-81.  

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top