One-dimensional micro/nanomotors for biomedicine: delivery, sensing and surgery
The rapid development of artificial micro/nanomachines brings promising strategies to overcome challenges in biomedicine, including delivery, sensing and surgery. One-dimensional (1D) micro/nanomotors are one of the most attractive micro/nanomachines due to their high specific surface area, powerful impetus and weak rotation diffusion. In this review, different propulsion mechanisms and motion control strategies of 1D micro/nanomotors are summarized, and recent efforts towards their fabrication methods and biomedical applications are discussed. We envision the multidisciplinary research efforts in the field of 1D micro/nanomotors will pave their way to practical applications in bioimaging and biomedicine.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
1. Giulianotti, P. C.; Coratti, A.; Angelini, M.; Sbrana, F.; Cecconi, S.; Balestracci, T.; Caravaglios, G. Robotics in general surgery: personal experience in a large community hospital. Arch Surg. 2003, 138, 777-784.
2. Li, J.; Esteban-Fernández de Ávila, B.; Gao, W.; Zhang, L.; Wang, J. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci Robot. 2017, 2, eaam6431.
3. Nelson, B. J.; Kaliakatsos, I. K.; Abbott, J. J. Microrobots for minimally invasive medicine. Annu Rev Biomed Eng. 2010, 12, 55-85.
4. Abdelmohsen, L.; Peng, F.; Tu, Y.; Wilson, D. A. Micro- and nano-motors for biomedical applications. J Mater Chem B. 2014, 2, 2395-2408.
5. Peng, F.; Tu, Y.; Wilson, D. A. Micro/nanomotors towards in vivo application: cell, tissue and biofluid. Chem Soc Rev. 2017, 46, 5289-5310.
6. Kim, K.; Guo, J.; Liang, Z.; Fan, D. Artificial micro/nanomachines for bioapplications: biochemical delivery and diagnostic sensing. Adv Funct Mater. 2018, 28, 1705867.
7. Dey, K. K.; Sen, A. Chemically propelled molecules and machines. J Am Chem Soc. 2017, 139, 7666-7676.
8. Xu, T.; Gao, W.; Xu, L. P.; Zhang, X.; Wang, S. Fuel-free synthetic micro/nanomachines. Adv Mater. 2017, 29, 10.
9. Guix, M.; Mayorga-Martinez, C. C.; Merkoçi, A. Nano/micromotors in (bio)chemical science applications. Chem Rev. 2014, 114, 6285-6322.
10. Duan, W.; Wang, W.; Das, S.; Yadav, V.; Mallouk, T. E.; Sen, A. Synthetic nano- and micromachines in analytical chemistry: sensing, migration, capture, delivery, and separation. Annu Rev Anal Chem (Palo Alto Calif). 2015, 8, 311-333.
11. Ceylan, H.; Giltinan, J.; Kozielski, K.; Sitti, M. Mobile microrobots for bioengineering applications. Lab Chip. 2017, 17, 1705-1724.
12. Xu, B.; Zhang, B.; Wang, L.; Huang, G.; Mei, Y. Tubular micro/nanomachines: from the basics to recent advances. Adv Funct Mater. 2018, 28, 1705872.
13. Li, L.; Liang, L.; Wu, H.; Zhu, X. One-dimensional perovskite manganite oxide nanostructures: recent developments in synthesis, characterization, transport properties, and applications. Nanoscale Res Lett. 2016, 11, 121.
14. Chen, J.; Wiley, B. J.; Xia, Y. One-dimensional nanostructures of metals: large-scale synthesis and some potential applications. Langmuir. 2007, 23, 4120-4129.
15. Donald, I. W. Production, properties and applications of microwire and related products. J Mater Sci. 1987, 22, 2661-2679.
16. Liang, H. W.; Liu, J. W.; Qian, H. S.; Yu, S. H. Multiplex templating process in one-dimensional nanoscale: controllable synthesis, macroscopic assemblies, and applications. Acc Chem Res. 2013, 46, 1450-1461.
17. Zan, X.; Feng, S.; Balizan, E.; Lin, Y.; Wang, Q. Facile method for large scale alignment of one dimensional nanoparticles and control over myoblast orientation and differentiation. ACS Nano. 2013, 7, 8385-8396.
18. Feng, S.; Lu, L.; Zan, X.; Wu, Y.; Lin, Y.; Wang, Q. Genetically engineered plant viral nanoparticles direct neural cells differentiation and orientation. Langmuir. 2015, 31, 9402-9409.
19. Chen, L.; Zhao, X.; Lin, Y.; Su, Z.; Wang, Q. Dual stimuli-responsive supramolecular hydrogel of bionanoparticles and hyaluronan. Polym Chem. 2014, 5, 6754-6760.
20. Guo, J.; Zhao, X.; Hu, J.; Lin, Y.; Wang, Q. Tobacco mosaic virus with peroxidase-like activity for cancer cell detection through colorimetric assay. Mol Pharm. 2018, 15, 2946-2953.
21. Tu, Y.; Peng, F.; Wilson, D. A. Motion manipulation of micro- and nanomotors. Adv Mater. 2017, 29, 1701970.
22. Wang, H.; Pumera, M. Fabrication of micro/nanoscale motors. Chem Rev. 2015, 115, 8704-8735.
23. Paxton, W. F.; Kistler, K. C.; Olmeda, C. C.; Sen, A.; St Angelo, S. K.; Cao, Y.; Mallouk, T. E.; Lammert, P. E.; Crespi, V. H. Catalytic nanomotors: autonomous movement of striped nanorods. J Am Chem Soc. 2004, 126, 13424-13431.
24. Sundararajan, S.; Lammert, P. E.; Zudans, A. W.; Crespi, V. H.; Sen, A. Catalytic motors for transport of colloidal cargo. Nano Lett. 2008, 8, 1271-1276.
25. Ma, X.; Hortelão, A. C.; Patiño, T.; Sánchez, S. Enzyme catalysis to power micro/nanomachines. ACS Nano. 2016, 10, 9111-9122.
26. Kinnear, C.; Moore, T. L.; Rodriguez-Lorenzo, L.; Rothen-Rutishauser, B.; Petri-Fink, A. Form follows function: Nanoparticle shape and its implications for nanomedicine. Chem Rev. 2017, 117, 11476-11521.
27. Wen, A. M.; Steinmetz, N. F. Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem Soc Rev. 2016, 45, 4074-4126.
28. Baraban, L.; Harazim, S. M.; Sanchez, S.; Schmidt, O. G. Chemotactic behavior of catalytic motors in microfluidic channels. Angew Chem Int Ed Engl. 2013, 52, 5552-5556.
29. Sahari, A.; Headen, D.; Behkam, B. Effect of body shape on the motile behavior of bacteria-powered swimming microrobots (BacteriaBots). Biomed Microdevices. 2012, 14, 999-1007.
30. Li, J.; Liu, W.; Wang, J.; Rozen, I.; He, S.; Chen, C.; Kim, H. G.; Lee, H. J.; Lee, H. B. R.; Kwon, S. H.; Li, T.; Li, L.; Wang, J.; Mei, Y. Nanoconfined atomic layer deposition of TiO2/Pt nanotubes: toward ultrasmall highly efficient catalytic nanorockets. Adv Funct Mater. 2017, 27, 1700598.
31. Li, J.; Rozen, I.; Wang, J. Rocket science at the nanoscale. ACS Nano. 2016, 10, 5619-5634.
32. Sánchez, S.; Soler, L.; Katuri, J. Chemically powered micro- and nanomotors. Angew Chem Int Ed Engl. 2015, 54, 1414-1444.
33. Gao, W.; Uygun, A.; Wang, J. Hydrogen-bubble-propelled zinc-based microrockets in strongly acidic media. J Am Chem Soc. 2012, 134, 897-900.
34. Paxton, W. F.; Sen, A.; Mallouk, T. E. Motility of catalytic nanoparticles through self-generated forces. Chemistry. 2005, 11, 6462-6470.
35. Ma, X.; Hortelao, A. C.; Miguel-López, A.; Sánchez, S. Bubble-free propulsion of ultrasmall tubular nanojets powered by biocatalytic reactions. J Am Chem Soc. 2016, 138, 13782-13785.
36. Dreyfus, R.; Baudry, J.; Roper, M. L.; Fermigier, M.; Stone, H. A.; Bibette, J. Microscopic artificial swimmers. Nature. 2005, 437, 862-865.
37. Mirkovic, T.; Zacharia, N. S.; Scholes, G. D.; Ozin, G. A. Nanolocomotion - catalytic nanomotors and nanorotors. Small. 2010, 6, 159-167.
38. Wang, Y.; Hernandez, R. M.; Bartlett, D. J. Jr.; Bingham, J. M.; Kline, T. R.; Sen, A.; Mallouk, T. E. Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir. 2006, 22, 10451-10456.
39. Fournier-Bidoz, S.; Arsenault, A. C.; Manners, I.; Ozin, G. A. Synthetic self-propelled nanorotors. Chem Commun (Camb). 2005, 441-443.
40. Demirok, U. K.; Laocharoensuk, R.; Manesh, K. M.; Wang, J. Ultrafast catalytic alloy nanomotors. Angew Chem Int Ed Engl. 2008, 47, 9349-9351.
41. Liu, R.; Sen, A. Autonomous nanomotor based on copper-platinum segmented nanobattery. J Am Chem Soc. 2011, 133, 20064-20067.
42. Pumera, M. Electrochemically powered self-propelled electrophoretic nanosubmarines. Nanoscale. 2010, 2, 1643-1649.
43. Mei, Y.; Huang, G.; Solovev, A. A.; Ureña, E. B.; Mönch, I.; Ding, F.; Reindl, T.; Fu, R. K. Y.; Chu, P. K.; Schmidt, O. G. Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers. Adv Mater. 2008, 20, 4085-4090.
44. Solovev, A. A.; Mei, Y.; Bermúdez Ureña, E.; Huang, G.; Schmidt, O. G. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small. 2009, 5, 1688-1692.
45. Manjare, M.; Yang, B.; Zhao, Y. P. Bubble-propelled microjets: model and experiment. J Phys Chem C. 2013, 117, 4657-4665.
46. Luo, M.; Feng, Y.; Wang, T.; Guan, J. Micro-/nanorobots at work in active drug delivery. Adv Funct Mater. 2018, 28, 1706100.
47. Wu, Z.; Lin, X.; Zou, X.; Sun, J.; He, Q. Biodegradable protein-based rockets for drug transportation and light-triggered release. ACS Appl Mater Interfaces. 2015, 7, 250-255.
48. Simmchen, J.; Magdanz, V.; Sanchez, S.; Chokmaviroj, S.; Ruiz-Molina, D.; Baeza, A.; Schmidt, O. G. Effect of surfactants on the performance of tubular and spherical micromotors - a comparative study. RSC Adv. 2014, 4, 20334-20340.
49. Kagan, D.; Calvo-Marzal, P.; Balasubramanian, S.; Sattayasamitsathit, S.; Manesh, K. M.; Flechsig, G. U.; Wang, J. Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver. J Am Chem Soc. 2009, 131, 12082-12083.
50. Li, J.; Liu, W.; Wu, X.; Gao, X. Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials. 2015, 48, 37-44.
51. Wu, Z.; Wu, Y.; He, W.; Lin, X.; Sun, J.; He, Q. Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew Chem Int Ed Engl. 2013, 52, 7000-7003.
52. Hong, Y.; Blackman, N. M.; Kopp, N. D.; Sen, A.; Velegol, D. Chemotaxis of nonbiological colloidal rods. Phys Rev Lett. 2007, 99, 178103.
53. Fan, D. L.; Cammarata, R. C.; Chien, C. L. Precision transport and assembling of nanowires in suspension by electric fields. Appl Phys Lett. 2008, 92, 093115.
54. Kim, K.; Xu, X.; Guo, J.; Fan, D. L. Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks. Nat Commun. 2014, 5, 3632.
55. Xu, L.; Mou, F.; Gong, H.; Luo, M.; Guan, J. Light-driven micro/nanomotors: from fundamentals to applications. Chem Soc Rev. 2017, 46, 6905-6926.
56. Gorostiza, P.; Isacoff, E. Y. Optical switches for remote and noninvasive control of cell signaling. Science. 2008, 322, 395-399.
57. Giudicatti, S.; Marz, S. M.; Soler, L.; Madani, A.; Jorgensen, M. R.; Sanchez, S.; Schmidt, O. G. Photoactive rolled-up TiO(2) microtubes: fabrication, characterization and applications. J Mater Chem C Mater. 2014, 2, 5892-5901.
58. Mou, F.; Li, Y.; Chen, C.; Li, W.; Yin, Y.; Ma, H.; Guan, J. Single-component TiO2 tubular microengines with motion controlled by light-induced bubbles. Small. 2015, 11, 2564-2570.
59. Wu, Z.; Si, T.; Gao, W.; Lin, X.; Wang, J.; He, Q. Superfast near-infrared light-driven polymer multilayer rockets. Small. 2016, 12, 577-582.
60. Wang, W.; Castro, L. A.; Hoyos, M.; Mallouk, T. E. Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano. 2012, 6, 6122-6132.
61. Pak, O. S.; Gao, W.; Wang, J.; Lauga, E. High-speed propulsion of flexible nanowire motors: Theory and experiments. Soft Matter. 2011, 7, 8169-8181.
62. Gao, W.; Sattayasamitsathit, S.; Manesh, K. M.; Weihs, D.; Wang, J. Magnetically powered flexible metal nanowire motors. J Am Chem Soc. 2010, 132, 14403-14405.
63. Wu, Z.; Lin, X.; Wu, Y.; Si, T.; Sun, J.; He, Q. Near-infrared light-triggered “on/off” motion of polymer multilayer rockets. ACS Nano. 2014, 8, 6097-6105.
64. Zhao, G.; Sanchez, S.; Schmidt, O. G.; Pumera, M. Micromotors with built-in compasses. Chem Commun (Camb). 2012, 48, 10090-10092.
65. Dai, B.; Wang, J.; Xiong, Z.; Zhan, X.; Dai, W.; Li, C. C.; Feng, S. P.; Tang, J. Programmable artificial phototactic microswimmer. Nat Nanotechnol. 2016, 11, 1087-1092.
66. Guo, J.; Gallegos, J. J.; Tom, A. R.; Fan, D. Electric-field-guided precision manipulation of catalytic nanomotors for cargo delivery and powering nanoelectromechanical devices. ACS Nano. 2018, 12, 1179-1187.
67. Qin, L.; Banholzer, M. J.; Xu, X.; Huang, L.; Mirkin, C. A. Rational design and synthesis of catalytically driven nanorotors. J Am Chem Soc. 2007, 129, 14870-14871.
68. Dhar, P.; Fischer, T. M.; Wang, Y.; Mallouk, T. E.; Paxton, W. F.; Sen, A. Autonomously moving nanorods at a viscous interface. Nano Lett. 2006, 6, 66-72.
69. Gallino, G.; Gallaire, F.; Lauga, E.; Michelin, S. Physics of bubble-propelled microrockets. Adv Funct Mater. 2018, 28, 1800686.
70. Klingner, A.; Khalil, I. S. M.; Magdanz, V.; Fomin, V. M.; Schmidt, O. G.; Misra, S. Modeling of unidirectional-overloaded transition in catalytic tubular microjets. J Phys Chem C. 2017, 121, 14854-14863.
71. Kline, T. R.; Paxton, W. F.; Mallouk, T. E.; Sen, A. Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew Chem Int Ed Engl. 2005, 44, 744-746.
72. Yao, K.; Manjare, M.; Barrett, C. A.; Yang, B.; Salguero, T. T.; Zhao, Y. Nanostructured scrolls from graphene oxide for microjet engines. J Phys Chem Lett. 2012, 3, 2204-2208.
73. Zhao, G.; Ambrosi, A.; Pumera, M. Clean room-free rapid fabrication of roll-up self-powered catalytic microengines. J Mater Chem A. 2014, 2, 1219-1223.
74. Hu, N.; Sun, M.; Lin, X.; Gao, C.; Zhang, B.; Zheng, C.; Xie, H.; He, Q. Self-propelled rolled-up polyelectrolyte multilayer microrockets. Adv Funct Mater. 2018, 28, 1705684.
75. Manesh, K. M.; Cardona, M.; Yuan, R.; Clark, M.; Kagan, D.; Balasubramanian, S.; Wang, J. Template-assisted fabrication of salt-independent catalytic tubular microengines. ACS Nano. 2010, 4, 1799-1804.
76. Gao, W.; Sattayasamitsathit, S.; Orozco, J.; Wang, J. Highly efficient catalytic microengines: template electrosynthesis of polyaniline/platinum microtubes. J Am Chem Soc. 2011, 133, 11862-11864.
77. Gao, W.; Sattayasamitsathit, S.; Uygun, A.; Pei, A.; Ponedal, A.; Wang, J. Polymer-based tubular microbots: role of composition and preparation. Nanoscale. 2012, 4, 2447-2453.
78. Maria-Hormigos, R.; Jurado-Sanchez, B.; Vazquez, L.; Escarpa, A. Carbon allotrope nanomaterials based catalytic micromotors. Chem Mater. 2016, 28, 8962-8970.
79. Peng, F.; Men, Y.; Tu, Y.; Chen, Y.; Wilson, D. A. Nanomotor-based strategy for enhanced penetration across vasculature model. Adv Funct Mater. 2018, 28, 1706117.
80. Dong, B.; Zhou, T.; Zhang, H.; Li, C. Y. Directed self-assembly of nanoparticles for nanomotors. ACS Nano. 2013, 7, 5192-5198.
81. Peng, F.; Tu, Y.; Adhikari, A.; Hintzen, J. C.; Löwik, D. W.; Wilson, D. A. A peptide functionalized nanomotor as an efficient cell penetrating tool. Chem Commun (Camb). 2017, 53, 1088-1091.
82. Toebes, B. J.; Abdelmohsen, L. K. E. A.; Wilson, D. A. Enzyme-driven biodegradable nanomotor based on tubular-shaped polymeric vesicles. Polym Chem. 2018, 9, 3190-3194.
83. Xu, X.; Li, H.; Hasan, D.; Ruoff, R. S.; Wang, A. X.; Fan, D. L. Near-field enhanced plasmonic-magnetic bifunctional nanotubes for single cell bioanalysis. Adv Funct Mater. 2013, 23, 4332-4338.
84. Kagan, D.; Laocharoensuk, R.; Zimmerman, M.; Clawson, C.; Balasubramanian, S.; Kang, D.; Bishop, D.; Sattayasamitsathit, S.; Zhang, L.; Wang, J. Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles. Small. 2010, 6, 2741-2747.
85. Leader, B.; Baca, Q. J.; Golan, D. E. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008, 7, 21-39.
86. Tang, R.; Kim, C. S.; Solfiell, D. J.; Rana, S.; Mout, R.; Velázquez-Delgado, E. M.; Chompoosor, A.; Jeong, Y.; Yan, B.; Zhu, Z. J.; Kim, C.; Hardy, J. A.; Rotello, V. M. Direct delivery of functional proteins and enzymes to the cytosol using nanoparticle-stabilized nanocapsules. ACS Nano. 2013, 7, 6667-6673.
87. Scaletti, F.; Hardie, J.; Lee, Y. W.; Luther, D. C.; Ray, M.; Rotello, V. M. Protein delivery into cells using inorganic nanoparticle-protein supramolecular assemblies. Chem Soc Rev. 2018, 47, 3421-3432.
88. Esteban-Fernández de Ávila, B.; Ramírez-Herrera, D. E.; Campuzano, S.; Angsantikul, P.; Zhang, L.; Wang, J. Nanomotor-enabled pH-responsive intracellular delivery of caspase-3: toward rapid cell apoptosis. ACS Nano. 2017, 11, 5367-5374.
89. Uygun, M.; Jurado-Sánchez, B.; Uygun, D. A.; Singh, V. V.; Zhang, L.; Wang, J. Ultrasound-propelled nanowire motors enhance asparaginase enzymatic activity against cancer cells. Nanoscale. 2017, 9, 18423-18429.
90. Díez, P.; Esteban-Fernández de Ávila, B.; Ramírez-Herrera, D. E.; Villalonga, R.; Wang, J. Biomedical nanomotors: efficient glucose-mediated insulin release. Nanoscale. 2017, 9, 14307-14311.
91. Esteban-Fernández de Ávila, B.; Angell, C.; Soto, F.; Lopez-Ramirez, M. A.; Báez, D. F.; Xie, S.; Wang, J.; Chen, Y. Acoustically propelled nanomotors for intracellular siRNA delivery. ACS Nano. 2016, 10, 4997-5005.
92. Gao, W.; Dong, R.; Thamphiwatana, S.; Li, J.; Gao, W.; Zhang, L.; Wang, J. Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano. 2015, 9, 117-123.
93. Li, J.; Thamphiwatana, S.; Liu, W.; Esteban-Fernández de Ávila, B.; Angsantikul, P.; Sandraz, E.; Wang, J.; Xu, T.; Soto, F.; Ramez, V.; Wang, X.; Gao, W.; Zhang, L.; Wang, J. Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract. ACS Nano. 2016, 10, 9536-9542.
94. Yu, X.; Li, Y.; Wu, J.; Ju, H. Motor-based autonomous microsensor for motion and counting immunoassay of cancer biomarker. Anal Chem. 2014, 86, 4501-4507.
95. Qin, W.; Peng, T.; Gao, Y.; Wang, F.; Hu, X.; Wang, K.; Shi, J.; Li, D.; Ren, J.; Fan, C. Catalysis-driven self-thermophoresis of janus plasmonic nanomotors. Angew Chem Int Ed Engl. 2017, 56, 515-518.
96. Bunea, A. I.; Pavel, I. A.; David, S.; Gáspár, S. Sensing based on the motion of enzyme-modified nanorods. Biosens Bioelectron. 2015, 67, 42-48.
97. Van Nguyen, K.; Minteer, S. D. DNA-functionalized Pt nanoparticles as catalysts for chemically powered micromotors: toward signal-on motion-based DNA biosensor. Chem Commun (Camb). 2015, 51, 4782-4784.
98. Fu, S.; Zhang, X.; Xie, Y.; Wu, J.; Ju, H. An efficient enzyme-powered micromotor device fabricated by cyclic alternate hybridization assembly for DNA detection. Nanoscale. 2017, 9, 9026-9033.
99. Xie, Y.; Fu, S.; Wu, J.; Lei, J.; Ju, H. Motor-based microprobe powered by bio-assembled catalase for motion detection of DNA. Biosens Bioelectron. 2017, 87, 31-37.
100. Esteban-Fernández de Ávila, B.; Martín, A.; Soto, F.; Lopez-Ramirez, M. A.; Campuzano, S.; Vásquez-Machado, G. M.; Gao, W.; Zhang, L.; Wang, J. Single cell real-time miRNAs sensing based on nanomotors. ACS Nano. 2015, 9, 6756-6764.
101. Kagan, D.; Benchimol, M. J.; Claussen, J. C.; Chuluun-Erdene, E.; Esener, S.; Wang, J. Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation. Angew Chem Int Ed Engl. 2012, 51, 7519-7522.
102. Chatzipirpiridis, G.; Ergeneman, O.; Pokki, J.; Ullrich, F.; Fusco, S.; Ortega, J. A.; Sivaraman, K. M.; Nelson, B. J.; Pané, S. Electroforming of implantable tubular magnetic microrobots for wireless ophthalmologic applications. Adv Healthc Mater. 2015, 4, 209-214.
103. Cai, D.; Mataraza, J. M.; Qin, Z. H.; Huang, Z.; Huang, J.; Chiles, T. C.; Carnahan, D.; Kempa, K.; Ren, Z. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods. 2005, 2, 449-454.
104. Hansen-Bruhn, M.; de Ávila, B. E.; Beltrán-Gastélum, M.; Zhao, J.; Ramírez-Herrera, D. E.; Angsantikul, P.; Vesterager Gothelf, K.; Zhang, L.; Wang, J. Active intracellular delivery of a Cas9/sgRNA complex using ultrasound-propelled nanomotors. Angew Chem Int Ed Engl. 2018, 57, 2657-2661.