·
REVIEW
·

One-dimensional micro/nanomotors for biomedicine: delivery, sensing and surgery

Jiawang Guo1 Yuan Lin1*
Show Less
1 The State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin Province, China.
Submitted: 11 August 2020 | Revised: 21 August 2020 | Accepted: 21 August 2020 | Published: 28 December 2020
Copyright © 2020 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

The rapid development of artificial micro/nanomachines brings promising strategies to overcome challenges in biomedicine, including delivery, sensing and surgery. One-dimensional (1D) micro/nanomotors are one of the most attractive micro/nanomachines due to their high specific surface area, powerful impetus and weak rotation diffusion. In this review, different propulsion mechanisms and motion control strategies of 1D micro/nanomotors are summarized, and recent efforts towards their fabrication methods and biomedical applications are discussed. We envision the multidisciplinary research efforts in the field of 1D micro/nanomotors will pave their way to practical applications in bioimaging and biomedicine.

Keywords
biomedicine ; micromotor ; nanomotor ; one-dimensional
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

1. Giulianotti, P. C.; Coratti, A.; Angelini, M.; Sbrana, F.; Cecconi, S.; Balestracci, T.; Caravaglios, G. Robotics in general surgery: personal experience in a large community hospital. Arch Surg. 2003, 138, 777-784.  
2. Li, J.; Esteban-Fernández de Ávila, B.; Gao, W.; Zhang, L.; Wang, J. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci Robot. 2017, 2, eaam6431.  
3. Nelson, B. J.; Kaliakatsos, I. K.; Abbott, J. J. Microrobots for minimally invasive medicine. Annu Rev Biomed Eng. 2010, 12, 55-85.  
4. Abdelmohsen, L.; Peng, F.; Tu, Y.; Wilson, D. A. Micro- and nano-motors for biomedical applications. J Mater Chem B. 2014, 2, 2395-2408.  
5. Peng, F.; Tu, Y.; Wilson, D. A. Micro/nanomotors towards in vivo application: cell, tissue and biofluid. Chem Soc Rev. 2017, 46, 5289-5310.  
6. Kim, K.; Guo, J.; Liang, Z.; Fan, D. Artificial micro/nanomachines for bioapplications: biochemical delivery and diagnostic sensing. Adv Funct Mater. 2018, 28, 1705867.  
7. Dey, K. K.; Sen, A. Chemically propelled molecules and machines. J Am Chem Soc. 2017, 139, 7666-7676.  
8. Xu, T.; Gao, W.; Xu, L. P.; Zhang, X.; Wang, S. Fuel-free synthetic micro/nanomachines. Adv Mater. 2017, 29, 10.  
9. Guix, M.; Mayorga-Martinez, C. C.; Merkoçi, A. Nano/micromotors in (bio)chemical science applications. Chem Rev. 2014, 114, 6285-6322.  
10. Duan, W.; Wang, W.; Das, S.; Yadav, V.; Mallouk, T. E.; Sen, A. Synthetic nano- and micromachines in analytical chemistry: sensing, migration, capture, delivery, and separation. Annu Rev Anal Chem (Palo Alto Calif). 2015, 8, 311-333.  
11. Ceylan, H.; Giltinan, J.; Kozielski, K.; Sitti, M. Mobile microrobots for bioengineering applications. Lab Chip. 2017, 17, 1705-1724.  
12. Xu, B.; Zhang, B.; Wang, L.; Huang, G.; Mei, Y. Tubular micro/nanomachines: from the basics to recent advances. Adv Funct Mater. 2018, 28, 1705872.  
13. Li, L.; Liang, L.; Wu, H.; Zhu, X. One-dimensional perovskite manganite oxide nanostructures: recent developments in synthesis, characterization, transport properties, and applications. Nanoscale Res Lett. 2016, 11, 121.  
14. Chen, J.; Wiley, B. J.; Xia, Y. One-dimensional nanostructures of metals: large-scale synthesis and some potential applications. Langmuir. 2007, 23, 4120-4129.  
15. Donald, I. W. Production, properties and applications of microwire and related products. J Mater Sci. 1987, 22, 2661-2679.  
16. Liang, H. W.; Liu, J. W.; Qian, H. S.; Yu, S. H. Multiplex templating process in one-dimensional nanoscale: controllable synthesis, macroscopic assemblies, and applications. Acc Chem Res. 2013, 46, 1450-1461.  
17. Zan, X.; Feng, S.; Balizan, E.; Lin, Y.; Wang, Q. Facile method for large scale alignment of one dimensional nanoparticles and control over myoblast orientation and differentiation. ACS Nano. 2013, 7, 8385-8396.  
18. Feng, S.; Lu, L.; Zan, X.; Wu, Y.; Lin, Y.; Wang, Q. Genetically engineered plant viral nanoparticles direct neural cells differentiation and orientation. Langmuir. 2015, 31, 9402-9409.  
19. Chen, L.; Zhao, X.; Lin, Y.; Su, Z.; Wang, Q. Dual stimuli-responsive supramolecular hydrogel of bionanoparticles and hyaluronan. Polym Chem. 2014, 5, 6754-6760.  
20. Guo, J.; Zhao, X.; Hu, J.; Lin, Y.; Wang, Q. Tobacco mosaic virus with peroxidase-like activity for cancer cell detection through colorimetric assay. Mol Pharm. 2018, 15, 2946-2953.  
21. Tu, Y.; Peng, F.; Wilson, D. A. Motion manipulation of micro- and nanomotors. Adv Mater. 2017, 29, 1701970.  
22. Wang, H.; Pumera, M. Fabrication of micro/nanoscale motors. Chem Rev. 2015, 115, 8704-8735.  
23. Paxton, W. F.; Kistler, K. C.; Olmeda, C. C.; Sen, A.; St Angelo, S. K.; Cao, Y.; Mallouk, T. E.; Lammert, P. E.; Crespi, V. H. Catalytic nanomotors: autonomous movement of striped nanorods. J Am Chem Soc. 2004, 126, 13424-13431.  
24. Sundararajan, S.; Lammert, P. E.; Zudans, A. W.; Crespi, V. H.; Sen, A. Catalytic motors for transport of colloidal cargo. Nano Lett. 2008, 8, 1271-1276.  
25. Ma, X.; Hortelão, A. C.; Patiño, T.; Sánchez, S. Enzyme catalysis to power micro/nanomachines. ACS Nano. 2016, 10, 9111-9122.  
26. Kinnear, C.; Moore, T. L.; Rodriguez-Lorenzo, L.; Rothen-Rutishauser, B.; Petri-Fink, A. Form follows function: Nanoparticle shape and its implications for nanomedicine. Chem Rev. 2017, 117, 11476-11521.  
27. Wen, A. M.; Steinmetz, N. F. Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem Soc Rev. 2016, 45, 4074-4126.  
28. Baraban, L.; Harazim, S. M.; Sanchez, S.; Schmidt, O. G. Chemotactic behavior of catalytic motors in microfluidic channels. Angew Chem Int Ed Engl. 2013, 52, 5552-5556.  
29. Sahari, A.; Headen, D.; Behkam, B. Effect of body shape on the motile behavior of bacteria-powered swimming microrobots (BacteriaBots). Biomed Microdevices. 2012, 14, 999-1007.  
30. Li, J.; Liu, W.; Wang, J.; Rozen, I.; He, S.; Chen, C.; Kim, H. G.; Lee, H. J.; Lee, H. B. R.; Kwon, S. H.; Li, T.; Li, L.; Wang, J.; Mei, Y. Nanoconfined atomic layer deposition of TiO2/Pt nanotubes: toward ultrasmall highly efficient catalytic nanorockets. Adv Funct Mater. 2017, 27, 1700598.  
31. Li, J.; Rozen, I.; Wang, J. Rocket science at the nanoscale. ACS Nano. 2016, 10, 5619-5634.  
32. Sánchez, S.; Soler, L.; Katuri, J. Chemically powered micro- and nanomotors. Angew Chem Int Ed Engl. 2015, 54, 1414-1444.  
33. Gao, W.; Uygun, A.; Wang, J. Hydrogen-bubble-propelled zinc-based microrockets in strongly acidic media. J Am Chem Soc. 2012, 134, 897-900.  
34. Paxton, W. F.; Sen, A.; Mallouk, T. E. Motility of catalytic nanoparticles through self-generated forces. Chemistry. 2005, 11, 6462-6470.  
35. Ma, X.; Hortelao, A. C.; Miguel-López, A.; Sánchez, S. Bubble-free propulsion of ultrasmall tubular nanojets powered by biocatalytic reactions. J Am Chem Soc. 2016, 138, 13782-13785.  
36. Dreyfus, R.; Baudry, J.; Roper, M. L.; Fermigier, M.; Stone, H. A.; Bibette, J. Microscopic artificial swimmers. Nature. 2005, 437, 862-865.  
37. Mirkovic, T.; Zacharia, N. S.; Scholes, G. D.; Ozin, G. A. Nanolocomotion - catalytic nanomotors and nanorotors. Small. 2010, 6, 159-167.  
38. Wang, Y.; Hernandez, R. M.; Bartlett, D. J. Jr.; Bingham, J. M.; Kline, T. R.; Sen, A.; Mallouk, T. E. Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir. 2006, 22, 10451-10456.  
39. Fournier-Bidoz, S.; Arsenault, A. C.; Manners, I.; Ozin, G. A. Synthetic self-propelled nanorotors. Chem Commun (Camb). 2005, 441-443.  

40. Demirok, U. K.; Laocharoensuk, R.; Manesh, K. M.; Wang, J. Ultrafast catalytic alloy nanomotors. Angew Chem Int Ed Engl. 2008, 47, 9349-9351.  
41. Liu, R.; Sen, A. Autonomous nanomotor based on copper-platinum segmented nanobattery. J Am Chem Soc. 2011, 133, 20064-20067.  
42. Pumera, M. Electrochemically powered self-propelled electrophoretic nanosubmarines. Nanoscale. 2010, 2, 1643-1649.  
43. Mei, Y.; Huang, G.; Solovev, A. A.; Ureña, E. B.; Mönch, I.; Ding, F.; Reindl, T.; Fu, R. K. Y.; Chu, P. K.; Schmidt, O. G. Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers. Adv Mater. 2008, 20, 4085-4090.  
44. Solovev, A. A.; Mei, Y.; Bermúdez Ureña, E.; Huang, G.; Schmidt, O. G. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small. 2009, 5, 1688-1692.  
45. Manjare, M.; Yang, B.; Zhao, Y. P. Bubble-propelled microjets: model and experiment. J Phys Chem C. 2013, 117, 4657-4665.  
46. Luo, M.; Feng, Y.; Wang, T.; Guan, J. Micro-/nanorobots at work in active drug delivery. Adv Funct Mater. 2018, 28, 1706100.  
47. Wu, Z.; Lin, X.; Zou, X.; Sun, J.; He, Q. Biodegradable protein-based rockets for drug transportation and light-triggered release. ACS Appl Mater Interfaces. 2015, 7, 250-255.  
48. Simmchen, J.; Magdanz, V.; Sanchez, S.; Chokmaviroj, S.; Ruiz-Molina, D.; Baeza, A.; Schmidt, O. G. Effect of surfactants on the performance of tubular and spherical micromotors - a comparative study. RSC Adv. 2014, 4, 20334-20340.  
49. Kagan, D.; Calvo-Marzal, P.; Balasubramanian, S.; Sattayasamitsathit, S.; Manesh, K. M.; Flechsig, G. U.; Wang, J. Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver. J Am Chem Soc. 2009, 131, 12082-12083.  
50. Li, J.; Liu, W.; Wu, X.; Gao, X. Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials. 2015, 48, 37-44.  
51. Wu, Z.; Wu, Y.; He, W.; Lin, X.; Sun, J.; He, Q. Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew Chem Int Ed Engl. 2013, 52, 7000-7003.  
52. Hong, Y.; Blackman, N. M.; Kopp, N. D.; Sen, A.; Velegol, D. Chemotaxis of nonbiological colloidal rods. Phys Rev Lett. 2007, 99, 178103.  
53. Fan, D. L.; Cammarata, R. C.; Chien, C. L. Precision transport and assembling of nanowires in suspension by electric fields. Appl Phys Lett. 2008, 92, 093115.  
54. Kim, K.; Xu, X.; Guo, J.; Fan, D. L. Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks. Nat Commun. 2014, 5, 3632.  
55. Xu, L.; Mou, F.; Gong, H.; Luo, M.; Guan, J. Light-driven micro/nanomotors: from fundamentals to applications. Chem Soc Rev. 2017, 46, 6905-6926.  
56. Gorostiza, P.; Isacoff, E. Y. Optical switches for remote and noninvasive control of cell signaling. Science. 2008, 322, 395-399.  
57. Giudicatti, S.; Marz, S. M.; Soler, L.; Madani, A.; Jorgensen, M. R.; Sanchez, S.; Schmidt, O. G. Photoactive rolled-up TiO(2) microtubes: fabrication, characterization and applications. J Mater Chem C Mater. 2014, 2, 5892-5901.  
58. Mou, F.; Li, Y.; Chen, C.; Li, W.; Yin, Y.; Ma, H.; Guan, J. Single-component TiO2 tubular microengines with motion controlled by light-induced bubbles. Small. 2015, 11, 2564-2570.  
59. Wu, Z.; Si, T.; Gao, W.; Lin, X.; Wang, J.; He, Q. Superfast near-infrared light-driven polymer multilayer rockets. Small. 2016, 12, 577-582.  
60. Wang, W.; Castro, L. A.; Hoyos, M.; Mallouk, T. E. Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano. 2012, 6, 6122-6132.  
61. Pak, O. S.; Gao, W.; Wang, J.; Lauga, E. High-speed propulsion of flexible nanowire motors: Theory and experiments. Soft Matter. 2011, 7, 8169-8181.  
62. Gao, W.; Sattayasamitsathit, S.; Manesh, K. M.; Weihs, D.; Wang, J. Magnetically powered flexible metal nanowire motors. J Am Chem Soc. 2010, 132, 14403-14405.  
63. Wu, Z.; Lin, X.; Wu, Y.; Si, T.; Sun, J.; He, Q. Near-infrared light-triggered “on/off” motion of polymer multilayer rockets. ACS Nano. 2014, 8, 6097-6105.  
64. Zhao, G.; Sanchez, S.; Schmidt, O. G.; Pumera, M. Micromotors with built-in compasses. Chem Commun (Camb). 2012, 48, 10090-10092.  
65. Dai, B.; Wang, J.; Xiong, Z.; Zhan, X.; Dai, W.; Li, C. C.; Feng, S. P.; Tang, J. Programmable artificial phototactic microswimmer. Nat Nanotechnol. 2016, 11, 1087-1092.  
66. Guo, J.; Gallegos, J. J.; Tom, A. R.; Fan, D. Electric-field-guided precision manipulation of catalytic nanomotors for cargo delivery and powering nanoelectromechanical devices. ACS Nano. 2018, 12, 1179-1187.  
67. Qin, L.; Banholzer, M. J.; Xu, X.; Huang, L.; Mirkin, C. A. Rational design and synthesis of catalytically driven nanorotors. J Am Chem Soc. 2007, 129, 14870-14871.  
68. Dhar, P.; Fischer, T. M.; Wang, Y.; Mallouk, T. E.; Paxton, W. F.; Sen, A. Autonomously moving nanorods at a viscous interface. Nano Lett. 2006, 6, 66-72.  
69. Gallino, G.; Gallaire, F.; Lauga, E.; Michelin, S. Physics of bubble-propelled microrockets. Adv Funct Mater. 2018, 28, 1800686.  
70. Klingner, A.; Khalil, I. S. M.; Magdanz, V.; Fomin, V. M.; Schmidt, O. G.; Misra, S. Modeling of unidirectional-overloaded transition in catalytic tubular microjets. J Phys Chem C. 2017, 121, 14854-14863.  
71. Kline, T. R.; Paxton, W. F.; Mallouk, T. E.; Sen, A. Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew Chem Int Ed Engl. 2005, 44, 744-746.  
72. Yao, K.; Manjare, M.; Barrett, C. A.; Yang, B.; Salguero, T. T.; Zhao, Y. Nanostructured scrolls from graphene oxide for microjet engines. J Phys Chem Lett. 2012, 3, 2204-2208.  
73. Zhao, G.; Ambrosi, A.; Pumera, M. Clean room-free rapid fabrication of roll-up self-powered catalytic microengines. J Mater Chem A. 2014, 2, 1219-1223.  
74. Hu, N.; Sun, M.; Lin, X.; Gao, C.; Zhang, B.; Zheng, C.; Xie, H.; He, Q. Self-propelled rolled-up polyelectrolyte multilayer microrockets. Adv Funct Mater. 2018, 28, 1705684.  
75. Manesh, K. M.; Cardona, M.; Yuan, R.; Clark, M.; Kagan, D.; Balasubramanian, S.; Wang, J. Template-assisted fabrication of salt-independent catalytic tubular microengines. ACS Nano. 2010, 4, 1799-1804.  
76. Gao, W.; Sattayasamitsathit, S.; Orozco, J.; Wang, J. Highly efficient catalytic microengines: template electrosynthesis of polyaniline/platinum microtubes. J Am Chem Soc. 2011, 133, 11862-11864.  
77. Gao, W.; Sattayasamitsathit, S.; Uygun, A.; Pei, A.; Ponedal, A.; Wang, J. Polymer-based tubular microbots: role of composition and preparation. Nanoscale. 2012, 4, 2447-2453.  
78. Maria-Hormigos, R.; Jurado-Sanchez, B.; Vazquez, L.; Escarpa, A. Carbon allotrope nanomaterials based catalytic micromotors. Chem Mater. 2016, 28, 8962-8970.  
79. Peng, F.; Men, Y.; Tu, Y.; Chen, Y.; Wilson, D. A. Nanomotor-based strategy for enhanced penetration across vasculature model. Adv Funct Mater. 2018, 28, 1706117.  
80. Dong, B.; Zhou, T.; Zhang, H.; Li, C. Y. Directed self-assembly of nanoparticles for nanomotors. ACS Nano. 2013, 7, 5192-5198.  
81. Peng, F.; Tu, Y.; Adhikari, A.; Hintzen, J. C.; Löwik, D. W.; Wilson, D. A. A peptide functionalized nanomotor as an efficient cell penetrating tool. Chem Commun (Camb). 2017, 53, 1088-1091.

82. Toebes, B. J.; Abdelmohsen, L. K. E. A.; Wilson, D. A. Enzyme-driven biodegradable nanomotor based on tubular-shaped polymeric vesicles. Polym Chem. 2018, 9, 3190-3194.  
83. Xu, X.; Li, H.; Hasan, D.; Ruoff, R. S.; Wang, A. X.; Fan, D. L. Near-field enhanced plasmonic-magnetic bifunctional nanotubes for single cell bioanalysis. Adv Funct Mater. 2013, 23, 4332-4338.  
84. Kagan, D.; Laocharoensuk, R.; Zimmerman, M.; Clawson, C.; Balasubramanian, S.; Kang, D.; Bishop, D.; Sattayasamitsathit, S.; Zhang, L.; Wang, J. Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles. Small. 2010, 6, 2741-2747.  
85. Leader, B.; Baca, Q. J.; Golan, D. E. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008, 7, 21-39.  
86. Tang, R.; Kim, C. S.; Solfiell, D. J.; Rana, S.; Mout, R.; Velázquez-Delgado, E. M.; Chompoosor, A.; Jeong, Y.; Yan, B.; Zhu, Z. J.; Kim, C.; Hardy, J. A.; Rotello, V. M. Direct delivery of functional proteins and enzymes to the cytosol using nanoparticle-stabilized nanocapsules. ACS Nano. 2013, 7, 6667-6673.  
87. Scaletti, F.; Hardie, J.; Lee, Y. W.; Luther, D. C.; Ray, M.; Rotello, V. M. Protein delivery into cells using inorganic nanoparticle-protein supramolecular assemblies. Chem Soc Rev. 2018, 47, 3421-3432.  
88. Esteban-Fernández de Ávila, B.; Ramírez-Herrera, D. E.; Campuzano, S.; Angsantikul, P.; Zhang, L.; Wang, J. Nanomotor-enabled pH-responsive intracellular delivery of caspase-3: toward rapid cell apoptosis. ACS Nano. 2017, 11, 5367-5374.  
89. Uygun, M.; Jurado-Sánchez, B.; Uygun, D. A.; Singh, V. V.; Zhang, L.; Wang, J. Ultrasound-propelled nanowire motors enhance asparaginase enzymatic activity against cancer cells. Nanoscale. 2017, 9, 18423-18429.  
90. Díez, P.; Esteban-Fernández de Ávila, B.; Ramírez-Herrera, D. E.; Villalonga, R.; Wang, J. Biomedical nanomotors: efficient glucose-mediated insulin release. Nanoscale. 2017, 9, 14307-14311.  
91. Esteban-Fernández de Ávila, B.; Angell, C.; Soto, F.; Lopez-Ramirez, M. A.; Báez, D. F.; Xie, S.; Wang, J.; Chen, Y. Acoustically propelled nanomotors for intracellular siRNA delivery. ACS Nano. 2016, 10, 4997-5005.  
92. Gao, W.; Dong, R.; Thamphiwatana, S.; Li, J.; Gao, W.; Zhang, L.; Wang, J. Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano. 2015, 9, 117-123.  
93. Li, J.; Thamphiwatana, S.; Liu, W.; Esteban-Fernández de Ávila, B.; Angsantikul, P.; Sandraz, E.; Wang, J.; Xu, T.; Soto, F.; Ramez, V.; Wang, X.; Gao, W.; Zhang, L.; Wang, J. Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract. ACS Nano. 2016, 10, 9536-9542.  
94. Yu, X.; Li, Y.; Wu, J.; Ju, H. Motor-based autonomous microsensor for motion and counting immunoassay of cancer biomarker. Anal Chem. 2014, 86, 4501-4507.  
95. Qin, W.; Peng, T.; Gao, Y.; Wang, F.; Hu, X.; Wang, K.; Shi, J.; Li, D.; Ren, J.; Fan, C. Catalysis-driven self-thermophoresis of janus plasmonic nanomotors. Angew Chem Int Ed Engl. 2017, 56, 515-518.  
96. Bunea, A. I.; Pavel, I. A.; David, S.; Gáspár, S. Sensing based on the motion of enzyme-modified nanorods. Biosens Bioelectron. 2015, 67, 42-48.  
97. Van Nguyen, K.; Minteer, S. D. DNA-functionalized Pt nanoparticles as catalysts for chemically powered micromotors: toward signal-on motion-based DNA biosensor. Chem Commun (Camb). 2015, 51, 4782-4784.  
98. Fu, S.; Zhang, X.; Xie, Y.; Wu, J.; Ju, H. An efficient enzyme-powered micromotor device fabricated by cyclic alternate hybridization assembly for DNA detection. Nanoscale. 2017, 9, 9026-9033.  
99. Xie, Y.; Fu, S.; Wu, J.; Lei, J.; Ju, H. Motor-based microprobe powered by bio-assembled catalase for motion detection of DNA. Biosens Bioelectron. 2017, 87, 31-37.  
100. Esteban-Fernández de Ávila, B.; Martín, A.; Soto, F.; Lopez-Ramirez, M. A.; Campuzano, S.; Vásquez-Machado, G. M.; Gao, W.; Zhang, L.; Wang, J. Single cell real-time miRNAs sensing based on nanomotors. ACS Nano. 2015, 9, 6756-6764.  
101. Kagan, D.; Benchimol, M. J.; Claussen, J. C.; Chuluun-Erdene, E.; Esener, S.; Wang, J. Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation. Angew Chem Int Ed Engl. 2012, 51, 7519-7522.  
102. Chatzipirpiridis, G.; Ergeneman, O.; Pokki, J.; Ullrich, F.; Fusco, S.; Ortega, J. A.; Sivaraman, K. M.; Nelson, B. J.; Pané, S. Electroforming of implantable tubular magnetic microrobots for wireless ophthalmologic applications. Adv Healthc Mater. 2015, 4, 209-214.  
103. Cai, D.; Mataraza, J. M.; Qin, Z. H.; Huang, Z.; Huang, J.; Chiles, T. C.; Carnahan, D.; Kempa, K.; Ren, Z. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods. 2005, 2, 449-454.  
104. Hansen-Bruhn, M.; de Ávila, B. E.; Beltrán-Gastélum, M.; Zhao, J.; Ramírez-Herrera, D. E.; Angsantikul, P.; Vesterager Gothelf, K.; Zhang, L.; Wang, J. Active intracellular delivery of a Cas9/sgRNA complex using ultrasound-propelled nanomotors. Angew Chem Int Ed Engl. 2018, 57, 2657-2661.  

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top