·
REVIEW
·

Advances in electrode interface materials and modification technologies for brain-computer interfaces

Yunke Jiao1 Miao Lei1 Jianwei Zhu1 Ronghang Chang1 Xue Qu1,2,3*
Show Less
1 Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, China
2 Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang Province, China
3 Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai, China
Submitted: 30 September 2023 | Revised: 13 November 2023 | Accepted: 24 November 2023 | Published: 27 December 2023
Copyright © 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract
Abstract

Recent advances in neuroelectrode interface materials and modification technologies are reviewed. Brain-computer interface is the new method of human-computer interaction, which not only can realise the exchange of information between the human brain and external devices, but also provides a brand-new means for the diagnosis and treatment of brain-related diseases. The neural electrode interface part of brain-computer interface is an important area for electrical, optical and chemical signal transmission between brain tissue system and external electronic devices, which determines the performance of brain-computer interface. In order to solve the problems of insufficient flexibility, insufficient signal recognition ability and insufficient biocompatibility of traditional rigid electrodes, researchers have carried out extensive studies on the neuroelectrode interface in terms of materials and modification techniques. This paper introduces the biological reactions that occur in neuroelectrodes after implantation into brain tissue and the decisive role of the electrode interface for electrode function. Following this, the latest research progress on neuroelectrode materials and interface materials is reviewed from the aspects of neuroelectrode materials and modification technologies, firstly taking materials as a clue, and then focusing on the preparation process of neuroelectrode coatings and the design scheme of functionalised structures.

Keywords
biomaterials ; brain-computer interface ; conductive polymer ; interface materials ; microstructure ; neuroelectrode
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

1. Serino, A.; Bockbrader, M.; Bertoni, T.; Colachis Iv, S.; Solcà, M.; Dunlap, C.; Eipel, K.; Ganzer, P.; Annetta, N.; Sharma, G.; Orepic, P.; Friedenberg, D.; Sederberg, P.; Faivre, N.; Rezai, A.; Blanke, O. Sense of agency for intracortical brain-machine interfaces. Nat Hum Behav. 2022, 6, 565-578.

2. Shanechi, M. M. Brain-machine interfaces from motor to mood. Nat Neurosci. 2019, 22, 1554-1564.

3. Young, M. J.; Lin, D. J.; Hochberg, L. R. Brain-Computer Interfaces in Neurorecovery and Neurorehabilitation. Semin Neurol. 2021, 41, 206-216.

4. Steins, H.; Mierzejewski, M.; Brauns, L.; Stumpf, A.; Kohler, A.; Heusel, G.; Corna, A.; Herrmann, T.; Jones, P. D.; Zeck, G.; von Metzen, R.; Stieglitz, T. A flexible protruding microelectrode array for neural interfacing in bioelectronic medicine. Microsyst Nanoeng. 2022, 8, 131.

5. Choi, J. S.; Lee, H. J.; Rajaraman, S.; Kim, D. H. Recent advances in three-dimensional microelectrode array technologies for in vitro and in vivo cardiac and neuronal interfaces. Biosens Bioelectron. 2021, 171, 112687.

6. Fattahi, P.; Yang, G.; Kim, G.; Abidian, M. R. A review of organic and inorganic biomaterials for neural interfaces. Adv Mater. 2014, 26, 1846-1885.

7. Cruz, A. M.; Casañ-Pastor, N. Graded conducting titanium–iridium oxide coatings for bioelectrodes in neural systems. Thin Solid Films. 2013, 534, 316-324.

8. Chapman, C. A.; Chen, H.; Stamou, M.; Biener, J.; Biener, M. M.; Lein, P. J.; Seker, E. Nanoporous gold as a neural interface coating: effects of topography, surface chemistry, and feature size. ACS Appl Mater Interfaces. 2015, 7, 7093-7100.

9. Boehler, C.; Stieglitz, T.; Asplund, M. Nanostructured platinum grass enables superior impedance reduction for neural microelectrodes. Biomaterials. 2015, 67, 346-353.

10. Li, J.; Cheng, Y.; Gu, M.; Yang, Z.; Zhan, L.; Du, Z. Sensing and stimulation applications of carbon nanomaterials in implantable brain-computer interface. Int J Mol Sci. 2023, 24, 5182.

11. Kim, T.; Park, J.; Sohn, J.; Cho, D.; Jeon, S. Bioinspired, highly stretchable, and conductive dry adhesives based on 1D-2D hybrid carbon nanocomposites for all-in-one ECG electrodes. ACS Nano. 2016, 10, 4770-4778.

12. Kuzum, D.; Takano, H.; Shim, E.; Reed, J. C.; Juul, H.; Richardson, A. G.; de Vries, J.; Bink, H.; Dichter, M. A.; Lucas, T. H.; Coulter, D. A.; Cubukcu, E.; Litt, B. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat Commun. 2014, 5, 5259.

13. Golparvar, A. J.; Yapici, M. K. Electrooculography by wearable graphene textiles. IEEE Sens J. 2018, 18, 8971-8978.

14. Apollo, N. V.; Maturana, M. I.; Tong, W.; Nayagam, D. A. X.; Shivdasani, M. N.; Foroughi, J.; Wallace, G. G.; Prawer, S.; Ibbotson, M. R.; Garrett, D. J. Soft, Flexible freestanding neural stimulation and recording electrodes fabricated from reduced graphene oxide. Adv Funct Mater. 2015, 25, 3551-3559.

15. Du, X.; Jiang, W.; Zhang, Y.; Qiu, J.; Zhao, Y.; Tan, Q.; Qi, S.; Ye, G.; Zhang, W.; Liu, N. Transparent and stretchable graphene electrode by intercalation doping for epidermal electrophysiology. ACS Appl Mater Interfaces. 2020, 12, 56361-56371.

16. Green, R.; Abidian, M. R. Conducting polymers for neural prosthetic and neural interface applications. Adv Mater. 2015, 27, 7620-7637.

17. Green, R. A.; Lovell, N. H.; Wallace, G. G.; Poole-Warren, L. A. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials. 2008, 29, 3393-3399.

18. Guo, L.; Ma, M.; Zhang, N.; Langer, R.; Anderson, D. G. Stretchable polymeric multielectrode array for conformal neural interfacing. Adv Mater. 2014, 26, 1427-1433.

19. Han, L.; Lu, X.; Wang, M.; Gan, D.; Deng, W.; Wang, K.; Fang, L.; Liu, K.; Chan, C. W.; Tang, Y.; Weng, L. T.; Yuan, H. A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics. Small. 2017, 13, 1601916.

20. Kim, D. H.; Viventi, J.; Amsden, J. J.; Xiao, J.; Vigeland, L.; Kim, Y. S.; Blanco, J. A.; Panilaitis, B.; Frechette, E. S.; Contreras, D.; Kaplan, D. L.; Omenetto, F. G.; Huang, Y.; Hwang, K. C.; Zakin, M. R.; Litt, B.; Rogers, J. A. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater. 2010, 9, 511-517.

21. Adewole, D. O.; Serruya, M. D.; Wolf, J. A.; Cullen, D. K. Bioactive neuroelectronic interfaces. Front Neurosci. 2019, 13, 269.

22. Chalmers, E.; Lee, H.; Zhu, C.; Liu, X. Increasing the conductivity and adhesion of polypyrrole hydrogels with electropolymerized polydopamine. Chem Mater. 2020, 32, 234-244.

23. Gajendiran, M.; Choi, J.; Kim, S. J.; Kim, K.; Shin, H.; Koo, H. J.; Kim, K. Conductive biomaterials for tissue engineering applications. J Ind Eng Chem. 2017, 51, 12-26.

24. Franze, K.; Janmey, P. A.; Guck, J. Mechanics in neuronal development and repair. Annu Rev Biomed Eng. 2013, 15, 227-251.

25. Budday, S.; Ovaert, T. C.; Holzapfel, G. A.; Steinmann, P.; Kuhl, E. Fifty shades of brain: a review on the mechanical testing and modeling of brain tissue. Arch Comput Methods Eng. 2020, 27, 1187-1230.

26. Betz, T.; Koch, D.; Lu, Y. B.; Franze, K.; Käs, J. A. Growth cones as soft and weak force generators. Proc Natl Acad Sci U S A. 2011, 108, 13420-13425.

27. Zamproni, L. N.; Mundim, M.; Porcionatto, M. A. Neurorepair and regeneration of the brain: a decade of bioscaffolds and engineered microtissue. Front Cell Dev Biol. 2021, 9, 649891.

28. Carnicer-Lombarte, A.; Chen, S. T.; Malliaras, G. G.; Barone, D. G. Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetics. Front Bioeng Biotechnol. 2021, 9, 622524.

29. Michelson, N. J.; Vazquez, A. L.; Eles, J. R.; Salatino, J. W.; Purcell, E. K.; Williams, J. J.; Cui, X. T.; Kozai, T. D. Y. Multi-scale, multi-modal analysis uncovers complex relationship at the brain tissue-implant neural interface: new emphasis on the biological interface. J Neural Eng. 2018, 15, 033001.

30. Bennett, C.; Mohammed, F.; Álvarez-Ciara, A.; Nguyen, M. A.; Dietrich, W. D.; Rajguru, S. M.; Streit, W. J.; Prasad, A. Neuroinflammation, oxidative stress, and blood-brain barrier (BBB) disruption in acute Utah electrode array implants and the effect of deferoxamine as an iron chelator on acute foreign body response. Biomaterials. 2019, 188, 144-159.

31. Kozai, T. D.; Vazquez, A. L.; Weaver, C. L.; Kim, S. G.; Cui, X. T. In vivo two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes. J Neural Eng. 2012, 9, 066001.

32. Wellman, S. M.; Cambi, F.; Kozai, T. D. The role of oligodendrocytes and their progenitors on neural interface technology: A novel perspective on tissue regeneration and repair. Biomaterials. 2018, 183, 200-217.

33. Biran, R.; Martin, D. C.; Tresco, P. A. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp Neurol. 2005, 195, 115-126.

34. Chen, K.; Wellman, S. M.; Yaxiaer, Y.; Eles, J. R.; Kozai, T. D. In vivo spatiotemporal patterns of oligodendrocyte and myelin damage at the neural electrode interface. Biomaterials. 2021, 268, 120526.

35. Savya, S. P.; Li, F.; Lam, S.; Wellman, S. M.; Stieger, K. C.; Chen, K.; Eles, J. R.; Kozai, T. D. Y. In vivo spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation. Biomaterials. 2022, 289, 121784.

36. Kim, G. H.; Kim, K.; Nam, H.; Shin, K.; Choi, W.; Shin, J. H.; Lim, G. CNT-Au nanocomposite deposition on gold microelectrodes for improved neural recordings. Sens Actuators B Chem. 2017, 252, 152-158.

37. Yuan, X.; Hierlemann, A.; Frey, U. Extracellular recording of entire neural networks using a dual-mode microelectrode array with 19584 electrodes and high SNR. IEEE J Solid-State Circuits. 2021, 56, 2466-2475.

38. Lin, C. M.; Lee, Y. T.; Yeh, S. R.; Fang, W. Flexible carbon nanotubes electrode for neural recording. Biosens Bioelectron. 2009, 24, 2791-2797.

39. Sabetian, P.; Popovic, M. R.; Yoo, P. B. Optimizing the design of bipolar nerve cuff electrodes for improved recording of peripheral nerve activity. J Neural Eng. 2017, 14, 036015.

40. Díaz, D. R.; Carmona, F. J.; Palacio, L.; Ochoa, N. A.; Hernández, A.; Prádanos, P. Impedance spectroscopy and membrane potential analysis of microfiltration membranes. The influence of surface fractality. Chem Eng Sci. 2018, 178, 27-38.

41. Wellman, S. M.; Li, L.; Yaxiaer, Y.; McNamara, I.; Kozai, T. D. Y. Revealing spatial and temporal patterns of cell death, glial proliferation, and blood-brain barrier dysfunction around implanted intracortical neural interfaces. Front Neurosci. 2019, 13, 493.

42. Wellman, S. M.; Kozai, T. D. Y. In vivo spatiotemporal dynamics of NG2 glia activity caused by neural electrode implantation. Biomaterials. 2018, 164, 121-133.

43. Camuñas-Mesa, L. A.; Quiroga, R. Q. A detailed and fast model of extracellular recordings. Neural Comput. 2013, 25, 1191-1212.

44. Kozai, T. D.; Langhals, N. B.; Patel, P. R.; Deng, X.; Zhang, H.; Smith, K. L.; Lahann, J.; Kotov, N. A.; Kipke, D. R. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat Mater. 2012, 11, 1065-1073.

45. Lee, H. C.; Ejserholm, F.; Gaire, J.; Currlin, S.; Schouenborg, J.; Wallman, L.; Bengtsson, M.; Park, K.; Otto, K. J. Histological evaluation of flexible neural implants; flexibility limit for reducing the tissue response? J Neural Eng. 2017, 14, 036026.

46. Seymour, J. P.; Kipke, D. R. Neural probe design for reduced tissue encapsulation in CNS. Biomaterials. 2007, 28, 3594-3607.

47. Kuo, J. T.; Kim, B. J.; Hara, S. A.; Lee, C. D.; Gutierrez, C. A.; Hoang, T. Q.; Meng, E. Novel flexible parylene neural probe with 3D sheath structure for enhancing tissue integration. Lab Chip. 2013, 13, 554-561.

48. Gao, K.; Li, G.; Liao, L.; Cheng, J.; Zhao, J.; Xu, Y. Fabrication of flexible microelectrode arrays integrated with microfluidic channels for stable neural interfaces. Sens Actuators A Phys. 2013, 197, 9-14.

49. Du, Z. J.; Kolarcik, C. L.; Kozai, T. D. Y.; Luebben, S. D.; Sapp, S. A.; Zheng, X. S.; Nabity, J. A.; Cui, X. T. Ultrasoft microwire neural electrodes improve chronic tissue integration. Acta Biomater. 2017, 53, 46-58.

50. Hong, G.; Lieber, C. M. Novel electrode technologies for neural recordings. Nat Rev Neurosci. 2019, 20, 330-345.

51. Zhu, M.; Wang, H.; Li, S.; Liang, X.; Zhang, M.; Dai, X.; Zhang, Y. Flexible electrodes for in vivo and in vitro electrophysiological signal recording. Adv Healthc Mater. 2021, 10, e2100646.

52. Hu, Z.; Niu, Q.; Hsiao, B. S.; Yao, X.; Zhang, Y. Bioactive polymer-enabled conformal neural interface and its application strategies. Mater Horiz. 2023, 10, 808-828.

53. Potter-Baker, K. A.; Nguyen, J. K.; Kovach, K. M.; Gitomer, M. M.; Srail, T. W.; Stewart, W. G.; Skousen, J. L.; Capadona, J. R. Development of superoxide dismutase mimetic surfaces to reduce accumulation of reactive oxygen species for neural interfacing applications. J Mater Chem B. 2014, 2, 2248-2258.

54. Zheng, X. S.; Snyder, N. R.; Woeppel, K.; Barengo, J. H.; Li, X.; Eles, J.; Kolarcik, C. L.; Cui, X. T. A superoxide scavenging coating for improving tissue response to neural implants. Acta Biomater. 2019, 99, 72-83.

55. Golabchi, A.; Wu, B.; Li, X.; Carlisle, D. L.; Kozai, T. D. Y.; Friedlander, R. M.; Cui, X. T. Melatonin improves quality and longevity of chronic neural recording. Biomaterials. 2018, 180, 225-239.

56. Zhang, J.; Wang, L.; Xue, Y.; Lei, I. M.; Chen, X.; Zhang, P.; Cai, C.; Liang, X.; Lu, Y.; Liu, J. Engineering electrodes with robust conducting hydrogel coating for neural recording and modulation. Adv Mater. 2023, 35, e2209324.

57. Yuk, H.; Lu, B.; Zhao, X. Hydrogel bioelectronics. Chem Soc Rev. 2019, 48, 1642-1667.

58. Yang, M.; Chen, P.; Qu, X.; Zhang, F.; Ning, S.; Ma, L.; Yang, K.; Su, Y.; Zang, J.; Jiang, W.; Yu, T.; Dong, X.; Luo, Z. Robust neural interfaces with photopatternable, bioadhesive, and highly conductive hydrogels for stable chronic neuromodulation. ACS Nano. 2023. doi: 10.1021/acsnano.2c04606.

59. Wu, Z. Z.; Zhao, Y.; Kisaalita, W. S. Interfacing SH-SY5Y human neuroblastoma cells with SU-8 microstructures. Colloids Surf B Biointerfaces. 2006, 52, 14-21.

60. Fan, Y. W.; Cui, F. Z.; Hou, S. P.; Xu, Q. Y.; Chen, L. N.; Lee, I. S. Culture of neural cells on silicon wafers with nano-scale surface topograph. J Neurosci Methods. 2002, 120, 17-23.

61. Kushwah, N.; Woeppel, K.; Dhawan, V.; Shi, D.; Cui, X. T. Effects of neuronal cell adhesion molecule L1 and nanoparticle surface modification on microglia. Acta Biomater. 2022, 149, 273-286.

62. Woeppel, K. M.; Cui, X. T. Nanoparticle and biomolecule surface modification synergistically increases neural electrode recording yield and minimizes inflammatory host response. Adv Healthc Mater. 2021, 10, e2002150.

63. Sikder, M. K. U.; Tong, W.; Pingle, H.; Kingshott, P.; Needham, K.; Shivdasani, M. N.; Fallon, J. B.; Seligman, P.; Ibbotson, M. R.; Prawer, S.; Garrett, D. J. Laminin coated diamond electrodes for neural stimulation. Mater Sci Eng C Mater Biol Appl. 2021, 118, 111454.

64. Chou, N.; Byun, D.; Kim, S. MEMS-based microelectrode technologies capable of penetrating neural tissues. Biomed Eng Lett. 2014, 4, 109-119.

65. Trevathan, J. K.; Baumgart, I. W.; Nicolai, E. N.; Gosink, B. A.; Asp, A. J.; Settell, M. L.; Polaconda, S. R.; Malerick, K. D.; Brodnick, S. K.; Zeng, W.; Knudsen, B. E.; McConico, A. L.; Sanger, Z.; Lee, J. H.; Aho, J. M.; Suminski, A. J.; Ross, E. K.; Lujan, J. L.; Weber, D. J.; Williams, J. C.; Franke, M.; Ludwig, K. A.; Shoffstall, A. J. An injectable neural stimulation electrode made from an in-body curing polymer/metal composite. Adv Healthc Mater. 2019, 8, e1900892.

66. Patel, P. R.; Zhang, H.; Robbins, M. T.; Nofar, J. B.; Marshall, S. P.; Kobylarek, M. J.; Kozai, T. D.; Kotov, N. A.; Chestek, C. A. Chronic in vivo stability assessment of carbon fiber microelectrode arrays. J Neural Eng. 2016, 13, 066002.

67. Hong, W.; Lee, J. W.; Kim, D.; Hwang, Y.; Lee, J.; Kim, J.; Hong, N.; Kwon, H. J.; Jang, J. E.; Punga, A. R.; Kang, H. Ultrathin gold microelectrode array using polyelectrolyte multilayers for flexible and transparent electro-optical neural interfaces. Adv Funct Mater. 2022, 32, 2106493.

68. Lim, C.; Park, C.; Sunwoo, S. H.; Kim, Y. G.; Lee, S.; Han, S. I.; Kim, D.; Kim, J. H.; Kim, D. H.; Hyeon, T. Facile and scalable synthesis of whiskered gold nanosheets for stretchable, conductive, and biocompatible nanocomposites. ACS Nano. 2022, 16, 10431-10442.

69. Dong, R.; Wang, L.; Hang, C.; Chen, Z.; Liu, X.; Zhong, L.; Qi, J.; Huang, Y.; Liu, S.; Wang, L.; Lu, Y.; Jiang, X. Printed stretchable liquid metal electrode arrays for in vivo neural recording. Small. 2021, 17, e2006612.

70. Guo, R.; Liu, J. Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions. J Micromech Microeng. 2017, 27, 104002.

71. Zhang, X.; Liu, B.; Gao, J.; Lang, Y.; Lv, X.; Deng, Z.; Gui, L.; Liu, J.; Tang, R.; Li, L. Liquid metal-based electrode array for neural signal recording. Bioengineering (Basel). 2023, 10, 578.

72. Tang, R.; Zhang, C.; Liu, B.; Jiang, C.; Wang, L.; Zhang, X.; Huang, Q.; Liu, J.; Li, L. Towards an artificial peripheral nerve: Liquid metal-based fluidic cuff electrodes for long-term nerve stimulation and recording. Biosens Bioelectron. 2022, 216, 114600.

73. Kim, D.; Thissen, P.; Viner, G.; Lee, D. W.; Choi, W.; Chabal, Y. J.; Lee, J. B. Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor. ACS Appl Mater Interfaces. 2013, 5, 179-185.

74. So, J. H.; Koo, H. J.; Dickey, M. D.; Velev, O. D. Ionic current rectification in soft-matter diodes with liquid-metal electrodes. Adv Funct Mater. 2012, 22, 625-631.

75. Lee, S. H.; Thunemann, M.; Lee, K.; Cleary, D. R.; Tonsfeldt, K. J.; Oh, H.; Azzazy, F.; Tchoe, Y.; Bourhis, A. M.; Hossain, L.; Ro, Y. G.; Tanaka, A.; Kılıç, K.; Devor, A.; Dayeh, S. A. Scalable thousand channel penetrating microneedle arrays on flex for multimodal and large area coverage brain-machine interfaces. Adv Funct Mater. 2022, 32, 2112045.

76. Suzuki, I.; Matsuda, N.; Han, X.; Noji, S.; Shibata, M.; Nagafuku, N.; Ishibashi, Y. Large-area field potential imaging having single neuron resolution using 236,880 electrodes CMOS-MEA technology. Adv Sci (Weinh). 2023, 10, e2207732.

77. Li, S.; Shi, Q.; Li, Y.; Yang, J.; Chang, T. H.; Jiang, J.; Chen, P. Y. Intercalation of metal ions into Ti3C2Tx MXene electrodes for high-areal-capacitance microsupercapacitors with neutral multivalent electrolytes. Adv Funct Mater. 2020, 30, 2003721.

78. Rafieerad, A.; Amiri, A.; Sequiera, G. L.; Yan, W.; Chen, Y.; Polycarpou, A. A.; Dhingra, S. Development of fluorine-free tantalum carbide MXene hybrid structure as a biocompatible material for supercapacitor electrodes. Adv Funct Mater. 2021, 31, 2100015.

79. Zhang, Y.; Zhang, L.; Li, C.; Han, J.; Huang, W.; Zhou, J.; Yang, Y. Hydrophilic antifouling 3D porous MXene/holey graphene nanocomposites for electrochemical determination of dopamine. Microchem J. 2022, 181, 107713.

80. Xu, J.; Shirinkami, H.; Hwang, S.; Jeong, H. S.; Kim, G.; Jun, S. B.; Chun, H. Fast reconfigurable electrode array based on titanium oxide for localized stimulation of cultured neural network. ACS Appl Mater Interfaces. 2023, 15, 19092-19101.

81. Zhang, F.; Zhang, L.; Xia, J.; Zhao, W.; Dong, S.; Ye, Z.; Pan, G.; Luo, J.; Zhang, S. Multimodal electrocorticogram active electrode array based on zinc oxide-thin film transistors. Adv Sci (Weinh). 2023, 10, e2204467.

82. Liu, S.; Liu, L.; Zhao, Y.; Wang, Y.; Wu, Y.; Zhang, X. D.; Ming, D. A high-performance electrode based on van der waals heterostructure for neural recording. Nano Lett. 2022, 22, 4400-4409.

83. Park, D. W.; Brodnick, S. K.; Ness, J. P.; Atry, F.; Krugner-Higby, L.; Sandberg, A.; Mikael, S.; Richner, T. J.; Novello, J.; Kim, H.; Baek, D. H.; Bong, J.; Frye, S. T.; Thongpang, S.; Swanson, K. I.; Lake, W.; Pashaie, R.; Williams, J. C.; Ma, Z. Fabrication and utility of a transparent graphene neural electrode array for electrophysiology, in vivo imaging, and optogenetics. Nat Protoc. 2016, 11, 2201-2222.

84. Park, S. Y.; Park, J.; Sim, S. H.; Sung, M. G.; Kim, K. S.; Hong, B. H.; Hong, S. Enhanced differentiation of human neural stem cells into neurons on graphene. Adv Mater. 2011, 23, H263-267.

85. Liu, X.; Xu, Z.; Fu, X.; Liu, Y.; Jia, H.; Yang, Z.; Zhang, J.; Wei, S.; Duan, X. Stable, long-term single-neuronal recording from the rat spinal cord with flexible carbon nanotube fiber electrodes. J Neural Eng. 2022, 19, 056024.

86. Yang, H.; Qian, Z.; Wang, J.; Feng, J.; Tang, C.; Wang, L.; Guo, Y.; Liu, Z.; Yang, Y.; Zhang, K.; Chen, P.; Sun, X.; Peng, H. Carbon nanotube array-based flexible multifunctional electrodes to record electrophysiology and ions on the cerebral cortex in real time. Adv Funct Mater. 2022, 32, 2204794.

87. Xiong, Z.; Huang, W.; Liang, Q.; Cao, Y.; Liu, S.; He, Z.; Zhang, R.; Zhang, B.; Green, R.; Zhang, S.; Li, D. Harnessing the 2D structure-enabled viscoelasticity of graphene-based hydrogel membranes for chronic neural interfacing. Small Methods. 2022, 6, e2200022.

88. Yang, X.; Zhu, J.; Qiu, L.; Li, D. Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv Mater. 2011, 23, 2833-2838.

89. Xiong, J.; Zhang, B.; Balilonda, A.; Yang, S.; Li, K.; Zhang, Q.; Li, Y.; Wang, H.; Hou, C. Graphene-based implantable neural electrodes for insect flight control. J Mater Chem B. 2022, 10, 4632-4639.

90. Goding, J.; Gilmour, A.; Martens, P.; Poole-Warren, L.; Green, R. Interpenetrating conducting hydrogel materials for neural interfacing electrodes. Adv Healthc Mater. 2017, 6, 1601177.

91. Tomaskovic-Crook, E.; Zhang, P.; Ahtiainen, A.; Kaisvuo, H.; Lee, C. Y.; Beirne, S.; Aqrawe, Z.; Svirskis, D.; Hyttinen, J.; Wallace, G. G.; Travas-Sejdic, J.; Crook, J. M. Human neural tissues from neural stem cells using conductive biogel and printed polymer microelectrode arrays for 3D electrical stimulation. Adv Healthc Mater. 2019, 8, e1900425.

92. Widge, A. S.; Jeffries-El, M.; Cui, X.; Lagenaur, C. F.; Matsuoka, Y. Self-assembled monolayers of polythiophene conductive polymers improve biocompatibility and electrical impedance of neural electrodes. Biosens Bioelectron. 2007, 22, 1723-1732.

93. Liang, Q.; Shen, Z.; Sun, X.; Yu, D.; Liu, K.; Mugo, S. M.; Chen, W.; Wang, D.; Zhang, Q. Electron conductive and transparent hydrogels for recording brain neural signals and neuromodulation. Adv Mater. 2023, 35, e2211159.

94. Xia, X.; Liang, Q.; Sun, X.; Yu, D.; Huang, X.; Mugo, S. M.; Chen, W.; Wang, D.; Zhang, Q. Intrinsically electron conductive, antibacterial, and anti-swelling hydrogels as implantable sensors for bioelectronics. Adv Funct Mater. 2022, 32, 2208024.

95. Rinoldi, C.; Ziai, Y.; Zargarian, S. S.; Nakielski, P.; Zembrzycki, K.; Haghighat Bayan, M. A.; Zakrzewska, A. B.; Fiorelli, R.; Lanzi, M.; Kostrzewska-Księżyk, A.; Czajkowski, R.; Kublik, E.; Kaczmarek, L.; Pierini, F. In vivo chronic brain cortex signal recording based on a soft conductive hydrogel biointerface. ACS Appl Mater Interfaces. 2023, 15, 6283-6296.

96. Won, C.; Jeong, U. J.; Lee, S.; Lee, M.; Kwon, C.; Cho, S.; Yoon, K.; Lee, S.; Chun, D.; Cho, I. J.; Lee, T. Mechanically tissue-like and highly conductive Au nanoparticles embedded elastomeric fiber electrodes of brain–machine interfaces for chronic in vivo brain neural recording. Adv Funct Mater. 2022, 32, 2205145.

97. Carli, S.; Bianchi, M.; Zucchini, E.; Di Lauro, M.; Prato, M.; Murgia, M.; Fadiga, L.; Biscarini, F. Electrodeposited PEDOT: Nafion composite for neural recording and stimulation. Adv Healthc Mater. 2019, 8, e1900765.

98. Mandal, H. S.; Knaack, G. L.; Charkhkar, H.; McHail, D. G.; Kastee, J. S.; Dumas, T. C.; Peixoto, N.; Rubinson, J. F.; Pancrazio, J. J. Improving the performance of poly(3,4-ethylenedioxythiophene) for brain-machine interface applications. Acta Biomater. 2014, 10, 2446-2454.

99. Pranti, A. S.; Schander, A.; Bödecker, A.; Lang, W. PEDOT: PSS coating on gold microelectrodes with excellent stability and high charge injection capacity for chronic neural interfaces. Sens Actuators B Chem. 2018, 275, 382-393.

100. Liu, Y.; Liu, J.; Chen, S.; Lei, T.; Kim, Y.; Niu, S.; Wang, H.; Wang, X.; Foudeh, A. M.; Tok, J. B.; Bao, Z. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed Eng. 2019, 3, 58-68.

101. Lu, B.; Yuk, H.; Lin, S.; Jian, N.; Qu, K.; Xu, J.; Zhao, X. Pure PEDOT:PSS hydrogels. Nat Commun. 2019, 10, 1043.

102. Feig, V. R.; Tran, H.; Lee, M.; Bao, Z. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat Commun. 2018, 9, 2740.

103. Li, T. L.; Liu, Y.; Forro, C.; Yang, X.; Beker, L.; Bao, Z.; Cui, B.; Pașca, S. P. Stretchable mesh microelectronics for the biointegration and stimulation of human neural organoids. Biomaterials. 2022, 290, 121825.

104. Wang, S.; Guan, S.; Wang, J.; Liu, H.; Liu, T.; Ma, X.; Cui, Z. Fabrication and characterization of conductive poly (3,4-ethylenedioxythiophene) doped with hyaluronic acid/poly (l-lactic acid) composite film for biomedical application. J Biosci Bioeng. 2017, 123, 116-125.

105. Ohm, Y.; Pan, C.; Ford, M. J.; Huang, X.; Liao, J.; Majidi, C. An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics. Nat Electron. 2021, 4, 185-192.

106. Alizadeh, R.; Zarrintaj, P.; Kamrava, S. K.; Bagher, Z.; Farhadi, M.; Heidari, F.; Komeili, A.; Gutiérrez, T. J.; Saeb, M. R. Conductive hydrogels based on agarose/alginate/chitosan for neural disorder therapy. Carbohydr Polym. 2019, 224, 115161.

107. Mili, B.; Das, K.; Kumar, A.; Saxena, A. C.; Singh, P.; Ghosh, S.; Bag, S. Preparation of NGF encapsulated chitosan nanoparticles and its evaluation on neuronal differentiation potentiality of canine mesenchymal stem cells. J Mater Sci Mater Med. 2017, 29, 4.

108. Qasim, S. B.; Zafar, M. S.; Najeeb, S.; Khurshid, Z.; Shah, A. H.; Husain, S.; Rehman, I. U. Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. Int J Mol Sci. 2018, 19, 407.

109. Aznar-Cervantes, S.; Pagán, A.; Martínez, J. G.; Bernabeu-Esclapez, A.; Otero, T. F.; Meseguer-Olmo, L.; Paredes, J. I.; Cenis, J. L. Electrospun silk fibroin scaffolds coated with reduced graphene promote neurite outgrowth of PC-12 cells under electrical stimulation. Mater Sci Eng C Mater Biol Appl. 2017, 79, 315-325.

110. Cui, Y.; Zhang, F.; Chen, G.; Yao, L.; Zhang, N.; Liu, Z.; Li, Q.; Zhang, F.; Cui, Z.; Zhang, K.; Li, P.; Cheng, Y.; Zhang, S.; Chen, X. A stretchable and transparent electrode based on PEGylated silk fibroin for in vivo dual-modal neural-vascular activity probing. Adv Mater. 2021, 33, e2100221.

111. Ding, J.; Chen, Z.; Liu, X.; Tian, Y.; Jiang, J.; Qiao, Z.; Zhang, Y.; Xiao, Z.; Wei, D.; Sun, J.; Luo, F.; Zhou, L.; Fan, H. A mechanically adaptive hydrogel neural interface based on silk fibroin for high-efficiency neural activity recording. Mater Horiz. 2022, 9, 2215-2225.

112. Cho, Y.; Borgens, R. B. The effect of an electrically conductive carbon nanotube/collagen composite on neurite outgrowth of PC12 cells. J Biomed Mater Res A. 2010, 95, 510-517.

113. Liu, X.; Yue, Z.; Higgins, M. J.; Wallace, G. G. Conducting polymers with immobilised fibrillar collagen for enhanced neural interfacing. Biomaterials. 2011, 32, 7309-7317.

114. Yue, Z.; Liu, X.; Molino, P. J.; Wallace, G. G. Bio-functionalisation of polydimethylsiloxane with hyaluronic acid and hyaluronic acid-collagen conjugate for neural interfacing. Biomaterials. 2011, 32, 4714-4724.

115. Dhawan, V.; Cui, X. T. Carbohydrate based biomaterials for neural interface applications. J Mater Chem B. 2022, 10, 4714-4740.

116. Zhou, Y.; Gu, C.; Liang, J.; Zhang, B.; Yang, H.; Zhou, Z.; Li, M.; Sun, L.; Tao, T. H.; Wei, X. A silk-based self-adaptive flexible opto-electro neural probe. Microsyst Nanoeng. 2022, 8, 118.

117. Yang, J.; Du, M.; Wang, L.; Li, S.; Wang, G.; Yang, X.; Zhang, L.; Fang, Y.; Zheng, W.; Yang, G.; Jiang, X. Bacterial cellulose as a supersoft neural interfacing substrate. ACS Appl Mater Interfaces. 2018, 10, 33049-33059.

118. Potter-Baker, K. A.; Stewart, W. G.; Tomaszewski, W. H.; Wong, C. T.; Meador, W. D.; Ziats, N. P.; Capadona, J. R. Implications of chronic daily anti-oxidant administration on the inflammatory response to intracortical microelectrodes. J Neural Eng. 2015, 12, 046002.

119. Golabchi, A.; Woeppel, K. M.; Li, X.; Lagenaur, C. F.; Cui, X. T. Neuroadhesive protein coating improves the chronic performance of neuroelectronics in mouse brain. Biosens Bioelectron. 2020, 155, 112096.

120. Azemi, E.; Lagenaur, C. F.; Cui, X. T. The surface immobilization of the neural adhesion molecule L1 on neural probes and its effect on neuronal density and gliosis at the probe/tissue interface. Biomaterials. 2011, 32, 681-692.

121. Oakes, R. S.; Polei, M. D.; Skousen, J. L.; Tresco, P. A. An astrocyte derived extracellular matrix coating reduces astrogliosis surrounding chronically implanted microelectrode arrays in rat cortex. Biomaterials. 2018, 154, 1-11.

122. Vitale, F.; Shen, W.; Driscoll, N.; Burrell, J. C.; Richardson, A. G.; Adewole, O.; Murphy, B.; Ananthakrishnan, A.; Oh, H.; Wang, T.; Lucas, T. H.; Cullen, D. K.; Allen, M. G.; Litt, B. Biomimetic extracellular matrix coatings improve the chronic biocompatibility of microfabricated subdural microelectrode arrays. PLoS One. 2018, 13, e0206137.

123. Ramesh, V.; Stratmann, N.; Schaufler, V.; Angelov, S. D.; Nordhorn, I. D.; Heissler, H. E.; Martínez-Hincapié, R.; Čolić, V.; Rehbock, C.; Schwabe, K.; Karst, U.; Krauss, J. K.; Barcikowski, S. Mechanical stability of nano-coatings on clinically applicable electrodes, generated by electrophoretic deposition. Adv Healthc Mater. 2022, 11, e2102637.

124. Ramesh, V.; Rehbock, C.; Giera, B.; Karnes, J. J.; Forien, J. B.; Angelov, S. D.; Schwabe, K.; Krauss, J. K.; Barcikowski, S. Comparing direct and pulsed-direct current electrophoretic deposition on neural electrodes: deposition mechanism and functional influence. Langmuir. 2021. doi: 10.1021/acs.langmuir.1c01081.

125. Angelov, S. D.; Koenen, S.; Jakobi, J.; Heissler, H. E.; Alam, M.; Schwabe, K.; Barcikowski, S.; Krauss, J. K. Electrophoretic deposition of ligand-free platinum nanoparticles on neural electrodes affects their impedance in vitro and in vivo with no negative effect on reactive gliosis. J Nanobiotechnology. 2016, 14, 3.

126. Yang, D.; Tian, G.; Liang, C.; Yang, Z.; Zhao, Q.; Chen, J.; Ma, C.; Jiang, Y.; An, N.; Liu, Y.; Qi, D. Double-microcrack coupling stretchable neural electrode for electrophysiological communication. Adv Funct Mater. 2023, 33, 2300412.

127. Nguyen, T. K.; Barton, M.; Ashok, A.; Truong, T. A.; Yadav, S.; Leitch, M.; Nguyen, T. V.; Kashaninejad, N.; Dinh, T.; Hold, L.; Yamauchi, Y.; Nguyen, N. T.; Phan, H. P. Wide bandgap semiconductor nanomembranes as a long-term biointerface for flexible, implanted neuromodulator. Proc Natl Acad Sci U S A. 2022, 119, e2203287119.

128. Dong, M.; Coleman, H. A.; Tonta, M. A.; Xiong, Z.; Li, D.; Thomas, S.; Liu, M.; Fallon, J. B.; Parkington, H. C.; Forsythe, J. S. Rapid electrophoretic deposition of biocompatible graphene coatings for high-performance recording neural electrodes. Nanoscale. 2022, 14, 15845-15858.

129. Xiao, G.; Song, Y.; Zhang, Y.; Xing, Y.; Xu, S.; Lu, Z.; Wang, M.; Cai, X. Cellular-scale microelectrode arrays to monitor movement-related neuron activities in the epileptic hippocampus of awake mice. IEEE Trans Biomed Eng. 2021, 68, 19-25.

130. Huang, W. C.; Hung, C. H.; Lin, Y. W.; Zheng, Y. C.; Lei, W. L.; Lu, H. E. Electrically copolymerized polydopamine melanin/poly(3,4-ethylenedioxythiophene) applied for bioactive multimodal neural interfaces with induced pluripotent stem cell-derived neurons. ACS Biomater Sci Eng. 2022, 8, 4807-4818.

131. Saunier, V.; Flahaut, E.; Blatché, M. C.; Bergaud, C.; Maziz, A. Carbon nanofiber-PEDOT composite films as novel microelectrode for neural interfaces and biosensing. Biosens Bioelectron. 2020, 165, 112413.

132. Yang, X.; Pei, W.; Wei, C.; Yang, X.; Zhang, H.; Wang, Y.; Yuan, M.; Gui, Q.; Liu, Y.; Wang, Y.; Chen, H. Chemical polymerization of conducting polymer poly(3,4-ethylenedioxythiophene) onto neural microelectrodes. Sens Actuators A Phys. 2023, 349, 114022.

133. Lim, T.; Kim, M.; Akbarian, A.; Kim, J.; Tresco, P. A.; Zhang, H. Conductive polymer enabled biostable liquid metal electrodes for bioelectronic applications. Adv Healthc Mater. 2022, 11, e2102382.

134. Ganji, M.; Hossain, L.; Tanaka, A.; Thunemann, M.; Halgren, E.; Gilja, V.; Devor, A.; Dayeh, S. A. Monolithic and scalable Au nanorod substrates improve PEDOT-metal adhesion and stability in neural electrodes. Adv Healthc Mater. 2018, 7, e1800923.

135. Wei, B.; Liu, J.; Ouyang, L.; Kuo, C. C.; Martin, D. C. Significant enhancement of PEDOT thin film adhesion to inorganic solid substrates with EDOT-acid. ACS Appl Mater Interfaces. 2015, 7, 15388-15394.

136. Istif, E.; Mantione, D.; Vallan, L.; Hadziioannou, G.; Brochon, C.; Cloutet, E.; Pavlopoulou, E. Thiophene-based aldehyde derivatives for functionalizable and adhesive semiconducting polymers. ACS Appl Mater Interfaces. 2020, 12, 8695-8703.

137. Tian, F.; Yu, J.; Wang, W.; Zhao, D.; Cao, J.; Zhao, Q.; Wang, F.; Yang, H.; Wu, Z.; Xu, J.; Lu, B. Design of adhesive conducting PEDOT-MeOH:PSS/PDA neural interface via electropolymerization for ultrasmall implantable neural microelectrodes. J Colloid Interface Sci. 2023, 638, 339-348.

138. Desroches, P. E.; Silva, S. M.; Gietman, S. W.; Quigley, A. F.; Kapsa, R. M. I.; Moulton, S. E.; Greene, G. W. Lubricin (PRG4) antiadhesive coatings mitigate electrochemical impedance instabilities in polypyrrole bionic electrodes exposed to fouling fluids. ACS Appl Bio Mater. 2020, 3, 8032-8039.

139. Wellens, J.; Deschaume, O.; Putzeys, T.; Eyley, S.; Thielemans, W.; Verhaert, N.; Bartic, C. Sulfobetaine-based ultrathin coatings as effective antifouling layers for implantable neuroprosthetic devices. Biosens Bioelectron. 2023, 226, 115121.

140. Jeong, J. O.; Kim, S.; Park, J.; Lee, S.; Park, J. S.; Lim, Y. M.; Lee, J. Biomimetic nonbiofouling polypyrrole electrodes grafted with zwitterionic polymer using gamma rays. J Mater Chem B. 2020, 8, 7225-7232.

141. Lee, Y.; Shin, H.; Lee, D.; Choi, S.; Cho, I. J.; Seo, J. A lubricated nonimmunogenic neural probe for acute insertion trauma minimization and long-term signal recording. Adv Sci (Weinh). 2021, 8, e2100231.

142. Jain, V.; Forssell, M.; Tansel, D. Z.; Goswami, C.; Fedder, G. K.; Grover, P.; Chamanzar, M. Focused epicranial brain stimulation by spatial sculpting of pulsed electric fields using high density electrode arrays. Adv Sci (Weinh). 2023, 10, e2207251.

143. Chen, Z.; Liu, X.; Ding, J.; Tian, Y.; Zhang, Y.; Wei, D.; Sun, J.; Luo, F.; Zhou, L.; Fan, H. Tissue-like electrophysiological electrode interface construction by multiple crosslinked polysaccharide-based hydrogel. Carbohydr Polym. 2022, 296, 119923.

144. Fabbro, A.; Prato, M.; Ballerini, L. Carbon nanotubes in neuroregeneration and repair. Adv Drug Deliv Rev. 2013, 65, 2034-2044.

145. Ramer, L. M.; Ramer, M. S.; Bradbury, E. J. Restoring function after spinal cord injury: towards clinical translation of experimental strategies. Lancet Neurol. 2014, 13, 1241-1256.

146. Ye, L.; Ji, H.; Liu, J.; Tu, C. H.; Kappl, M.; Koynov, K.; Vogt, J.; Butt, H. J. Carbon nanotube-hydrogel composites facilitate neuronal differentiation while maintaining homeostasis of network activity. Adv Mater. 2021, 33, e2102981.

147. Tian, G.; Yang, D.; Chen, C.; Duan, X.; Kim, D. H.; Chen, H. Simultaneous presentation of dexamethasone and nerve growth factor via layered carbon nanotubes and polypyrrole to interface neural cells. ACS Biomater Sci Eng. 2023, 9, 5015-5027.

148. Wei, W.; Hao, M.; Zhou, K.; Wang, Y.; Lu, Q.; Zhang, H.; Wu, Y.; Zhang, T.; Liu, Y. In situ multimodal transparent electrophysiological hydrogel for in vivo miniature two-photon neuroimaging and electrocorticogram analysis. Acta Biomater. 2022, 152, 86-99.

149. Lee, J.; Jeong, H.; Kim, J.; Seo, J. M. Investigation of neural electrode fabrication process on Polycarbonate substrate. Annu Int Conf IEEE Eng Med Biol Soc. 2022, 2022, 3089-3092.

150. Baek, C.; Kim, J.; Lee, Y.; Seo, J. M. Fabrication and evaluation of cyclic olefin copolymer based implantable neural electrode. IEEE Trans Biomed Eng. 2020, 67, 2542-2551.

151. Altuna, A.; Menendez de la Prida, L.; Bellistri, E.; Gabriel, G.; Guimerá, A.; Berganzo, J.; Villa, R.; Fernández, L. J. SU-8 based microprobes with integrated planar electrodes for enhanced neural depth recording. Biosens Bioelectron. 2012, 37, 1-5.

152. Ware, T.; Simon, D.; Arreaga-Salas, D. E.; Reeder, J.; Rennaker, R.; Keefer, E. W.; Voit, W. Fabrication of responsive, softening neural interfaces. Adv Funct Mater. 2012, 22, 3470-3479.

153. Castagnola, E.; Ansaldo, A.; Fadiga, L.; Ricci, D. Chemical vapour deposited carbon nanotube coated microelectrodes for intracortical neural recording. Phys Status Solidi B. 2010, 247, 2703-2707.

154. Choi, D. S.; Fung, A. O.; Moon, H.; Villareal, G.; Chen, Y.; Ho, D.; Presser, N.; Stupian, G.; Leung, M. Detection of neural signals with vertically grown single platinum nanowire-nanobud. J Nanosci Nanotechnol. 2009, 9, 6483-6486.

155. Paik, S. J.; Cho, D. D. Development of recording microelectrodes with low surface impedance for neural chip applications. J Korean Phys Soc. 2002, 41, 1046-1049.

156. Niederhoffer, T.; Vanhoestenberghe, A.; Lancashire, H. T. Methods of poly(3,4)-ethylenedioxithiophene (PEDOT) electrodeposition on metal electrodes for neural stimulation and recording. J Neural Eng. 2023, 20, 011002.

157. Wang, Y.; Graham, E. S.; Unsworth, C. P. Superior galvanostatic electrochemical deposition of platinum nanograss provides high performance planar microelectrodes for in vitro neural recording. J Neural Eng. 2021, 18, 0460d0468.

158. Zhang, C.; Driver, N.; Tian, Q.; Jiang, W.; Liu, H. Electrochemical deposition of conductive polymers onto magnesium microwires for neural electrode applications. J Biomed Mater Res A. 2018, 106, 1887-1895.

159. Abidian, M. R.; Martin, D. C. Multifunctional nanobiomaterials for neural interfaces. Adv Funct Mater. 2009, 19, 573-585.

160. Heo, D. N.; Kim, H. J.; Lee, Y. J.; Heo, M.; Lee, S. J.; Lee, D.; Do, S. H.; Lee, S. H.; Kwon, I. K. Flexible and highly biocompatible nanofiber-based electrodes for neural surface interfacing. ACS Nano. 2017, 11, 2961-2971.

161. Jenkins, P. M.; Laughter, M. R.; Lee, D. J.; Lee, Y. M.; Freed, C. R.; Park, D. A nerve guidance conduit with topographical and biochemical cues: potential application using human neural stem cells. Nanoscale Res Lett. 2015, 10, 972.

162. James, C. D.; Davis, R.; Meyer, M.; Turner, A.; Turner, S.; Withers, G.; Kam, L.; Banker, G.; Craighead, H.; Isaacson, M.; Turner, J.; Shain, W. Aligned microcontact printing of micrometer-scale poly-L-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays. IEEE Trans Biomed Eng. 2000, 47, 17-21.

163. Beom Jun, S.; Hynd, M.; Dowell-Mesfin, N.; Smith, K.; Turner, J.; Shain, W.; June Kim, S. Synaptic connectivity of a low density patterned neuronal network produced on the poly-L-lysine stamped microelectrode array. Conf Proc IEEE Eng Med Biol Soc. 2005, 2005, 7604-7607.

164. Mehenti, N. Z.; Tsien, G. S.; Leng, T.; Fishman, H. A.; Bent, S. F. A model retinal interface based on directed neuronal growth for single cell stimulation. Biomed Microdevices. 2006, 8, 141-150.

165. Seo, K. J.; Hill, M.; Ryu, J.; Chiang, C. H.; Rachinskiy, I.; Qiang, Y.; Jang, D.; Trumpis, M.; Wang, C.; Viventi, J.; Fang, H. A soft, high-density neuroelectronic array. Npj Flex Electron. 2023, 7, 40.

166. Roh, H.; Yoon, Y. J.; Park, J. S.; Kang, D. H.; Kwak, S. M.; Lee, B. C.; Im, M. Fabrication of high-density out-of-plane microneedle arrays with various heights and diverse cross-sectional shapes. Nanomicro Lett. 2021, 14, 24.

167. Ando, D.; Teshima, T. F.; Zurita, F.; Peng, H.; Ogura, K.; Kondo, K.; Weiß, L.; Hirano-Iwata, A.; Becherer, M.; Alexander, J.; Wolfrum, B. Filtration-processed biomass nanofiber electrodes for flexible bioelectronics. J Nanobiotechnology. 2022, 20, 491.

168. Mailley, S. C.; Hyland, M.; Mailley, P.; McLaughlin, J. M.; McAdams, E. T. Electrochemical and structural characterizations of electrodeposited iridium oxide thin-film electrodes applied to neurostimulating electrical signal. Mater Sci Eng C. 2002, 21, 167-175.

169. Stöver, T.; Paasche, G.; Lenarz, T.; Ripken, T.; Breitenfeld, P.; Lubatschowski, H.; Fabian, T. Development of a drug delivery device: using the femtosecond laser to modify cochlear implant electrodes. Cochlear Implants Int. 2007, 8, 38-52.

170. Henle, C.; Raab, M.; Cordeiro, J. G.; Doostkam, S.; Schulze-Bonhage, A.; Stieglitz, T.; Rickert, J. First long term in vivo study on subdurally implanted micro-ECoG electrodes, manufactured with a novel laser technology. Biomed Microdevices. 2011, 13, 59-68.

171. Li, L.; Jiang, C.; Li, L. Hierarchical platinum–iridium neural electrodes structured by femtosecond laser for superwicking interface and superior charge storage capacity. Bio-des Manuf. 2022, 5, 163-173.

172. Yang, Q.; Hu, Z.; Seo, M. H.; Xu, Y.; Yan, Y.; Hsu, Y. H.; Berkovich, J.; Lee, K.; Liu, T. L.; McDonald, S.; Nie, H.; Oh, H.; Wu, M.; Kim, J. T.; Miller, S. A.; Jia, Y.; Butun, S.; Bai, W.; Guo, H.; Choi, J.; Banks, A.; Ray, W. Z.; Kozorovitskiy, Y.; Becker, M. L.; Pet, M. A.; MacEwan, M. R.; Chang, J. K.; Wang, H.; Huang, Y.; Rogers, J. A. High-speed, scanned laser structuring of multi-layered eco/bioresorbable materials for advanced electronic systems. Nat Commun. 2022, 13, 6518.

173. Amini, S.; Seche, W.; May, N.; Choi, H.; Tavousi, P.; Shahbazmohamadi, S. Femtosecond laser hierarchical surface restructuring for next generation neural interfacing electrodes and microelectrode arrays. Sci Rep. 2022, 12, 13966.

174. Won, D.; Kim, J.; Choi, J.; Kim, H.; Han, S.; Ha, I.; Bang, J.; Kim, K. K.; Lee, Y.; Kim, T. S.; Park, J. H.; Kim, C. Y.; Ko, S. H. Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation. Sci Adv. 2022, 8, eabo3209.

175. Pant, M.; Singh, R.; Negi, P.; Tiwari, K.; Singh, Y. A comprehensive review on carbon nano-tube synthesis using chemical vapor deposition. Mater Today Proc. 2021, 46, 11250-11253.

176. Ansaldo, A.; Castagnola, E.; Maggiolini, E.; Fadiga, L.; Ricci, D. Superior electrochemical performance of carbon nanotubes directly grown on sharp microelectrodes. ACS Nano. 2011, 5, 2206-2214.

177. Lee, M.; Lee, S.; Kim, J.; Lim, J.; Lee, J.; Masri, S.; Bao, S.; Yang, S.; Ahn, J. H.; Yang, S. Graphene-electrode array for brain map remodeling of the cortical surface. NPG Asia Mater. 2021, 13, 65.

178. Bakhshaee Babaroud, N.; Palmar, M.; Velea, A. I.; Coletti, C.; Weingärtner, S.; Vos, F.; Serdijn, W. A.; Vollebregt, S.; Giagka, V. Multilayer CVD graphene electrodes using a transfer-free process for the next generation of optically transparent and MRI-compatible neural interfaces. Microsyst Nanoeng. 2022, 8, 107.

179. Lee, J. Y.; Bashur, C. A.; Goldstein, A. S.; Schmidt, C. E. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials. 2009, 30, 4325-4335.

180. Mousavi, H.; Ferrari, L. M.; Whiteley, A.; Ismailova, E. Kinetics and physicochemical characteristics of electrodeposited PEDOT:PSS thin film growth. Adv Electron Mater. 2023, 9, 2201282.

181. Yang, M.; Yang, T.; Deng, H.; Wang, J.; Ning, S.; Li, X.; Ren, X.; Su, Y.; Zang, J.; Li, X.; Luo, Z. Poly(5-nitroindole) thin film as conductive and adhesive interfacial layer for robust neural interface. Adv Funct Mater. 2021, 31, 2105857.

182. Skoog, S. A.; Kumar, G.; Narayan, R. J.; Goering, P. L. Biological responses to immobilized microscale and nanoscale surface topographies. Pharmacol Ther. 2018, 182, 33-55.

183. Newman, P.; Galenano Niño, J. L.; Graney, P.; Razal, J. M.; Minett, A. I.; Ribas, J.; Ovalle-Robles, R.; Biro, M.; Zreiqat, H. Relationship between nanotopographical alignment and stem cell fate with live imaging and shape analysis. Sci Rep. 2016, 6, 37909.

184. Zijl, S.; Vasilevich, A. S.; Viswanathan, P.; Helling, A. L.; Beijer, N. R. M.; Walko, G.; Chiappini, C.; de Boer, J.; Watt, F. M. Micro-scaled topographies direct differentiation of human epidermal stem cells. Acta Biomater. 2019, 84, 133-145.

185. Simitzi, C.; Ranella, A.; Stratakis, E. Controlling the morphology and outgrowth of nerve and neuroglial cells: The effect of surface topography. Acta Biomater. 2017, 51, 21-52.

186. Luo, J.; Walker, M.; Xiao, Y.; Donnelly, H.; Dalby, M. J.; Salmeron-Sanchez, M. The influence of nanotopography on cell behaviour through interactions with the extracellular matrix - a review. Bioact Mater. 2022, 15, 145-159.

187. Geiger, B.; Spatz, J. P.; Bershadsky, A. D. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol. 2009, 10, 21-33.

188. Lord, M. S.; Foss, M.; Besenbacher, F. Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today. 2010, 5, 66-78.

189. Kim, M. H.; Park, M.; Kang, K.; Choi, I. S. Neurons on nanometric topographies: insights into neuronal behaviors in vitro. Biomater Sci. 2014, 2, 148-155.

190. Arora, S.; Lin, S.; Cheung, C.; Yim, E. K. F.; Toh, Y. C. Topography elicits distinct phenotypes and functions in human primary and stem cell derived endothelial cells. Biomaterials. 2020, 234, 119747.

191. Curtis, A.; Wilkinson, C. Topographical control of cells. Biomaterials. 1997, 18, 1573-1583.

192. Nowduri, B.; Schulte, S.; Decker, D.; Schäfer, K. H.; Saumer, M. Biomimetic nanostructures fabricated by nanoimprint lithography for improved cell-coupling. Adv Funct Mater. 2020, 30, 2004227.

193. Tringides, C. M.; Boulingre, M.; Khalil, A.; Lungjangwa, T.; Jaenisch, R.; Mooney, D. J. Tunable conductive hydrogel scaffolds for neural cell differentiation. Adv Healthc Mater. 2023, 12, e2202221.

194. Wang, J.; Wang, H.; Mo, X.; Wang, H. Reduced graphene oxide-encapsulated microfiber patterns enable controllable formation of neuronal-like networks. Adv Mater. 2020, 32, e2004555.

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top