·
REVIEW
·

The use of hydrogel microspheres as cell and drug delivery carriers for bone, cartilage, and soft tissue regeneration

Chung-Hsun Lin1,2 Jesse R. Srioudom1 Wei Sun3 Malcolm Xing4 Su Yan1 Le Yu1,5,* Jian Yang6,7,*
Show Less
1 Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
2 Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
3 Leicester International Institute, Dalian University of Technology, Panjin, Liaoning Province, China
4 Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada
5 Division of Biological and Biomedical Systems, University of Missouri-Kansas City, Kansas City, MO, USA
6 Biomedical Engineering Program, Westlake University, Hangzhou, Zhejiang Province, China
7 Research Centre for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China
Submitted: 12 July 2024 | Revised: 22 August 2024 | Accepted: 12 September 2024 | Published: 28 September 2024
Copyright © 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Bone, cartilage, and soft tissue regeneration is a complex process involving many cellular activities across various cell types. Autografts remain the “gold standard” for the regeneration of these tissues. However, the use of autografts is associated with many disadvantages, including donor scarcity, the requirement of multiple surgeries, and the risk of infection. The development of tissue engineering techniques opens new avenues for enhanced tissue regeneration. Nowadays, the expectations of tissue engineering scaffolds have gone beyond merely providing physical support for cell attachment. Ideal scaffolds should also provide biological cues to actively boost tissue regeneration. As a new type of injectable biomaterial, hydrogel microspheres have been increasingly recognised as promising therapeutic carriers for the local delivery of cells and drugs to enhance tissue regeneration. Compared to traditional tissue engineering scaffolds and bulk hydrogel, hydrogel microspheres possess distinct advantages, including less invasive delivery, larger surface area, higher transparency for visualisation, and greater flexibility for functionalisation. Herein, we review the materials characteristics of hydrogel microspheres and compare their fabrication approaches, including microfluidics, batch emulsion, electrohydrodynamic spraying, lithography, and mechanical fragmentation. Additionally, based on the different requirements for bone, cartilage, nerve, skin, and muscle tissue regeneration, we summarize the applications of hydrogel microspheres as cell and drug delivery carriers for the regeneration of these tissues. Overall, hydrogel microspheres are regarded as effective therapeutic delivery carriers to enhance tissue regeneration in regenerative medicine. However, significant effort is required before hydrogel microspheres become widely accepted as commercial products for clinical use.

Keywords
drug delivery
fabrication techniques
hydrogel microspheres
microgels
tissue regeneration
References
  1. Ye, J.; Xie, C.; Wang, C.; Huang, J.; Yin, Z.; Heng, B. C.; Chen, X.; Shen, W. Promoting musculoskeletal system soft tissue regeneration by biomaterial-mediated modulation of macrophage polarization. Bioact Mater. 2021, 6, 4096-4109.doi: 10.1016/j.bioactmat.2021.04.017 pmid: 33997496
  2. Xiong, Y.; Mi, B. B.; Lin, Z.; Hu, Y. Q.; Yu, L.; Zha, K. K.; Panayi, A. C.; Yu, T.; Chen, L.; Liu, Z. P.; Patel, A.; Feng, Q.; Zhou, S. H.; Liu, G. H. The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: from mechanism to therapeutic opportunity. Mil Med Res. 2022, 9, 65.doi: 10.1186/s40779-022-00426-8 pmid: 36401295
  3. Yu, L.; Cavelier, S.; Hannon, B.; Wei, M. Recent development in multizonal scaffolds for osteochondral regeneration. Bioact Mater. 2023, 25, 122-159.doi: 10.1016/j.bioactmat.2023.01.012 pmid: 36817819
  4. Nair, A.; Thevenot, P.; Dey, J.; Shen, J.; Sun, M. W.; Yang, J.; Tang, L. Novel polymeric scaffolds using protein microbubbles as porogen and growth factor carriers. Tissue Eng Part C Methods. 2010, 16, 23-32.
  5. Li, Y.; Liu, W.; Liu, F.; Zeng, Y.; Zuo, S.; Feng, S.; Qi, C.; Wang, B.; Yan, X.; Khademhosseini, A.; Bai, J.; Du, Y. Primed 3D injectable microniches enabling low-dosage cell therapy for critical limb ischemia. Proc Natl Acad Sci U S A. 2014, 111, 13511-13516.
  6. Wu, J.; Li, G.; Ye, T.; Lu, G.; Li, R.; Deng, L.; Wang, L.; Cai, M.; Cui, W. Stem cell-laden injectable hydrogel microspheres for cancellous bone regeneration. Chem Eng J. 2020, 393, 124715.
  7. Zhang, G.; Suggs, L. J. Matrices and scaffolds for drug delivery in vascular tissue engineering. Adv Drug Deliv Rev. 2007, 59, 360-373.
  8. Liu, X.; Liu, J.; Lin, S.; Zhao, X. Hydrogel machines. Mater Today. 2020, 36, 102-124.
  9. Zhang, Y. S.; Khademhosseini, A. Advances in engineering hydrogels. Science. 2017, 356, eaaf3627.
  10. Hong, W.; Zhao, X.; Zhou, J.; Suo, Z. A theory of coupled diffusion and large deformation in polymeric gels. J Mech Phys Solids. 2008, 56, 1779-1793.
  11. Li, J.; Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016, 1, 16071.
  12. Wichterle, O.; LÍM, D. Hydrophilic gels for biological use. Nature. 1960, 185, 117-118.
  13. Fuchs, S.; Ernst, A. U.; Wang, L. H.; Shariati, K.; Wang, X.; Liu, Q.; Ma, M. Hydrogels in emerging technologies for type 1 diabetes. Chem Rev. 2021, 121, 11458-11526.doi: 10.1021/acs.chemrev.0c01062 pmid: 33370102
  14. Chao, Y.; Chen, Q.; Liu, Z. Smart injectable hydrogels for cancer immunotherapy. Adv Funct Mater. 2020, 30, 1902785.
  15. Lin, W.; Kluzek, M.; Iuster, N.; Shimoni, E.; Kampf, N.; Goldberg, R.; Klein, J. Cartilage-inspired, lipid-based boundary-lubricated hydrogels. Science. 2020, 370, 335-338.doi: 10.1126/science.aay8276 pmid: 33060358
  16. Lee, A.; Hudson, A. R.; Shiwarski, D. J.; Tashman, J. W.; Hinton, T. J.; Yerneni, S.; Bliley, J. M.; Campbell, P. G.; Feinberg, A. W. 3D bioprinting of collagen to rebuild components of the human heart. Science. 2019, 365, 482-487.doi: 10.1126/science.aav9051 pmid: 31371612
  17. Jin, S.; Choi, H.; Seong, D.; You, C. L.; Kang, J. S.; Rho, S.; Lee, W. B.; Son, D.; Shin, M. Injectable tissue prosthesis for instantaneous closed-loop rehabilitation. Nature. 2023, 623, 58-65.
  18. Daly, A. C.; Riley, L.; Segura, T.; Burdick, J. A. Hydrogel microparticles for biomedical applications. Nat Rev Mater. 2020, 5, 20-43.doi: 10.1038/s41578-019-0148-6 pmid: 34123409
  19. Zhao, X.; Zhou, Y.; Li, J.; Zhang, C.; Wang, J. Opportunities and challenges of hydrogel microspheres for tendon-bone healing after anterior cruciate ligament reconstruction. J Biomed Mater Res B Appl Biomater. 2022, 110, 289-301.
  20. Suzuki, D.; Horigome, K.; Kureha, T.; Matsui, S.; Watanabe, T. Polymeric hydrogel microspheres: design, synthesis, characterization, assembly and applications. Polym J. 2017, 49, 695-702.
  21. Geng, Y.; Dalhaimer, P.; Cai, S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol. 2007, 2, 249-255.doi: 10.1038/nnano.2007.70 pmid: 18654271
  22. Lin, J.; Chen, L.; Yang, J.; Li, X.; Wang, J.; Zhu, Y.; Xu, X.; Cui, W. Injectable double positively charged hydrogel microspheres for targeting-penetration-phagocytosis. Small. 2022, 18, e2202156.
  23. Han, Y.; Yang, J.; Zhao, W.; Wang, H.; Sun, Y.; Chen, Y.; Luo, J.; Deng, L.; Xu, X.; Cui, W.; Zhang, H. Biomimetic injectable hydrogel microspheres with enhanced lubrication and controllable drug release for the treatment of osteoarthritis. Bioact Mater. 2021, 6, 3596-3607.doi: 10.1016/j.bioactmat.2021.03.022 pmid: 33869900
  24. Zhang, S.; Lin, A.; Tao, Z.; Fu, Y.; Xiao, L.; Ruan, G.; Li, Y. Microsphere-containing hydrogel scaffolds for tissue engineering. Chem Asian J. 2022, 17, e202200630.
  25. Zhao, Z.; Wang, Z.; Li, G.; Cai, Z.; Wu, J.; Wang, L.; Deng, L.; Cai, M.; Cui, W. Injectable microfluidic hydrogel microspheres for cell and drug delivery. Adv Funct Mater. 2021, 31, 2103339.
  26. Velasco, D.; Tumarkin, E.; Kumacheva, E. Microfluidic encapsulation of cells in polymer microgels. Small. 2012, 8, 1633-1642.doi: 10.1002/smll.201102464 pmid: 22467645
  27. Mealy, J. E.; Chung, J. J.; Jeong, H. H.; Issadore, D.; Lee, D.; Atluri, P.; Burdick, J. A. Injectable granular hydrogels with multifunctional properties for biomedical applications. Adv Mater. 2018, 30, e1705912.
  28. Helgeson, M. E.; Chapin, S. C.; Doyle, P. S. Hydrogel microparticles from lithographic processes: novel materials for fundamental and applied colloid science. Curr Opin Colloid Interface Sci. 2011, 16, 106-117.
  29. Martinez, C. J.; Kim, J. W.; Ye, C.; Ortiz, I.; Rowat, A. C.; Marquez, M.; Weitz, D. A microfluidic approach to encapsulate living cells in uniform alginate hydrogel microparticles. Macromol Biosci. 2012, 12, 946-951.doi: 10.1002/mabi.201100351 pmid: 22311460
  30. Yu, L.; Sun, Q.; Hui, Y.; Seth, A.; Petrovsky, N.; Zhao, C. X. Microfluidic formation of core-shell alginate microparticles for protein encapsulation and controlled release. J Colloid Interface Sci. 2019, 539, 497-503.
  31. Madrigal, J. L.; Sharma, S. N.; Campbell, K. T.; Stilhano, R. S.; Gijsbers, R.; Silva, E. A. Microgels produced using microfluidic on-chip polymer blending for controlled released of VEGF encoding lentivectors. Acta Biomater. 2018, 69, 265-276.doi: S1742-7061(18)30024-2 pmid: 29398644
  32. Shi, M.; Zhang, H.; Song, T.; Liu, X.; Gao, Y.; Zhou, J.; Li, Y. Sustainable dual release of antibiotic and growth factor from ph-responsive uniform alginate composite microparticles to enhance wound healing. ACS Appl Mater Interfaces. 2019, 11, 22730-22744.
  33. Zhang, L.; Chen, K.; Zhang, H.; Pang, B.; Choi, C. H.; Mao, A. S.; Liao, H.; Utech, S.; Mooney, D. J.; Wang, H.; Weitz, D. A. Microfluidic templated multicompartment microgels for 3D encapsulation and pairing of single cells. Small. 2018, 14, 1702955.
  34. Mao, A. S.; Shin, J. W.; Utech, S.; Wang, H.; Uzun, O.; Li, W.; Cooper, M.; Hu, Y.; Zhang, L.; Weitz, D. A.; Mooney, D. J. Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery. Nat Mater. 2017, 16, 236-243.doi: 10.1038/nmat4781 pmid: 27798621
  35. Sheikhi, A.; de Rutte, J.; Haghniaz, R.; Akouissi, O.; Sohrabi, A.; Di Carlo, D.; Khademhosseini, A. Microfluidic-enabled bottom-up hydrogels from annealable naturally-derived protein microbeads. Biomaterials. 2019, 192, 560-568.doi: S0142-9612(18)30762-2 pmid: 30530245
  36. Chen, J.; Huang, D.; Wang, L.; Hou, J.; Zhang, H.; Li, Y.; Zhong, S.; Wang, Y.; Wu, Y.; Huang, W. 3D bioprinted multiscale composite scaffolds based on gelatin methacryloyl (GelMA)/chitosan microspheres as a modular bioink for enhancing 3D neurite outgrowth and elongation. J Colloid Interface Sci. 2020, 574, 162-173.
  37. Cai, Y.; Wu, F.; Yu, Y.; Liu, Y.; Shao, C.; Gu, H.; Li, M.; Zhao, Y. Porous scaffolds from droplet microfluidics for prevention of intrauterine adhesion. Acta Biomater. 2019, 84, 222-230.doi: S1742-7061(18)30670-6 pmid: 30476581
  38. Yang, J.; Han, Y.; Lin, J.; Zhu, Y.; Wang, F.; Deng, L.; Zhang, H.; Xu, X.; Cui, W. Ball-bearing-inspired polyampholyte-modified microspheres as bio-lubricants attenuate osteoarthritis. Small. 2020, 16, e2004519.
  39. Cha, C.; Oh, J.; Kim, K.; Qiu, Y.; Joh, M.; Shin, S. R.; Wang, X.; Camci-Unal, G.; Wan, K. T.; Liao, R.; Khademhosseini, A. Microfluidics-assisted fabrication of gelatin-silica core-shell microgels for injectable tissue constructs. Biomacromolecules. 2014, 15, 283-290.doi: 10.1021/bm401533y pmid: 24344625
  40. Wang, H.; Liu, H.; Liu, H.; Su, W.; Chen, W.; Qin, J. One-step generation of core-shell gelatin methacrylate (GelMA) microgels using a droplet microfluidic system. Adv Mater Technol. 2019, 4, 1800632.
  41. Bian, J.; Cai, F.; Chen, H.; Tang, Z.; Xi, K.; Tang, J.; Wu, L.; Xu, Y.; Deng, L.; Gu, Y.; Cui, W.; Chen, L. Modulation of local overactive inflammation via injectable hydrogel microspheres. Nano Lett. 2021, 21, 2690-2698.doi: 10.1021/acs.nanolett.0c04713 pmid: 33543616
  42. Zheng, D.; Chen, W.; Chen, T.; Chen, X.; Liang, J.; Chen, H.; Shen, H.; Deng, L.; Ruan, H.; Cui, W. Hydrogen ion capturing hydrogel microspheres for reversing inflammaging. Adv Mater. 2024, 36, e2306105.
  43. Chen, Z.; Lv, Z.; Zhuang, Y.; Saiding, Q.; Yang, W.; Xiong, W.; Zhang, Z.; Chen, H.; Cui, W.; Zhang, Y. Mechanical signal-tailored hydrogel microspheres recruit and train stem cells for precise differentiation. Adv Mater. 2023, 35, e2300180.
  44. Yao, Y.; Wei, G.; Deng, L.; Cui, W. Visualizable and lubricating hydrogel microspheres via nanoPOSS for cartilage regeneration. Adv Sci (Weinh). 2023, 10, e2207438.
  45. Muir, V. G.; Qazi, T. H.; Shan, J.; Groll, J.; Burdick, J. A. Influence of microgel fabrication technique on granular hydrogel properties. ACS Biomater Sci Eng. 2021, 7, 4269-4281.doi: 10.1021/acsbiomaterials.0c01612 pmid: 33591726
  46. Chen, J.; Huang, K.; Chen, Q.; Deng, C.; Zhang, J.; Zhong, Z. Tailor-making fluorescent hyaluronic acid microgels via combining microfluidics and photoclick chemistry for sustained and localized delivery of herceptin in tumors. ACS Appl Mater Interfaces. 2018, 10, 3929-3937.
  47. Griffin, D. R.; Weaver, W. M.; Scumpia, P. O.; Di Carlo, D.; Segura, T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat Mater. 2015, 14, 737-744.doi: 10.1038/nmat4294 pmid: 26030305
  48. Allazetta, S.; Hausherr, T. C.; Lutolf, M. P. Microfluidic synthesis of cell-type-specific artificial extracellular matrix hydrogels. Biomacromolecules. 2013, 14, 1122-1131.doi: 10.1021/bm4000162 pmid: 23439131
  49. Allazetta, S.; Kolb, L.; Zerbib, S.; Bardy, J.; Lutolf, M. P. Cell-instructive microgels with tailor-made physicochemical properties. Small. 2015, 11, 5647-5656.doi: 10.1002/smll.201501001 pmid: 26349486
  50. Foster, G. A.; Headen, D. M.; González-García, C.; Salmerón-Sánchez, M.; Shirwan, H.; García, A. J. Protease-degradable microgels for protein delivery for vascularization. Biomaterials. 2017, 113, 170-175.doi: S0142-9612(16)30595-6 pmid: 27816000
  51. Headen, D. M.; Aubry, G.; Lu, H.; García, A. J. Microfluidic-based generation of size-controlled, biofunctionalized synthetic polymer microgels for cell encapsulation. Adv Mater. 2014, 26, 3003-3008.
  52. Jha, A. K.; Malik, M. S.; Farach-Carson, M. C.; Duncan, R. L.; Jia, X. Hierarchically structured, hyaluronic acid-based hydrogel matrices via the covalent integration of microgels into macroscopic networks. Soft Matter. 2010, 6, 5045-5055.doi: 10.1039/C0SM00101E pmid: 20936090
  53. Jia, X.; Yeo, Y.; Clifton, R. J.; Jiao, T.; Kohane, D. S.; Kobler, J. B.; Zeitels, S. M.; Langer, R. Hyaluronic acid-based microgels and microgel networks for vocal fold regeneration. Biomacromolecules. 2006, 7, 3336-3344.pmid: 17154461
  54. Sonnet, C.; Simpson, C. L.; Olabisi, R. M.; Sullivan, K.; Lazard, Z.; Gugala, Z.; Peroni, J. F.; Weh, J. M.; Davis, A. R.; West, J. L.; Olmsted-Davis, E. A. Rapid healing of femoral defects in rats with low dose sustained BMP2 expression from PEGDA hydrogel microspheres. J Orthop Res. 2013, 31, 1597-1604.doi: 10.1002/jor.22407 pmid: 23832813
  55. Ryu, S.; Kim, H. H.; Park, Y. H.; Lin, C. C.; Um, I. C.; Ki, C. S. Dual mode gelation behavior of silk fibroin microgel embedded poly(ethylene glycol) hydrogels. J Mater Chem B. 2016, 4, 4574-4584.doi: 10.1039/c6tb00896h pmid: 32263400
  56. Gansau, J.; Kelly, L.; Buckley, C. T. Influence of key processing parameters and seeding density effects of microencapsulated chondrocytes fabricated using electrohydrodynamic spraying. Biofabrication. 2018, 10, 035011.
  57. Kim, P. H.; Yim, H. G.; Choi, Y. J.; Kang, B. J.; Kim, J.; Kwon, S. M.; Kim, B. S.; Hwang, N. S.; Cho, J. Y. Injectable multifunctional microgel encapsulating outgrowth endothelial cells and growth factors for enhanced neovascularization. J Control Release. 2014, 187, 1-13.
  58. Xin, S.; Wyman, O. M.; Alge, D. L. Assembly of PEG microgels into porous cell-instructive 3D scaffolds via thiol-ene click chemistry. Adv Healthc Mater. 2018, 7, e1800160.
  59. Qayyum, A. S.; Jain, E.; Kolar, G.; Kim, Y.; Sell, S. A.; Zustiak, S. P. Design of electrohydrodynamic sprayed polyethylene glycol hydrogel microspheres for cell encapsulation. Biofabrication. 2017, 9, 025019.
  60. Nichol, J. W.; Koshy, S. T.; Bae, H.; Hwang, C. M.; Yamanlar, S.; Khademhosseini, A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials. 2010, 31, 5536-5544.doi: 10.1016/j.biomaterials.2010.03.064 pmid: 20417964
  61. Khademhosseini, A.; Eng, G.; Yeh, J.; Fukuda, J.; Blumling, J.,3rd; Langer, R.; Burdick, J. A. Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment. J Biomed Mater Res A. 2006, 79, 522-532.pmid: 16788972
  62. Loebel, C.; Broguiere, N.; Alini, M.; Zenobi-Wong, M.; Eglin, D. Microfabrication of photo-cross-linked hyaluronan hydrogels by single- and two-photon tyramine oxidation. Biomacromolecules. 2015, 16, 2624-2630.doi: 10.1021/acs.biomac.5b00363 pmid: 26222128
  63. Qin, X.-H.; Gruber, P.; Markovic, M.; Plochberger, B.; Klotzsch, E.; Stampfl, J.; Ovsianikov, A.; Liska, R. Enzymatic synthesis of hyaluronic acid vinyl esters for two-photon microfabrication of biocompatible and biodegradable hydrogel constructs. Polym Chem. 2014, 5, 6523-6533.
  64. Panda, P.; Ali, S.; Lo, E.; Chung, B. G.; Hatton, T. A.; Khademhosseini, A.; Doyle, P. S. Stop-flow lithography to generate cell-laden microgel particles. Lab Chip. 2008, 8, 1056-1061.doi: 10.1039/b804234a pmid: 18584079
  65. Lee, S. A.; Chung, S. E.; Park, W.; Lee, S. H.; Kwon, S. Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography. Lab Chip. 2009, 9, 1670-1675.doi: 10.1039/b819999j pmid: 19495448
  66. Chung, S. E.; Park, W.; Shin, S.; Lee, S. A.; Kwon, S. Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nat Mater. 2008, 7, 581-587.doi: 10.1038/nmat2208 pmid: 18552850
  67. Dendukuri, D.; Pregibon, D. C.; Collins, J.; Hatton, T. A.; Doyle, P. S. Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater. 2006, 5, 365-369.pmid: 16604080
  68. Laza, S. C.; Polo, M.; Neves, A. A.; Cingolani, R.; Camposeo, A.; Pisignano, D. Two-photon continuous flow lithography. Adv Mater. 2012, 24, 1304-1308.
  69. Widener, A. E.; Duraivel, S.; Angelini, T. E.; Phelps, E. A. Injectable microporous annealed particle hydrogel based on guest-host-interlinked polyethylene glycol maleimide microgels. Adv Nanobiomed Res. 2022, 2, 2200030.
  70. Sinclair, A.; O’Kelly, M. B.; Bai, T.; Hung, H. C.; Jain, P.; Jiang, S. Self-healing zwitterionic microgels as a versatile platform for malleable cell constructs and injectable therapies. Adv Mater. 2018, 30, e1803087.
  71. Sheen, J. R.; Mabrouk, A.; Garla, V. V. Fracture healing overview. In StatPearls, StatPearls Publishing: Treasure Island (FL), 2024.
  72. Lee, D. H.; Kim, S. J.; Kim, S. A.; Ju, G. I. Past, present, and future of cartilage restoration: from localized defect to arthritis. Knee Surg Relat Res. 2022, 34, 1.
  73. Yu, L.; Bennett, C. J.; Lin, C. H.; Yan, S.; Yang, J. Scaffold design considerations for peripheral nerve regeneration. J Neural Eng. 2024, 21, 041001.
  74. Lin, F.; Li, Y.; Cui, W. Injectable hydrogel microspheres in cartilage repair. Biomed Technol. 2023, 1, 18-29.
  75. Yu, L.; Martin, I. J.; Kasi, R. M.; Wei, M. Enhanced intrafibrillar mineralization of collagen fibrils induced by brushlike polymers. ACS Appl Mater Interfaces. 2018, 10, 28440-28449.
  76. Pérez, L. A.; Hernández, R.; Alonso, J. M.; Pérez-González, R.; Sáez-Martínez, V. Hyaluronic acid hydrogels crosslinked in physiological conditions: synthesis and biomedical applications. Biomedicines. 2021, 9, 1113.
  77. Khalili, M. H.; Afsar, A.; Zhang, R.; Wilson, S.; Dossi, E.; Goel, S.; Impey, S. A.; Aria, A. I. Thermal response of multi-layer UV crosslinked PEGDA hydrogels. Polym Degrad Stab. 2022, 195, 109805.
  78. Zhou, C.; Cao, Y.; Liu, C.; Guo, W. Microparticles by microfluidic lithography. Mater Today. 2023, 67, 178-202.
  79. Gu, Z.; Dang, T. T.; Ma, M.; Tang, B. C.; Cheng, H.; Jiang, S.; Dong, Y.; Zhang, Y.; Anderson, D. G. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano. 2013, 7, 6758-6766.doi: 10.1021/nn401617u pmid: 23834678
  80. Ruan, L.; Su, M.; Qin, X.; Ruan, Q.; Lang, W.; Wu, M.; Chen, Y.; Lv, Q. Progress in the application of sustained-release drug microspheres in tissue engineering. Mater Today Bio. 2022, 16, 100394.
  81. Cai, Z.; Jiang, H.; Lin, T.; Wang, C.; Ma, J.; Gao, R.; Jiang, Y.; Zhou, X. Microspheres in bone regeneration: fabrication, properties and applications. Materials Today Advances. 2022, 16, 100315.
  82. Hayrapetyan, A.; Jansen, J. A.; van den Beucken, J. J. Signaling pathways involved in osteogenesis and their application for bone regenerative medicine. Tissue Eng Part B Rev. 2015, 21, 75-87.
  83. Teng, C.; Tong, Z.; He, Q.; Zhu, H.; Wang, L.; Zhang, X.; Wei, W. Mesenchymal stem cells-hydrogel microspheres system for bone regeneration in calvarial defects. Gels. 2022, 8, 275.
  84. Yu, L.; Rowe, D. W.; Perera, I. P.; Zhang, J.; Suib, S. L.; Xin, X.; Wei, M. Intrafibrillar mineralized collagen-hydroxyapatite-based scaffolds for bone regeneration. ACS Appl Mater Interfaces. 2020, 12, 18235-18249.
  85. Zhao, X.; Liu, S.; Yildirimer, L.; Zhao, H.; Ding, R.; Wang, H.; Cui, W.; Weitz, D. Injectable stem cell-laden photocrosslinkable microspheres fabricated using microfluidics for rapid generation of osteogenic tissue constructs. Adv Funct Mater. 2016, 26, 2809-2819.
  86. Kanafi, M. M.; Ramesh, A.; Gupta, P. K.; Bhonde, R. R. Dental pulp stem cells immobilized in alginate microspheres for applications in bone tissue engineering. Int Endod J. 2014, 47, 687-697.doi: 10.1111/iej.12205 pmid: 24127887
  87. Alipour, M.; Firouzi, N.; Aghazadeh, Z.; Samiei, M.; Montazersaheb, S.; Khoshfetrat, A. B.; Aghazadeh, M. The osteogenic differentiation of human dental pulp stem cells in alginate-gelatin/Nano-hydroxyapatite microcapsules. BMC Biotechnol. 2021, 21, 6.doi: 10.1186/s12896-020-00666-3 pmid: 33430842
  88. Park, Y.; Lin, S.; Bai, Y.; Moeinzadeh, S.; Kim, S.; Huang, J.; Lee, U.; Huang, N. F.; Yang, Y. P. Dual delivery of BMP2 and IGF1 through injectable hydrogel promotes cranial bone defect healing. Tissue Eng Part A. 2022, 28, 760-769.
  89. Deng, M.; Tan, J.; Hu, C.; Hou, T.; Peng, W.; Liu, J.; Yu, B.; Dai, Q.; Zhou, J.; Yang, Y.; Dong, R.; Ruan, C.; Dong, S.; Xu, J. Modification of PLGA scaffold by MSC-derived extracellular matrix combats macrophage inflammation to initiate bone regeneration via TGF-β-induced protein. Adv Healthc Mater. 2020, 9, e2000353.
  90. Zhang, C.; Wang, J.; Xie, Y.; Wang, L.; Yang, L.; Yu, J.; Miyamoto, A.; Sun, F. Development of FGF-2-loaded electrospun waterborne polyurethane fibrous membranes for bone regeneration. Regen Biomater. 2021, 8, rbaa046.
  91. Amirthalingam, S.; Lee, S. S.; Pandian, M.; Ramu, J.; Iyer, S.; Hwang, N. S.; Jayakumar, R. Combinatorial effect of nano whitlockite/nano bioglass with FGF-18 in an injectable hydrogel for craniofacial bone regeneration. Biomater Sci. 2021, 9, 2439-2453.
  92. Zhao, Z.; Li, G.; Ruan, H.; Chen, K.; Cai, Z.; Lu, G.; Li, R.; Deng, L.; Cai, M.; Cui, W. Capturing magnesium ions via microfluidic hydrogel microspheres for promoting cancellous bone regeneration. ACS Nano. 2021, 15, 13041-13054.
  93. Lu, X.; Shi, S.; Li, H.; Gerhard, E.; Lu, Z.; Tan, X.; Li, W.; Rahn, K. M.; Xie, D.; Xu, G.; Zou, F.; Bai, X.; Guo, J.; Yang, J. Magnesium oxide-crosslinked low-swelling citrate-based mussel-inspired tissue adhesives. Biomaterials. 2020, 232, 119719.
  94. Yu, L.; Tian, Y.; Qiao, Y.; Liu, X. Mn-containing titanium surface with favorable osteogenic and antimicrobial functions synthesized by PIII&D. Colloids Surf B Biointerfaces. 2017, 152, 376-384.
  95. Zhong, Z.; Wu, X.; Wang, Y.; Li, M.; Li, Y.; Liu, X.; Zhang, X.; Lan, Z.; Wang, J.; Du, Y.; Zhang, S. Zn/Sr dual ions-collagen co-assembly hydroxyapatite enhances bone regeneration through procedural osteo-immunomodulation and osteogenesis. Bioact Mater. 2022, 10, 195-206.doi: 10.1016/j.bioactmat.2021.09.013 pmid: 34901539
  96. Yu, L.; Jin, G.; Ouyang, L.; Wang, D.; Qiao, Y.; Liu, X. Antibacterial activity, osteogenic and angiogenic behaviors of copper-bearing titanium synthesized by PIII&D. J Mater Chem B. 2016, 4, 1296-1309.
  97. Dai, M.; Lin, X.; Hua, P.; Wang, S.; Sun, X.; Tang, C.; Zhang, C.; Liu, L. Antibacterial sequential growth factor delivery from alginate/gelatin methacryloyl microspheres for bone regeneration. Int J Biol Macromol. 2024, 275, 133557.
  98. Clearfield, D. S.; Xin, X.; Yadav, S.; Rowe, D. W.; Wei, M. Osteochondral differentiation of fluorescent multireporter cells on zonally-organized biomaterials. Tissue Eng Part A. 2019, 25, 468-486.
  99. Platas, J.; Guillén, M. I.; Gomar, F.; Castejón, M. A.; Esbrit, P.; Alcaraz, M. J. Anti-senescence and anti-inflammatory effects of the C-terminal Moiety of PTHrP peptides in OA osteoblasts. J Gerontol A Biol Sci Med Sci. 2017, 72, 624-631.
  100. Cibere, J.; Thorne, A.; Kopec, J. A.; Singer, J.; Canvin, J.; Robinson, D. B.; Pope, J.; Hong, P.; Grant, E.; Lobanok, T.; Ionescu, M.; Poole, A. R.; Esdaile, J. M. Glucosamine sulfate and cartilage type II collagen degradation in patients with knee osteoarthritis: randomized discontinuation trial results employing biomarkers. J Rheumatol. 2005, 32, 896-902.pmid: 15868627
  101. Korotkyi, O.; Huet, A.; Dvorshchenko, K.; Kobyliak, N.; Falalyeyeva, T.; Ostapchenko, L. Probiotic composition and chondroitin sulfate regulate TLR-2/4-mediated NF-κB inflammatory pathway and cartilage metabolism in experimental osteoarthritis. Probiotics Antimicrob Proteins. 2021, 13, 1018-1032.doi: 10.1007/s12602-020-09735-7 pmid: 33459997
  102. Reyes, R.; Delgado, A.; Sánchez, E.; Fernández, A.; Hernández, A.; Evora, C. Repair of an osteochondral defect by sustained delivery of BMP-2 or TGFβ1 from a bilayered alginate-PLGA scaffold. J Tissue Eng Regen Med. 2014, 8, 521-533.doi: 10.1002/term.1549 pmid: 22733683
  103. Lin, J.; Wang, L.; Lin, J.; Liu, Q. Dual delivery of TGF-β3 and ghrelin in microsphere/hydrogel systems for cartilage regeneration. Molecules. 2021, 26, 5732.
  104. Cho, H.; Kim, J.; Kim, S.; Jung, Y. C.; Wang, Y.; Kang, B. J.; Kim, K. Dual delivery of stem cells and insulin-like growth factor-1 in coacervate-embedded composite hydrogels for enhanced cartilage regeneration in osteochondral defects. J Control Release. 2020, 327, 284-295.
  105. Yang, W.; Cao, Y.; Zhang, Z.; Du, F.; Shi, Y.; Li, X.; Zhang, Q. Targeted delivery of FGF2 to subchondral bone enhanced the repair of articular cartilage defect. Acta Biomater. 2018, 69, 170-182.doi: S1742-7061(18)30050-3 pmid: 29408545
  106. Sakata, R.; Kokubu, T.; Nagura, I.; Toyokawa, N.; Inui, A.; Fujioka, H.; Kurosaka, M. Localization of vascular endothelial growth factor during the early stages of osteochondral regeneration using a bioabsorbable synthetic polymer scaffold. J Orthop Res. 2012, 30, 252-259.doi: 10.1002/jor.21502 pmid: 21809378
  107. Vadalà G.; Russo, F.; Musumeci, M.; Giacalone, A.; Papalia, R.; Denaro, V. Targeting VEGF-A in cartilage repair and regeneration: state of the art and perspectives. J Biol Regul Homeost Agents. 2018, 32, 217-224.
  108. Zhu, P.; Wang, Z.; Sun, Z.; Liao, B.; Cai, Y. Recombinant platelet-derived growth factor-BB alleviates osteoarthritis in a rat model by decreasing chondrocyte apoptosis in vitro and in vivo. J Cell Mol Med. 2021, 25, 7472-7484.doi: 10.1111/jcmm.16779 pmid: 34250725
  109. Utsunomiya, H.; Gao, X.; Cheng, H.; Deng, Z.; Nakama, G.; Mascarenhas, R.; Goldman, J. L.; Ravuri, S. K.; Arner, J. W.; Ruzbarsky, J. J.; Lowe, W. R.; Philippon, M. J.; Huard, J. Intra-articular injection of bevacizumab enhances bone marrow stimulation-mediated cartilage repair in a rabbit osteochondral defect model. Am J Sports Med. 2021, 49, 1871-1882.
  110. Tangtrongsup, S.; Kisiday, J. D. Effects of dexamethasone concentration and timing of exposure on chondrogenesis of equine bone marrow-derived mesenchymal stem cells. Cartilage. 2016, 7, 92-103.doi: 10.1177/1947603515595263 pmid: 26958321
  111. Liu, Y.; Peng, L.; Li, L.; Huang, C.; Shi, K.; Meng, X.; Wang, P.; Wu, M.; Li, L.; Cao, H.; Wu, K.; Zeng, Q.; Pan, H.; Lu, W. W.; Qin, L.; Ruan, C.; Wang, X. 3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model. Biomaterials. 2021, 279, 121216.
  112. Kulchar, R. J.; Denzer, B. R.; Chavre, B. M.; Takegami, M.; Patterson, J. A review of the use of microparticles for cartilage tissue engineering. Int J Mol Sci. 2021, 22, 10292.
  113. Shyng, Y. C.; Chi, C. Y.; Devlin, H.; Sloan, P. Healing of tooth extraction sockets in the streptozotocin diabetic rat model: Induction of cartilage by BMP-6. Growth Factors. 2010, 28, 447-451.doi: 10.3109/08977194.2010.527966 pmid: 20969540
  114. García-Fernández, L. Osteochondral angiogenesis and promoted vascularization: new therapeutic target. Adv Exp Med Biol. 2018, 1059, 315-330.doi: 10.1007/978-3-319-76735-2_14 pmid: 29736580
  115. Fransès, R. E.; McWilliams, D. F.; Mapp, P. I.; Walsh, D. A. Osteochondral angiogenesis and increased protease inhibitor expression in OA. Osteoarthritis Cartilage. 2010, 18, 563-571.
  116. Jeong, S. Y.; Kim, D. H.; Ha, J.; Jin, H. J.; Kwon, S. J.; Chang, J. W.; Choi, S. J.; Oh, W.; Yang, Y. S.; Kim, G.; Kim, J. S.; Yoon, J. R.; Cho, D. H.; Jeon, H. B. Thrombospondin-2 secreted by human umbilical cord blood-derived mesenchymal stem cells promotes chondrogenic differentiation. Stem Cells. 2013, 31, 2136-2148.doi: 10.1002/stem.1471 pmid: 23843355
  117. Andrés Sastre, E.; Maly, K.; Zhu, M.; Witte-Bouma, J.; Trompet, D.; Böhm, A. M.; Brachvogel, B.; van Nieuwenhoven, C. A.; Maes, C.; van Osch, G.; Zaucke, F.; Farrell, E. Spatiotemporal distribution of thrombospondin-4 and -5 in cartilage during endochondral bone formation and repair. Bone. 2021, 150, 115999.
  118. Helgeland, E.; Pedersen, T. O.; Rashad, A.; Johannessen, A. C.; Mustafa, K.; Rosén, A. Angiostatin-functionalized collagen scaffolds suppress angiogenesis but do not induce chondrogenesis by mesenchymal stromal cells in vivo. J Oral Sci. 2020, 62, 371-376.doi: 10.2334/josnusd.19-0327 pmid: 32684573
  119. Dehghan-Baniani, D.; Mehrjou, B.; Wang, D.; Bagheri, R.; Solouk, A.; Chu, P. K.; Wu, H. A dual functional chondro-inductive chitosan thermogel with high shear modulus and sustained drug release for cartilage tissue engineering. Int J Biol Macromol. 2022, 205, 638-650.doi: 10.1016/j.ijbiomac.2022.02.115 pmid: 35217083
  120. Blaney Davidson, E. N.; Vitters, E. L.; van der Kraan, P. M.; van den Berg, W. B. Expression of transforming growth factor-beta (TGFbeta) and the TGFbeta signalling molecule SMAD-2P in spontaneous and instability-induced osteoarthritis: role in cartilage degradation, chondrogenesis and osteophyte formation. Ann Rheum Dis. 2006, 65, 1414-1421.pmid: 16439443
  121. Yu, C.; Liu, J.; Lu, G.; Xie, Y.; Sun, Y.; Wang, Q.; Liang, J.; Fan, Y.; Zhang, X. Repair of osteochondral defects in a rabbit model with artificial cartilage particulates derived from cultured collagen-chondrocyte microspheres. J Mater Chem B. 2018, 6, 5164-5173.doi: 10.1039/c8tb01185k pmid: 32254543
  122. Li, F.; Truong, V. X.; Fisch, P.; Levinson, C.; Glattauer, V.; Zenobi-Wong, M.; Thissen, H.; Forsythe, J. S.; Frith, J. E. Cartilage tissue formation through assembly of microgels containing mesenchymal stem cells. Acta Biomater. 2018, 77, 48-62.doi: S1742-7061(18)30409-4 pmid: 30006317
  123. Li, X.; Li, X.; Yang, J.; Lin, J.; Zhu, Y.; Xu, X.; Cui, W. Living and injectable porous hydrogel microsphere with paracrine activity for cartilage regeneration. Small. 2023, 19, e2207211.
  124. Huebner, E. A.; Strittmatter, S. M. Axon regeneration in the peripheral and central nervous systems. Results Probl Cell Differ. 2009, 48, 339-351.doi: 10.1007/400_2009_19 pmid: 19582408
  125. Qian, Y.; Lin, H.; Yan, Z.; Shi, J.; Fan, C. Functional nanomaterials in peripheral nerve regeneration: Scaffold design, chemical principles and microenvironmental remodeling. Mater Today. 2021, 51, 165-187.
  126. Martínez de Albornoz, P.; Delgado, P. J.; Forriol, F.; Maffulli, N. Non-surgical therapies for peripheral nerve injury. Br Med Bull. 2011, 100, 73-100.
  127. Hu, Y.; Wu, Y.; Gou, Z.; Tao, J.; Zhang, J.; Liu, Q.; Kang, T.; Jiang, S.; Huang, S.; He, J.; Chen, S.; Du, Y.; Gou, M. 3D-engineering of cellularized conduits for peripheral nerve regeneration. Sci Rep. 2016, 6, 32184.doi: 10.1038/srep32184 pmid: 27572698
  128. Bellamkonda, R. V. Peripheral nerve regeneration: an opinion on channels, scaffolds and anisotropy. Biomaterials. 2006, 27, 3515-3518.doi: 10.1016/j.biomaterials.2006.02.030 pmid: 16533522
  129. Kim, Y. T.; Haftel, V. K.; Kumar, S.; Bellamkonda, R. V. The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials. 2008, 29, 3117-3127.
  130. Panzer, K. V.; Burrell, J. C.; Helm, K. V. T.; Purvis, E. M.; Zhang, Q.; Le, A. D.; O’Donnell, J. C.; Cullen, D. K. Tissue engineered bands of büngner for accelerated motor and sensory axonal outgrowth. Front Bioeng Biotechnol. 2020, 8, 580654.
  131. Lee, A. C.; Yu, V. M.; Lowe, J. B.,3rd; Brenner, M. J.; Hunter, D. A.; Mackinnon, S. E.; Sakiyama-Elbert, S. E. Controlled release of nerve growth factor enhances sciatic nerve regeneration. Exp Neurol. 2003, 184, 295-303.pmid: 14637100
  132. Fine, E. G.; Decosterd, I.; Papaloïzos, M.; Zurn, A. D.; Aebischer, P. GDNF and NGF released by synthetic guidance channels support sciatic nerve regeneration across a long gap. Eur J Neurosci. 2002, 15, 589-601.pmid: 11886440
  133. Vögelin, E.; Baker, J. M.; Gates, J.; Dixit, V.; Constantinescu, M. A.; Jones, N. F. Effects of local continuous release of brain derived neurotrophic factor (BDNF) on peripheral nerve regeneration in a rat model. Exp Neurol. 2006, 199, 348-353.pmid: 16487516
  134. Saffari, T. M.; Chan, K.; Saffari, S.; Zuo, K. J.; McGovern, R. M.; Reid, J. M.; Borschel, G. H.; Shin, A. Y. Combined local delivery of tacrolimus and stem cells in hydrogel for enhancing peripheral nerve regeneration. Biotechnol Bioeng. 2021, 118, 2804-2814.doi: 10.1002/bit.27799 pmid: 33913523
  135. Zolfagharzadeh, V.; Ai, J.; Soltani, H.; Hassanzadeh, S.; Khanmohammadi, M. Sustain release of loaded insulin within biomimetic hydrogel microsphere for sciatic tissue engineering in vivo. Int J Biol Macromol. 2023, 225, 687-700.
  136. Kim, G. B.; Chen, Y.; Kang, W.; Guo, J.; Payne, R.; Li, H.; Wei, Q.; Baker, J.; Dong, C.; Zhang, S.; Wong, P. K.; Rizk, E. B.; Yan, J.; Yang, J. The critical chemical and mechanical regulation of folic acid on neural engineering. Biomaterials. 2018, 178, 504-516.doi: S0142-9612(18)30236-9 pmid: 29657092
  137. Wu, W.; Jia, S.; Xu, H.; Gao, Z.; Wang, Z.; Lu, B.; Ai, Y.; Liu, Y.; Liu, R.; Yang, T.; Luo, R.; Hu, C.; Kong, L.; Huang, D.; Yan, L.; Yang, Z.; Zhu, L.; Hao, D. Supramolecular hydrogel microspheres of platelet-derived growth factor mimetic peptide promote recovery from spinal cord injury. ACS Nano. 2023, 17, 3818-3837.doi: 10.1021/acsnano.2c12017 pmid: 36787636
  138. Huang, F.; Chen, T.; Chang, J.; Zhang, C.; Liao, F.; Wu, L.; Wang, W.; Yin, Z. A conductive dual-network hydrogel composed of oxidized dextran and hyaluronic-hydrazide as BDNF delivery systems for potential spinal cord injury repair. Int J Biol Macromol. 2021, 167, 434-445.doi: 10.1016/j.ijbiomac.2020.11.206 pmid: 33278434
  139. Blanpain, C. Stem cells: Skin regeneration and repair. Nature. 2010, 464, 686-687.
  140. Chouhan, D.; Dey, N.; Bhardwaj, N.; Mandal, B. B. Emerging and innovative approaches for wound healing and skin regeneration: current status and advances. Biomaterials. 2019, 216, 119267.
  141. Clark, R. A.; Ghosh, K.; Tonnesen, M. G. Tissue engineering for cutaneous wounds. J Invest Dermatol. 2007, 127, 1018-1029.doi: 10.1038/sj.jid.5700715 pmid: 17435787
  142. Herndon, D. N.; Barrow, R. E.; Rutan, R. L.; Rutan, T. C.; Desai, M. H.; Abston, S. A comparison of conservative versus early excision. Therapies in severely burned patients. Ann Surg. 1989, 209, 547-552; discussion 552-553.
  143. Vig, K.; Chaudhari, A.; Tripathi, S.; Dixit, S.; Sahu, R.; Pillai, S.; Dennis, V. A.; Singh, S. R. Advances in skin regeneration using tissue engineering. Int J Mol Sci. 2017, 18, 789.
  144. Zhang, D.; Ouyang, Q.; Hu, Z.; Lu, S.; Quan, W.; Li, P.; Chen, Y.; Li, S. Catechol functionalized chitosan/active peptide microsphere hydrogel for skin wound healing. Int J Biol Macromol. 2021, 173, 591-606.doi: 10.1016/j.ijbiomac.2021.01.157 pmid: 33508359
  145. Shamloo, A.; Sarmadi, M.; Aghababaie, Z.; Vossoughi, M. Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres. Int J Pharm. 2018, 537, 278-289.
  146. Liu, Q.; Huang, Y.; Lan, Y.; Zuo, Q.; Li, C.; Zhang, Y.; Guo, R.; Xue, W. Acceleration of skin regeneration in full-thickness burns by incorporation of bFGF-loaded alginate microspheres into a CMCS-PVA hydrogel. J Tissue Eng Regen Med. 2017, 11, 1562-1573.doi: 10.1002/term.2057 pmid: 26118827
  147. Kong, X.; Fu, J.; Shao, K.; Wang, L.; Lan, X.; Shi, J. Biomimetic hydrogel for rapid and scar-free healing of skin wounds inspired by the healing process of oral mucosa. Acta Biomater. 2019, 100, 255-269.doi: S1742-7061(19)30687-7 pmid: 31606531
  148. Xiao, Y.; Ding, T.; Fang, H.; Lin, J.; Chen, L.; Ma, D.; Zhang, T.; Cui, W.; Ma, J. Innovative bio-based hydrogel microspheres micro-cage for neutrophil extracellular traps scavenging in diabetic wound healing. Adv Sci (Weinh). 2024, 11, e2401195.
  149. Ansari, S.; Chen, C.; Xu, X.; Annabi, N.; Zadeh, H. H.; Wu, B. M.; Khademhosseini, A.; Shi, S.; Moshaverinia, A. Muscle tissue engineering using gingival mesenchymal stem cells encapsulated in alginate hydrogels containing multiple growth factors. Ann Biomed Eng. 2016, 44, 1908-1920.doi: 10.1007/s10439-016-1594-6 pmid: 27009085
  150. Fischer, K. M.; Scott, T. E.; Browe, D. P.; McGaughey, T. A.; Wood, C.; Wolyniak, M. J.; Freeman, J. W. Hydrogels for skeletal muscle regeneration. Regen Eng Transl Med. 2021, 7, 353-361.
  151. Li, Y.; Liu, S.; Zhang, J.; Wang, Y.; Lu, H.; Zhang, Y.; Song, G.; Niu, F.; Shen, Y.; Midgley, A. C.; Li, W.; Kong, D.; Zhu, M. Elastic porous microspheres/extracellular matrix hydrogel injectable composites releasing dual bio-factors enable tissue regeneration. Nat Commun. 2024, 15, 1377.doi: 10.1038/s41467-024-45764-4 pmid: 38355941
  152. Wang, R.; Wang, F.; Lu, S.; Gao, B.; Kan, Y.; Yuan, T.; Xu, Y.; Yuan, C.; Guo, D.; Fu, W.; Yu, X.; Si, Y. Adipose-derived stem cell/FGF19-loaded microfluidic hydrogel microspheres for synergistic restoration of critical ischemic limb. Bioact Mater. 2023, 27, 394-408.doi: 10.1016/j.bioactmat.2023.04.006 pmid: 37122899
  153. Jiao, Y.; Gyawali, D.; Stark, J. M.; Akcora, P.; Nair, P.; Tran, R. T.; Yang, J. A rheological study of biodegradable injectable PEGMC/HA composite scaffolds. Soft Matter. 2012, 8, 1499-1507.doi: 10.1039/C1SM05786C pmid: 25309615
  154. Van Den Bulcke, A. I.; Bogdanov, B.; De Rooze, N.; Schacht, E. H.; Cornelissen, M.; Berghmans, H. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules. 2000, 1, 31-38.doi: 10.1021/bm990017d pmid: 11709840
  155. Lee, H.; Stoffey, D. Polyethylene glycol diacrylate. US3769336A. 1973.
  156. Bao, B.; Zeng, Q.; Li, K.; Wen, J.; Zhang, Y.; Zheng, Y.; Zhou, R.; Shi, C.; Chen, T.; Xiao, C.; Chen, B.; Wang, T.; Yu, K.; Sun, Y.; Lin, Q.; He, Y.; Tu, S.; Zhu, L. Rapid fabrication of physically robust hydrogels. Nat Mater. 2023, 22, 1253-1260.doi: 10.1038/s41563-023-01648-4 pmid: 37604908
  157. Xu, H.; Yan, S.; Gerhard, E.; Xie, D.; Liu, X.; Zhang, B.; Shi, D.; Ameer, G. A.; Yang, J. Citric acid: a nexus between cellular mechanisms and biomaterial innovations. Adv Mater. 2024, 36, e2402871.
  158. Wang, H.; Huddleston, S.; Yang, J.; Ameer, G. A. Enabling proregenerative medical devices via citrate-based biomaterials: transitioning from inert to regenerative biomaterials. Adv Mater. 2024, 36, e2306326.
  159. Ma, C.; Tian, X.; Kim, J. P.; Xie, D.; Ao, X.; Shan, D.; Lin, Q.; Hudock, M. R.; Bai, X.; Yang, J. Citrate-based materials fuel human stem cells by metabonegenic regulation. Proc Natl Acad Sci U S A. 2018, 115, E11741-E11750.
  160. Xie, D.; Guo, J.; Mehdizadeh, M.; Tran, R. T.; Chen, R.; Sun, D.; Qian, G.; Jin, D.; Bai, X.; Yang, J. Development of injectable citrate-based bioadhesive bone implants. J Mater Chem B. 2015, 3, 387-398.pmid: 25580247
  161. Shan, D.; Hsieh, J. T.; Bai, X.; Yang, J. Citrate-based fluorescent biomaterials. Adv Healthc Mater. 2018, 7, e1800532.
  162. Chen, Y. R.; Yan, X.; Yuan, F. Z.; Lin, L.; Wang, S. J.; Ye, J.; Zhang, J. Y.; Yang, M.; Wu, D. C.; Wang, X.; Yu, J. K. Kartogenin-conjugated double-network hydrogel combined with stem cell transplantation and tracing for cartilage repair. Adv Sci (Weinh). 2022, 9, e2105571.
  163. Ren, E.; Chen, H.; Qin, Z.; Guan, S.; Jiang, L.; Pang, X.; He, Y.; Zhang, Y.; Gao, X.; Chu, C.; Zheng, L.; Liu, G. Harnessing bifunctional ferritin with kartogenin loading for mesenchymal stem cell capture and enhancing chondrogenesis in cartilage regeneration. Adv Healthc Mater. 2022, 11, e2101715.
  164. Madrid, A.; Alisch, R. S.; Rizk, E.; Papale, L. A.; Hogan, K. J.; Iskandar, B. J. Transgenerational epigenetic inheritance of axonal regeneration after spinal cord injury. Environ Epigenet. 2023, 9, dvad002.
  165. Bigham, A.; Rahimkhoei, V.; Abasian, P.; Delfi, M.; Naderi, J.; Ghomi, M.; Dabbagh Moghaddam, F.; Waqar, T.; Nuri Ertas, Y.; Sharifi, S.; Rabiee, N.; Ersoy, S.; Maleki, A.; Nazarzadeh Zare, E.; Sharifi, E.; Jabbari, E.; Makvandi, P.; Akbari, A. Advances in tannic acid-incorporated biomaterials: infection treatment, regenerative medicine, cancer therapy, and biosensing. Chem Eng J. 2022, 432, 134146.
  166. Sathishkumar, G.; Gopinath, K.; Zhang, K.; Kang, E. T.; Xu, L.; Yu, Y. Recent progress in tannic acid-driven antibacterial/antifouling surface coating strategies. J Mater Chem B. 2022, 10, 2296-2315.
  167. Zhang, W.; Ling, C.; Liu, H.; Zhang, A.; Mao, L.; Wang, J.; Chao, J.; Backman, L. J.; Yao, Q.; Chen, J. Tannic acid-mediated dual peptide-functionalized scaffolds to direct stem cell behavior and osteochondral regeneration. Chem Eng J. 2020, 396, 125232.
  168. Guo, J.; Tian, X.; Xie, D.; Rahn, K.; Gerhard, E.; Kuzma, M. L.; Zhou, D.; Dong, C.; Bai, X.; Lu, Z.; Yang, J. Citrate-based tannin-bridged bone composites for lumbar fusion. Adv Funct Mater. 2020, 30, 2002438.
  169. Zhang, W.; Fang, X. X.; Li, Q. C.; Pi, W.; Han, N. Reduced graphene oxide-embedded nerve conduits loaded with bone marrow mesenchymal stem cell-derived extracellular vesicles promote peripheral nerve regeneration. Neural Regen Res. 2023, 18, 200-206.doi: 10.4103/ pmid: 35799543
  170. Xia, B.; Gao, X.; Qian, J.; Li, S.; Yu, B.; Hao, Y.; Wei, B.; Ma, T.; Wu, H.; Yang, S.; Zheng, Y.; Gao, X.; Guo, L.; Gao, J.; Yang, Y.; Zhang, Y.; Wei, Y.; Xue, B.; Jin, Y.; Luo, Z.; Zhang, J.; Huang, J. A novel superparamagnetic multifunctional nerve scaffold: a remote actuation strategy to boost in situ extracellular vesicles production for enhanced peripheral nerve repair. Adv Mater. 2024, 36, e2305374.
  171. Hao, R.; Hu, S.; Zhang, H.; Chen, X.; Yu, Z.; Ren, J.; Guo, H.; Yang, H. Mechanical stimulation on a microfluidic device to highly enhance small extracellular vesicle secretion of mesenchymal stem cells. Mater Today Bio. 2023, 18, 100527.
  172. Zeng, J.; Gu, C.; Zhuang, Y.; Lin, K.; Xie, Y.; Chen, X. Injectable hydrogel microspheres encapsulating extracellular vesicles derived from melatonin-stimulated NSCs promote neurogenesis and alleviate inflammation in spinal cord injury. Chem Eng J. 2023, 470, 144121.
  173. Yu, M.; Gu, G.; Cong, M.; Du, M.; Wang, W.; Shen, M.; Zhang, Q.; Shi, H.; Gu, X.; Ding, F. Repair of peripheral nerve defects by nerve grafts incorporated with extracellular vesicles from skin-derived precursor Schwann cells. Acta Biomater. 2021, 134, 190-203.doi: 10.1016/j.actbio.2021.07.026 pmid: 34289422
  174. Wang, C.; Wang, M.; Xia, K.; Wang, J.; Cheng, F.; Shi, K.; Ying, L.; Yu, C.; Xu, H.; Xiao, S.; Liang, C.; Li, F.; Lei, B.; Chen, Q. A bioactive injectable self-healing anti-inflammatory hydrogel with ultralong extracellular vesicles release synergistically enhances motor functional recovery of spinal cord injury. Bioact Mater. 2021, 6, 2523-2534.doi: 10.1016/j.bioactmat.2021.01.029 pmid: 33615043
  175. Yanatori, I.; Richardson, D. R.; Dhekne, H. S.; Toyokuni, S.; Kishi, F. CD63 is regulated by iron via the IRE-IRP system and is important for ferritin secretion by extracellular vesicles. Blood. 2021, 138, 1490-1503.doi: 10.1182/blood.2021010995 pmid: 34265052
Share
Back to top