·
REVIEW
·

Stimuli-responsive hydrogels for bone tissue engineering

Congyang Xue1,2 Liping Chen1,3 Nan Wang1 Heng Chen1 Wenqiang Xu1,3 Zhipeng Xi1,3 Qing Sun4 Ran Kang1,3,* Lin Xie1,3,* Xin Liu1,2,3,*
Show Less
1 Department of Orthopaedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
2 The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
3 Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
4 Laboratory of Gene Therapy, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
Submitted: 14 June 2024 | Revised: 22 July 2024 | Accepted: 30 August 2024 | Published: 28 September 2024
Copyright © 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

The treatment of bone defects remains a great clinical challenge. With the development of science and technology, bone tissue engineering technology has emerged, which can mimic the structure and function of natural bone tissues and create solutions for repairing or replacing human bone tissues based on biocompatible materials, cells and bioactive factors. Hydrogels are favoured by researchers due to their high water content, degradability and good biocompatibility. This paper describes the hydrogel sources, roles and applications. According to the different types of stimuli, hydrogels are classified into three categories: physical, chemical and biochemical responses, and the applications of different stimuli-responsive hydrogels in bone tissue engineering are summarised. Stimuli-responsive hydrogels can form a semi-solid with good adhesion based on different physiological environments, which can carry a variety of bone-enhancing bioactive factors, drugs and cells, and have a long retention time in the local area, which is conducive to a long period of controlled release; they can also form a scaffold for constructing tissue repair, which can jointly promote the repair of bone injury sites. However, it also has many defects, such as poor biocompatibility, immunogenicity and mechanical stability. Further studies are still needed in the future to facilitate its clinical translation.

References
  1. Turnbull, G.; Clarke, J.; Picard, F.; Riches, P.; Jia, L.; Han, F.; Li, B.; Shu, W. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater. 2018, 3, 278-314.
  2. Wei, H.; Cui, J.; Lin, K.; Xie, J.; Wang, X. Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Res. 2022, 10, 17.
  3. Peng, Z.; Zhao, T.; Zhou, Y.; Li, S.; Li, J.; Leblanc, R. M. Bone tissue engineering via carbon-based nanomaterials. Adv Healthc Mater. 2020, 9, e1901495.
  4. Sasso, R. C.; Williams, J. I.; Dimasi, N.; Meyer, P. R., Jr. Postoperative drains at the donor sites of iliac-crest bone grafts. A prospective, randomized study of morbidity at the donor site in patients who had a traumatic injury of the spine. J Bone Joint Surg Am. 1998, 80, 631-635.
  5. Kageyama, T.; Akieda, H.; Sonoyama, Y.; Sato, K.; Yoshikawa, H.; Isono, H.; Hirota, M.; Kitajima, H.; Chun, Y. S.; Maruo, S.; Fukuda, J. Bone beads enveloped with vascular endothelial cells for bone regenerative medicine. Acta Biomater. 2023, 165, 168-179.
  6. Liu, X.; Sun, S.; Wang, N.; Kang, R.; Xie, L.; Liu, X. Therapeutic application of hydrogels for bone-related diseases. Front Bioeng Biotechnol. 2022, 10, 998988.
  7. Sordi, M. B.; Cruz, A.; Fredel, M. C.; Magini, R.; Sharpe, P. T. Three-dimensional bioactive hydrogel-based scaffolds for bone regeneration in implant dentistry. Mater Sci Eng C Mater Biol Appl. 2021, 124, 112055.
  8. Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2001, 53, 321-339.
  9. Zhang, K.; Liu, Y.; Shi, X.; Zhang, R.; He, Y.; Zhang, H.; Wang, W. Application of polyvinyl alcohol/chitosan copolymer hydrogels in biomedicine: A review. Int J Biol Macromol. 2023, 242, 125192.
  10. Qiu, H.; Deng, J.; Wei, R.; Wu, X.; Chen, S.; Yang, Y.; Gong, C.; Cui, L.; Si, Z.; Zhu, Y.; Wang, R.; Xiong, D. A lubricant and adhesive hydrogel cross-linked from hyaluronic acid and chitosan for articular cartilage regeneration. Int J Biol Macromol. 2023, 243, 125249.
  11. Wang, N.; Yu, K. K.; Li, K.; Yu, X. Q. A biocompatible polyethylene glycol/alginate composite hydrogel with significant reactive oxygen species consumption for promoting wound healing. J Mater Chem B. 2023, 11, 6934-6942.
  12. Nikpour, P.; Salimi-Kenari, H.; Rabiee, S. M. Biological and bioactivity assessment of dextran nanocomposite hydrogel for bone regeneration. Prog Biomater. 2021, 10, 271-280.
  13. Shehzad, A.; Mukasheva, F.; Moazzam, M.; Sultanova, D.; Abdikhan, B.; Trifonov, A.; Akilbekova, D. Dual-crosslinking of gelatin-based hydrogels: promising compositions for a 3D printed organotypic bone model. Bioengineering (Basel). 2023, 10, 704.
  14. Tan, Y.; Xu, C.; Liu, Y.; Bai, Y.; Li, X.; Wang, X. Sprayable and self-healing chitosan-based hydrogels for promoting healing of infected wound via anti-bacteria, anti-inflammation and angiogenesis. Carbohydr Polym. 2024, 337, 122147.
  15. Li, M.; You, J.; Qin, Q.; Liu, M.; Yang, Y.; Jia, K.; Zhang, Y.; Zhou, Y. A comprehensive review on silk fibroin as a persuasive biomaterial for bone tissue engineering. Int J Mol Sci. 2023, 24, 2660.
  16. Wang, L.; Wei, X.; He, X.; Xiao, S.; Shi, Q.; Chen, P.; Lee, J.; Guo, X.; Liu, H.; Fan, Y. Osteoinductive dental pulp stem cell-derived extracellular vesicle-loaded multifunctional hydrogel for bone regeneration. ACS Nano. 2024, 18, 8777-8797.
  17. Seifi, S.; Shamloo, A.; Barzoki, A. K.; Bakhtiari, M. A.; Zare, S.; Cheraghi, F.; Peyrovan, A. Engineering biomimetic scaffolds for bone regeneration: Chitosan/alginate/polyvinyl alcohol-based double-network hydrogels with carbon nanomaterials. Carbohydr Polym. 2024, 339, 122232.
  18. Ekapakul, N.; Sinthuvanich, C.; Ajiro, H.; Choochottiros, C. Bioactivity of star-shaped polycaprolactone/chitosan composite hydrogels for biomaterials. Int J Biol Macromol. 2022, 212, 420-431.
  19. Sá-Lima, H.; Caridade, S. G.; Mano, J. F.; Reis, R. L. Stimuli-responsive chitosan-starch injectable hydrogels combined with encapsulated adipose-derived stromal cells for articular cartilage regeneration. Soft Matter. 2010, 6, 5184-5195.
  20. Gao, L.; Beninatto, R.; Oláh, T.; Goebel, L.; Tao, K.; Roels, R.; Schrenker, S.; Glomm, J.; Venkatesan, J. K.; Schmitt, G.; Sahin, E.; Dahhan, O.; Pavan, M.; Barbera, C.; Lucia, A. D.; Menger, M. D.; Laschke, M. W.; Cucchiarini, M.; Galesso, D.; Madry, H. A photopolymerizable biocompatible hyaluronic acid hydrogel promotes early articular cartilage repair in a minipig model in vivo. Adv Healthc Mater. 2023, 12, e2300931.
  21. Chalanqui, M. J.; Pentlavalli, S.; McCrudden, C.; Chambers, P.; Ziminska, M.; Dunne, N.; McCarthy, H. O. Influence of alginate backbone on efficacy of thermo-responsive alginate-g-P(NIPAAm) hydrogel as a vehicle for sustained and controlled gene delivery. Mater Sci Eng C Mater Biol Appl. 2019, 95, 409-421.
  22. Shi, Z.; Yang, F.; Pang, Q.; Hu, Y.; Wu, H.; Yu, X.; Chen, X.; Shi, L.; Wen, B.; Xu, R.; Hou, R.; Liu, D.; Pang, Q.; Zhu, Y. The osteogenesis and the biologic mechanism of thermo-responsive injectable hydrogel containing carboxymethyl chitosan/sodium alginate nanoparticles towards promoting osteal wound healing. Int J Biol Macromol. 2023, 224, 533-543.
  23. Angelopoulou, A.; Efthimiadou, E. K.; Kordas, G. Dextran modified pH sensitive silica hydro-xerogels as promising drug delivery scaffolds. Mater Lett. 2012, 74, 50-53.
  24. Han, X.; He, J.; Wang, Z.; Bai, Z.; Qu, P.; Song, Z.; Wang, W. Fabrication of silver nanoparticles/gelatin hydrogel system for bone regeneration and fracture treatment. Drug Deliv. 2021, 28, 319-324.
  25. Saghebasl, S.; Davaran, S.; Rahbarghazi, R.; Montaseri, A.; Salehi, R.; Ramazani, A. Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/gelatin and (PCL-PEG-PCL)/Gelatin for use in cartilage tissue engineering. J Biomater Sci Polym Ed. 2018, 29, 1185-1206.
  26. Gou, S.; Xie, D.; Ma, Y.; Huang, Y.; Dai, F.; Wang, C.; Xiao, B. Injectable, thixotropic, and multiresponsive silk fibroin hydrogel for localized and synergistic tumor therapy. ACS Biomater Sci Eng. 2020, 6, 1052-1063.
  27. Yu, Y.; Yu, X.; Tian, D.; Yu, A.; Wan, Y. Thermo-responsive chitosan/silk fibroin/amino-functionalized mesoporous silica hydrogels with strong and elastic characteristics for bone tissue engineering. Int J Biol Macromol. 2021, 182, 1746-1758.
  28. Liang, Y.; Wu, Z.; Wei, Y.; Ding, Q.; Zilberman, M.; Tao, K.; Xie, X.; Wu, J. Self-healing, self-adhesive and stable organohydrogel-based stretchable oxygen sensor with high performance at room temperature. Nanomicro Lett. 2022, 14, 52.
  29. Bi, G.; Liu, S.; Zhong, X.; Peng, Y.; Song, W.; Yang, J.; Ren, L. Thermosensitive injectable gradient hydrogel-induced bidirectional differentiation of BMSCs. Macromol Biosci. 2023, 23, e2200250.
  30. Tian, Y.; Cui, Y.; Ren, G.; Fan, Y.; Dou, M.; Li, S.; Wang, G.; Wang, Y.; Peng, C.; Wu, D. Dual-functional thermosensitive hydrogel for reducing infection and enhancing bone regeneration in infected bone defects. Mater Today Bio. 2024, 25, 100972.
  31. Zhu, D.; Wang, H.; Trinh, P.; Heilshorn, S. C.; Yang, F. Elastin-like protein-hyaluronic acid (ELP-HA) hydrogels with decoupled mechanical and biochemical cues for cartilage regeneration. Biomaterials. 2017, 127, 132-140.
  32. Zheng, J.; Wang, Y.; Wang, Y.; Duan, R.; Liu, L. Gelatin/hyaluronic acid photocrosslinked double network hydrogel with nano-hydroxyapatite composite for potential application in bone repair. Gels. 2023, 9, 742.
  33. Chen, K.; He, W.; Gao, W.; Wu, Y.; Zhang, Z.; Liu, M.; Hu, Y.; Xiao, X.; Li, F.; Feng, Q. A dual reversible cross-linked hydrogel with enhanced mechanical property and capable of proangiogenic and osteogenic activities for bone defect repair. Macromol Biosci. 2024, 24, e2300325.
  34. Xue, Y.; Chen, H.; Xu, C.; Yu, D.; Xu, H.; Hu, Y. Synthesis of hyaluronic acid hydrogels by crosslinking the mixture of high-molecular-weight hyaluronic acid and low-molecular-weight hyaluronic acid with 1,4-butanediol diglycidyl ether. RSC Adv. 2020, 10, 7206-7213.
  35. Hwang, H. S.; Lee, C. S. Recent progress in hyaluronic-acid-based hydrogels for bone tissue engineering. Gels. 2023, 9, 588.
  36. Hernández-González, A. C.; Téllez-Jurado, L.; Rodríguez-Lorenzo, L. M. Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review. Carbohydr Polym. 2020, 229, 115514.
  37. Motasadizadeh, H.; Tavakoli, M.; Damoogh, S.; Mottaghitalab, F.; Gholami, M.; Atyabi, F.; Farokhi, M.; Dinarvand, R. Dual drug delivery system of teicoplanin and phenamil based on pH-sensitive silk fibroin/sodium alginate hydrogel scaffold for treating chronic bone infection. Biomater Adv. 2022, 139, 213032.
  38. Alves, P.; Simão, A. F.; Graça, M. F. P.; Mariz, M. J.; Correia, I. J.; Ferreira, P. Dextran-based injectable hydrogel composites for bone regeneration. Polymers (Basel). 2023, 15, 4501.
  39. Ma, W.; Yang, M.; Wu, C.; Wang, S.; Du, M. Bioinspired self-healing injectable nanocomposite hydrogels based on oxidized dextran and gelatin for growth-factor-free bone regeneration. Int J Biol Macromol. 2023, 251, 126145.
  40. Cheng, N. C.; Lin, W. J.; Ling, T. Y.; Young, T. H. Sustained release of adipose-derived stem cells by thermosensitive chitosan/gelatin hydrogel for therapeutic angiogenesis. Acta Biomater. 2017, 51, 258-267.
  41. Ren, Z.; Wang, Y.; Ma, S.; Duan, S.; Yang, X.; Gao, P.; Zhang, X.; Cai, Q. Effective bone regeneration using thermosensitive poly(N-isopropylacrylamide) grafted gelatin as injectable carrier for bone mesenchymal stem cells. ACS Appl Mater Interfaces. 2015, 7, 19006-19015.
  42. Huang, C.; Zhang, X.; Luo, H.; Pan, J.; Cui, W.; Cheng, B.; Zhao, S.; Chen, G. Effect of kartogenin-loaded gelatin methacryloyl hydrogel scaffold with bone marrow stimulation for enthesis healing in rotator cuff repair. J Shoulder Elbow Surg. 2021, 30, 544-553.
  43. Wang, H.; Hu, B.; Li, H.; Feng, G.; Pan, S.; Chen, Z.; Li, B.; Song, J. Biomimetic mineralized hydroxyapatite nanofiber-incorporated methacrylated gelatin hydrogel with improved mechanical and osteoinductive performances for bone regeneration. Int J Nanomedicine. 2022, 17, 1511-1529.
  44. Miao, F.; Liu, T.; Zhang, X.; Wang, X.; Wei, Y.; Hu, Y.; Lian, X.; Zhao, L.; Chen, W.; Huang, D. Engineered bone tissues using biomineralized gelatin methacryloyl/sodium alginate hydrogels. J Biomater Sci Polym Ed. 2022, 33, 137-154.
  45. Yan, Y.; Cheng, B.; Chen, K.; Cui, W.; Qi, J.; Li, X.; Deng, L. Enhanced osteogenesis of bone marrow-derived mesenchymal stem cells by a functionalized silk fibroin hydrogel for bone defect repair. Adv Healthc Mater. 2019, 8, e1801043.
  46. Mirahmadi, F.; Tafazzoli-Shadpour, M.; Shokrgozar, M. A.; Bonakdar, S. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl. 2013, 33, 4786-4794.
  47. Guo, C.; Qi, J.; Liu, J.; Wang, H.; Liu, Y.; Feng, Y.; Xu, G. The ability of biodegradable thermosensitive hydrogel composite calcium-silicon-based bioactive bone cement in promoting osteogenesis and repairing rabbit distal femoral defects. Polymers (Basel). 2022, 14, 3852.
  48. Ghorpade, V. S.; Yadav, A. V.; Dias, R. J.; Mali, K. K.; Pargaonkar, S. S.; Shinde, P. V.; Dhane, N. S. Citric acid crosslinked carboxymethylcellulose-poly(ethylene glycol) hydrogel films for delivery of poorly soluble drugs. Int J Biol Macromol. 2018, 118, 783-791.
  49. Lu, X.; Dai, S.; Huang, B.; Li, S.; Wang, P.; Zhao, Z.; Li, X.; Li, N.; Wen, J.; Sun, Y.; Man, Z.; Liu, B.; Li, W. Exosomes loaded a smart bilayer-hydrogel scaffold with ROS-scavenging and macrophage-reprogramming properties for repairing cartilage defect. Bioact Mater. 2024, 38, 137-153.
  50. Chan, W. P.; Kung, F. C.; Kuo, Y. L.; Yang, M. C.; Lai, W. F. Alginate/poly(γ-glutamic acid) base biocompatible gel for bone tissue engineering. Biomed Res Int. 2015, 2015, 185841.
  51. Schweikle, M.; Bjørnøy, S. H.; van Helvoort, A. T. J.; Haugen, H. J.; Sikorski, P.; Tiainen, H. Stabilisation of amorphous calcium phosphate in polyethylene glycol hydrogels. Acta Biomater. 2019, 90, 132-145.
  52. Zhang, N.; Lock, J.; Sallee, A.; Liu, H. Magnetic nanocomposite hydrogel for potential cartilage tissue engineering: synthesis, characterization, and cytocompatibility with bone marrow derived mesenchymal stem cells. ACS Appl Mater Interfaces. 2015, 7, 20987-20998.
  53. Ganapathi, M.; Jayaseelan, D.; Guhanathan, S. Microwave assisted efficient synthesis of diphenyl substituted pyrazoles using PEG-600 as solvent - A green approach. Ecotoxicol Environ Saf. 2015, 121, 87-92.
  54. Sun, S.; Cui, Y.; Yuan, B.; Dou, M.; Wang, G.; Xu, H.; Wang, J.; Yin, W.; Wu, D.; Peng, C. Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration. Front Bioeng Biotechnol. 2023, 11, 1117647.
  55. Biglari, L.; Naghdi, M.; Poursamar, S. A.; Nilforoushan, M. R.; Bigham, A.; Rafienia, M. A route toward fabrication of 3D printed bone scaffolds based on poly(vinyl alcohol)-chitosan/bioactive glass by sol-gel chemistry. Int J Biol Macromol. 2024, 258, 128716.
  56. He, L.; Zhang, H.; Zhao, N.; Liao, L. A novel approach in biomedical engineering: the use of polyvinyl alcohol hydrogel encapsulating human umbilical cord mesenchymal stem cell-derived exosomes for enhanced osteogenic differentiation and angiogenesis in bone regeneration. Int J Biol Macromol. 2024, 270, 132116.
  57. Zhang, W.; Lu, H.; Zhang, W.; Hu, J.; Zeng, Y.; Hu, H.; Shi, L.; Xia, J.; Xu, F. Inflammatory microenvironment-responsive hydrogels enclosed with quorum sensing inhibitor for treating post-traumatic osteomyelitis. Adv Sci (Weinh). 2024, 11, e2307969.
  58. Yang, R.; Wang, X.; Liu, S.; Zhang, W.; Wang, P.; Liu, X.; Ren, Y.; Tan, X.; Chi, B. Bioinspired poly (γ-glutamic acid) hydrogels for enhanced chondrogenesis of bone marrow-derived mesenchymal stem cells. Int J Biol Macromol. 2020, 142, 332-344.
  59. Taymouri, S.; Hashemi, S.; Varshosaz, J.; Minaiyan, M.; Talebi, A. Fabrication and evaluation of hesperidin loaded polyacrylonitrile/polyethylene oxide nanofibers for wound dressing application. J Biomater Sci Polym Ed. 2021, 32, 1944-1965.
  60. Liu, H.; Liu, J.; Qi, C.; Fang, Y.; Zhang, L.; Zhuo, R.; Jiang, X. Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture. Acta Biomater. 2016, 35, 228-237.
  61. Mizuguchi, Y.; Mashimo, Y.; Mie, M.; Kobatake, E. Temperature-responsive multifunctional protein hydrogels with elastin-like polypeptides for 3-D angiogenesis. Biomacromolecules. 2020, 21, 1126-1135.
  62. Erikci, S.; Mundinger, P.; Boehm, H. Small physical cross-linker facilitates hyaluronan hydrogels. Molecules. 2020, 25, 4166.
  63. Vu, T. T.; Gulfam, M.; Jo, S. H.; Park, S. H.; Lim, K. T. Injectable and biocompatible alginate-derived porous hydrogels cross-linked by IEDDA click chemistry for reduction-responsive drug release application. Carbohydr Polym. 2022, 278, 118964.
  64. Chai, W.; Chen, X.; Liu, J.; Zhang, L.; Liu, C.; Li, L.; Honiball, J. R.; Pan, H.; Cui, X.; Wang, D. Recent progress in functional metal-organic frameworks for bio-medical application. Regen Biomater. 2024, 11, rbad115.
  65. Mazini, L.; Rochette, L.; Admou, B.; Amal, S.; Malka, G. Hopes and limits of adipose-derived stem cells (ADSCs) and mesenchymal stem cells (MSCs) in wound healing. Int J Mol Sci. 2020, 21, 1306.
  66. Arthur, A.; Gronthos, S. Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue. Int J Mol Sci. 2020, 21, 9759.
  67. Weickert, M. T.; Hecker, J. S.; Buck, M. C.; Schreck, C.; Rivière, J.; Schiemann, M.; Schallmoser, K.; Bassermann, F.; Strunk, D.; Oostendorp, R. A. J.; Götze, K. S. Bone marrow stromal cells from MDS and AML patients show increased adipogenic potential with reduced Delta-like-1 expression. Sci Rep. 2021, 11, 5944.
  68. Al-Ghadban, S.; Bunnell, B. A. Adipose tissue-derived stem cells: immunomodulatory effects and therapeutic potential. Physiology (Bethesda). 2020, 35, 125-133.
  69. Filippi, M.; Dasen, B.; Guerrero, J.; Garello, F.; Isu, G.; Born, G.; Ehrbar, M.; Martin, I.; Scherberich, A. Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells. Biomaterials. 2019, 223, 119468.
  70. Islam, M. S.; Molley, T. G.; Hung, T. T.; Sathish, C. I.; Putra, V. D. L.; Jalandhra, G. K.; Ireland, J.; Li, Y.; Yi, J.; Kruzic, J. J.; Kilian, K. A. Magnetic nanofibrous hydrogels for dynamic control of stem cell differentiation. ACS Appl Mater Interfaces. 2023. doi: 10.1021/acsami.3c07021.
  71. Wang, C. Y.; Hong, P. D.; Wang, D. H.; Cherng, J. H.; Chang, S. J.; Liu, C. C.; Fang, T. J.; Wang, Y. W. Polymeric gelatin scaffolds affect mesenchymal stem cell differentiation and its diverse applications in tissue engineering. Int J Mol Sci. 2020, 21, 8632.
  72. Ren, Y.; Zhang, H.; Wang, Y.; Du, B.; Yang, J.; Liu, L.; Zhang, Q. Hyaluronic acid hydrogel with adjustable stiffness for mesenchymal stem cell 3D culture via related molecular mechanisms to maintain stemness and induce cartilage differentiation. ACS Appl Bio Mater. 2021, 4, 2601-2613.
  73. Madani, S. Z. M.; Reisch, A.; Roxbury, D.; Kennedy, S. M. A magnetically responsive hydrogel system for controlling the timing of bone progenitor recruitment and differentiation factor deliveries. ACS Biomater Sci Eng. 2020, 6, 1522-1534.
  74. Yao, Q.; Liu, Y.; Pan, Y.; Li, Y.; Xu, L.; Zhong, Y.; Wang, W.; Zuo, J.; Yu, H.; Lv, Z.; Chen, H.; Zhang, L.; Wang, B.; Yao, H.; Meng, Y. Long-term induction of endogenous BMPs growth factor from antibacterial dual network hydrogels for fast large bone defect repair. J Colloid Interface Sci. 2022, 607, 1500-1515.
  75. Chauhan, N.; Gupta, P.; Arora, L.; Pal, D.; Singh, Y. Dexamethasone-loaded, injectable pullulan-poly(ethylene glycol) hydrogels for bone tissue regeneration in chronic inflammatory conditions. Mater Sci Eng C Mater Biol Appl. 2021, 130, 112463.
  76. Liu, J.; Liu, H.; Jia, Y.; Tan, Z.; Hou, R.; Lu, J.; Luo, D.; Fu, X.; Wang, L.; Wang, X. Glucose-sensitive delivery of tannic acid by a photo-crosslinked chitosan hydrogel film for antibacterial and anti-inflammatory therapy. J Biomater Sci Polym Ed. 2022, 33, 1644-1663.
  77. Feng, Q.; Zhang, M.; Zhang, G.; Mei, H.; Su, C.; Liu, L.; Wang, X.; Wan, Z.; Xu, Z.; Hu, L.; Nie, Y.; Li, J. A whole-course-repair system based on ROS/glucose stimuli-responsive EGCG release and tunable mechanical property for efficient treatment of chronic periodontitis in diabetic rats. J Mater Chem B. 2024, 12, 3719-3740.
  78. Xiong, A.; He, Y.; Gao, L.; Li, G.; Liu, S.; Weng, J.; Wang, D.; Zeng, H. The fabrication of a highly efficient hydrogel based on a functionalized double network loaded with magnesium ion and BMP2 for bone defect synergistic treatment. Mater Sci Eng C Mater Biol Appl. 2021, 128, 112347.
  79. Kawaguchi, H.; Oka, H.; Jingushi, S.; Izumi, T.; Fukunaga, M.; Sato, K.; Matsushita, T.; Nakamura, K. A local application of recombinant human fibroblast growth factor 2 for tibial shaft fractures: a randomized, placebo-controlled trial. J Bone Miner Res. 2010, 25, 2735-2743.
  80. Zou, Z.; Wang, L.; Zhou, Z.; Sun, Q.; Liu, D.; Chen, Y.; Hu, H.; Cai, Y.; Lin, S.; Yu, Z.; Tan, B.; Guo, W.; Ling, Z.; Zou, X. Simultaneous incorporation of PTH(1-34) and nano-hydroxyapatite into Chitosan/Alginate Hydrogels for efficient bone regeneration. Bioact Mater. 2021, 6, 1839-1851.
  81. Giraudo, M. V.; Di Francesco, D.; Catoira, M. C.; Cotella, D.; Fusaro, L.; Boccafoschi, F. Angiogenic potential in biological hydrogels. Biomedicines. 2020, 8, 436.
  82. Yue, S.; He, H.; Li, B.; Hou, T. Hydrogel as a biomaterial for bone tissue engineering: a review. Nanomaterials (Basel). 2020, 10, 1511.
  83. Anada, T.; Pan, C. C.; Stahl, A. M.; Mori, S.; Fukuda, J.; Suzuki, O.; Yang, Y. Vascularized bone-mimetic hydrogel constructs by 3D bioprinting to promote osteogenesis and angiogenesis. Int J Mol Sci. 2019, 20, 1096.
  84. Liu, X.; Wang, N.; Liu, X.; Deng, R.; Kang, R.; Xie, L. Vascular repair by grafting based on magnetic nanoparticles. Pharmaceutics. 2022, 14, 1433.
  85. Araújo-Custódio, S.; Gomez-Florit, M.; Tomás, A. R.; Mendes, B. B.; Babo, P. S.; Mithieux, S. M.; Weiss, A.; Domingues, R. M. A.; Reis, R. L.; Gomes, M. E. Injectable and magnetic responsive hydrogels with bioinspired ordered structures. ACS Biomater Sci Eng. 2019, 5, 1392-1404.
  86. Zhang, Y.; Li, J.; Habibovic, P. Magnetically responsive nanofibrous ceramic scaffolds for on-demand motion and drug delivery. Bioact Mater. 2022, 15, 372-381.
  87. Wu, S. W.; Liu, X.; Miller, A. L.,2nd; Cheng, Y. S.; Yeh, M. L.; Lu, L. Strengthening injectable thermo-sensitive NIPAAm-g-chitosan hydrogels using chemical cross-linking of disulfide bonds as scaffolds for tissue engineering. Carbohydr Polym. 2018, 192, 308-316.
  88. Atoufi, Z.; Kamrava, S. K.; Davachi, S. M.; Hassanabadi, M.; Saeedi Garakani, S.; Alizadeh, R.; Farhadi, M.; Tavakol, S.; Bagher, Z.; Hashemi Motlagh, G. Injectable PNIPAM/hyaluronic acid hydrogels containing multipurpose modified particles for cartilage tissue engineering: synthesis, characterization, drug release and cell culture study. Int J Biol Macromol. 2019, 139, 1168-1181.
  89. Jing, Z.; Yuan, W.; Wang, J.; Ni, R.; Qin, Y.; Mao, Z.; Wei, F.; Song, C.; Zheng, Y.; Cai, H.; Liu, Z. Simvastatin/hydrogel-loaded 3D-printed titanium alloy scaffolds suppress osteosarcoma via TF/NOX2-associated ferroptosis while repairing bone defects. Bioact Mater. 2024, 33, 223-241.
  90. Sakudo, A. Near-infrared spectroscopy for medical applications: current status and future perspectives. Clin Chim Acta. 2016, 455, 181-188.
  91. Zhu, H.; Yang, H.; Ma, Y.; Lu, T. J.; Xu, F.; Genin, G. M.; Lin, M. Spatiotemporally controlled photoresponsive hydrogels: design and predictive modeling from processing through application. Adv Funct Mater. 2020, 30, 2000639.
  92. Wei, H.; Zhang, B.; Lei, M.; Lu, Z.; Liu, J.; Guo, B.; Yu, Y. Visible-light-mediated nano-biomineralization of customizable tough hydrogels for biomimetic tissue engineering. ACS Nano. 2022, 16, 4734-4745.
  93. Feng, L.; Chen, Q.; Cheng, H.; Yu, Q.; Zhao, W.; Zhao, C. Dually-thermoresponsive hydrogel with shape adaptability and synergetic bacterial elimination in the full course of wound healing. Adv Healthc Mater. 2022, 11, e2201049.
  94. Lv, X.; Xu, Y.; Ruan, X.; Yang, D.; Shao, J.; Hu, Y.; Wang, W.; Cai, Y.; Tu, Y.; Dong, X. An injectable and biodegradable hydrogel incorporated with photoregulated NO generators to heal MRSA-infected wounds. Acta Biomater. 2022, 146, 107-118.
  95. Liang, B.; Burley, G.; Lin, S.; Shi, Y. C. Osteoporosis pathogenesis and treatment: existing and emerging avenues. Cell Mol Biol Lett. 2022, 27, 72.
  96. Lee, I. N.; Dobre, O.; Richards, D.; Ballestrem, C.; Curran, J. M.; Hunt, J. A.; Richardson, S. M.; Swift, J.; Wong, L. S. Photoresponsive hydrogels with photoswitchable mechanical properties allow time-resolved analysis of cellular responses to matrix stiffening. ACS Appl Mater Interfaces. 2018, 10, 7765-7776.
  97. Guo, L.; Chen, H.; Ding, J.; Rong, P.; Sun, M.; Zhou, W. Surface engineering Salmonella with pH-responsive polyserotonin and self-activated DNAzyme for better microbial therapy of tumor. Exploration (Beijing). 2023, 3, 20230017.
  98. Liang, X.; Wang, X.; Xu, Q.; Lu, Y.; Zhang, Y.; Xia, H.; Lu, A.; Zhang, L. Rubbery chitosan/carrageenan hydrogels constructed through an electroneutrality system and their potential application as cartilage scaffolds. Biomacromolecules. 2018, 19, 340-352.
  99. Kim, H. D.; Lee, E. A.; An, Y. H.; Kim, S. L.; Lee, S. S.; Yu, S. J.; Jang, H. L.; Nam, K. T.; Im, S. G.; Hwang, N. S. Chondroitin sulfate-based biomineralizing surface hydrogels for bone tissue engineering. ACS Appl Mater Interfaces. 2017, 9, 21639-21650.
  100. Xiao, Y.; Gong, T.; Jiang, Y.; Wang, Y.; Wen, Z. T.; Zhou, S.; Bao, C.; Xu, X. Fabrication and characterization of a glucose-sensitive antibacterial chitosan-polyethylene oxide hydrogel. Polymer (Guildf). 2016, 82, 1-10.
  101. Tseng, T. C.; Hsieh, F. Y.; Theato, P.; Wei, Y.; Hsu, S. H. Glucose-sensitive self-healing hydrogel as sacrificial materials to fabricate vascularized constructs. Biomaterials. 2017, 133, 20-28.
  102. Amer, L. D.; Bryant, S. J. The in vitro and in vivo response to MMP-sensitive poly(ethylene glycol) hydrogels. Ann Biomed Eng. 2016, 44, 1959-1969.
  103. Schneider, M. C.; Lalitha Sridhar, S.; Vernerey, F. J.; Bryant, S. J. Spatiotemporal neocartilage growth in matrix-metalloproteinase-sensitive poly(ethylene glycol) hydrogels under dynamic compressive loading: an experimental and computational approach. J Mater Chem B. 2020, 8, 2775-2791.
  104. Zhang, M.; Yu, T.; Li, J.; Yan, H.; Lyu, L.; Yu, Y.; Yang, G.; Zhang, T.; Zhou, Y.; Wang, X.; Liu, D. Matrix Metalloproteinase-responsive hydrogel with on-demand release of phosphatidylserine promotes bone regeneration through immunomodulation. Adv Sci (Weinh). 2024, 11, e2306924.
Conflict of interest
The authors declare no conflict of interest.
Share
Back to top