Design, characterisation, and clinical evaluation of a novel porous Ti-6Al-4V hemipelvic prosthesis based on Voronoi diagram
Three-dimensional printed Ti-6Al-4V hemipelvic prosthesis has become a current popular method for pelvic defect reconstruction. This paper presents a novel biomimetic hemipelvic prosthesis design that utilises patient-specific anatomical data in conjunction with the Voronoi diagram algorithm. Unlike traditional design methods that rely on fixed, homogeneous unit cell, the Voronoi diagram enables to create imitation of trabecular structure (ITS). The proposed approach was conducted for six patients. The entire contour of the customised prosthesis matched well with the residual bone. The porosity and pore size of the ITS were evaluated. The distribution of the pore size ranged from 500 to 1400 μm. Porosity calculations indicated the average porosity was 63.13 ± 0.30%. Cubic ITS samples were fabricated for micrograph and mechanical analysis. Scanning electron microscopy images of the ITS samples exhibited rough surface morphology without obvious defects. The Young’s modulus and compressive strength were 1.68 ± 0.05 GPa and 174 ± 8 MPa, respectively. Post-operative X-rays confirmed proper matching of the customised prostheses with the bone defect. Tomosynthesis-Shimadzu metal artifact reduction technology images indicated close contact between the implant and host bone, alongside favourable bone density and absence of resorption or osteolysis around the implant. At the last follow-up, the average Musculoskeletal Tumour Society score was 23.2 (range, 21–26). By leveraging additive manufacturing and Voronoi diagram algorithm, customised implants tailored to individual patient anatomy can be fabricated, offering wide distribution of the pore size, reasonable mechanical properties, favourable osseointegration, and satisfactory function.
- Hu, X.; Chen, Y.; Cai, W.; Cheng, M.; Yan, W.; Huang, W. Computer-aided design and 3D printing of hemipelvic endoprosthesis for personalized limb-salvage reconstruction after periacetabular tumor resection. Bioengineering (Basel). 2022, 9, 400.
- Du, X.; Wei, H.; Zhang, B.; Gao, S.; Li, Z.; Yao, W. The pedicled sartorius flap and mesh (PSM) technique vs no reconstruction in repairing the defect after type III pelvic bone tumor resection: a retrospective study. World J Surg Oncol. 2023, 21, 14.doi: 10.1186/s12957-023-02905-1 pmid: 36653790
- Li, Z.; Lu, M.; Min, L.; Luo, Y.; Tu, C. Treatment of pelvic giant cell tumor by wide resection with patient-specific bone-cutting guide and reconstruction with 3D-printed personalized implant. J Orthop Surg Res. 2023, 18, 648.doi: 10.1186/s13018-023-04142-4 pmid: 37658436
- Liang, H.; Ji, T.; Zhang, Y.; Wang, Y.; Guo, W. Reconstruction with 3D-printed pelvic endoprostheses after resection of a pelvic tumour. Bone Joint J. 2017, 99-B, 267-275.doi: 10.1302/0301-620X.99B2.BJJ-2016-0654.R1 pmid: 28148672
- Jansen, J. A.; van de Sande, M. A.; Dijkstra, P. D. Poor long-term clinical results of saddle prosthesis after resection of periacetabular tumors. Clin Orthop Relat Res. 2013, 471, 324-331.
- Danışman, M.; Mermerkaya, M. U.; Bekmez, Ş.; Ayvaz, M.; Atilla, B.; Tokgözoğlu, A. M. Reconstruction of periacetabular tumours with saddle prosthesis or custom-made prosthesis, functional results and complications. Hip Int. 2016, 26, e14-18.
- Issa, S. P.; Biau, D.; Babinet, A.; Dumaine, V.; Le Hanneur, M.; Anract, P. Pelvic reconstructions following peri-acetabular bone tumour resections using a cementless ice-cream cone prosthesis with dual mobility cup. Int Orthop. 2018, 42, 1987-1997.
- Fisher, N. E.; Patton, J. T.; Grimer, R. J.; Porter, D.; Jeys, L.; Tillman, R. M.; Abudu, A.; Carter, S. R. Ice-cream cone reconstruction of the pelvis: a new type of pelvic replacement: early results. J Bone Joint Surg Br. 2011, 93, 684-688.
- Wang, B.; Xie, X.; Yin, J.; Zou, C.; Wang, J.; Huang, G.; Wang, Y.; Shen, J. Reconstruction with modular hemipelvic endoprosthesis after pelvic tumor resection:a report of 50 consecutive cases. PloS One. 2015, 10, e0127263.
- Guo, W.; Li, D.; Tang, X.; Yang, Y.; Ji, T. Reconstruction with modular hemipelvic prostheses for periacetabular tumor. Clin Orthop Relat Res. 2007, 461, 180-188.
- Zang, J.; Guo, W.; Yang, Y.; Xie, L. Reconstruction of the hemipelvis with a modular prosthesis after resection of a primary malignant peri-acetabular tumour involving the sacroiliac joint. Bone Joint J. 2014, 96-B, 399-405.doi: 10.1302/0301-620X.96B3.32387 pmid: 24589799
- Peng, W.; Zheng, R.; Wang, H.; Huang, X. Reconstruction of bony defects after tumor resection with 3D-printed anatomically conforming pelvic prostheses through a novel treatment strategy. Biomed Res Int. 2020, 2020, 8513070.
- Hu, X.; Lu, M.; Zhang, Y.; Li, Z.; Wang, J.; Wang, Y.; Xing, Z.; Yang, X.; Tu, C.; Min, L. Pelvic-girdle reconstruction with three-dimensional-printed endoprostheses after limb-salvage surgery for pelvic sarcomas: current landscape. Br J Surg. 2023, 110, 1712-1722.doi: 10.1093/bjs/znad310 pmid: 37824784
- Kelly, C. N.; Evans, N. T.; Irvin, C. W.; Chapman, S. C.; Gall, K.; Safranski, D. L. The effect of surface topography and porosity on the tensile fatigue of 3D printed Ti-6Al-4V fabricated by selective laser melting. Mater Sci Eng C Mater Biol Appl. 2019, 98, 726-736.
- Wang, J.; Min, L.; Lu, M.; Zhang, Y.; Wang, Y.; Luo, Y.; Zhou, Y.; Duan, H.; Tu, C. What are the complications of three-dimensionally printed, custom-made, integrative hemipelvic endoprostheses in patients with primary malignancies involving the acetabulum, and what is the function of these patients? Clin Orthop Relat Res. 2020, 478, 2487-2501.
- Paxton, N. C.; Nightingale, R. C.; Woodruff, M. A. Capturing patient anatomy for designing and manufacturing personalized prostheses. Curr Opin Biotechnol. 2022, 73, 282-289.
- Wang, B.; Hao, Y.; Pu, F.; Jiang, W.; Shao, Z. Computer-aided designed, three dimensional-printed hemipelvic prosthesis for peri-acetabular malignant bone tumour. Int Orthop. 2018, 42, 687-694.doi: 10.1007/s00264-017-3645-5 pmid: 28956108
- Xu, S.; Guo, Z.; Shen, Q.; Peng, Y.; Li, J.; Li, S.; He, P.; Jiang, Z.; Que, Y.; Cao, K.; Hu, B.; Hu, Y. Reconstruction of tumor-induced pelvic defects with customized, three-dimensional printed prostheses. Front Oncol. 2022, 12, 935059.
- Wang, M.; Liu, T.; Xu, C.; Liu, C.; Li, B.; Lian, Q.; Chen, T.; Qiao, S.; Wang, Z. 3D-printed hemipelvic prosthesis combined with a dual mobility bearing in patients with primary malignant neoplasm involving the acetabulum: clinical outcomes and finite element analysis. BMC Surg. 2022, 22, 357.doi: 10.1186/s12893-022-01804-8 pmid: 36203147
- Parthasarathy, J.; Starly, B.; Raman, S.; Christensen, A. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J Mech Behav Biomed Mater. 2010, 3, 249-259.doi: 10.1016/j.jmbbm.2009.10.006 pmid: 20142109
- Aufa, A. N.; Hassan, M. Z.; Ismail, Z. Recent advances in Ti-6Al-4V additively manufactured by selective laser melting for biomedical implants: prospect development. J Alloys Compd. 2022, 896, 163072.
- Wang, Z.; Wang, C.; Li, C.; Qin, Y.; Zhong, L.; Chen, B.; Li, Z.; Liu, H.; Chang, F.; Wang, J. Analysis of factors influencing bone ingrowth into three-dimensional printed porous metal scaffolds: A review. J Alloys Compd. 2017, 717, 271-285.
- Wang, C.; Xu, D.; Li, S.; Yi, C.; Zhang, X.; He, Y.; Yu, D. Effect of pore size on the physicochemical properties and osteogenesis of Ti6Al4V porous scaffolds with bionic structure. ACS Omega. 2020, 5, 28684-28692.doi: 10.1021/acsomega.0c03824 pmid: 33195921
- Van Bael, S.; Chai, Y. C.; Truscello, S.; Moesen, M.; Kerckhofs, G.; Van Oosterwyck, H.; Kruth, J. P.; Schrooten, J. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater. 2012, 8, 2824-2834.doi: 10.1016/j.actbio.2012.04.001 pmid: 22487930
- Chen, H.; Han, Q.; Wang, C.; Liu, Y.; Chen, B.; Wang, J. Porous scaffold design for additive manufacturing in orthopedics: a review. Front Bioeng Biotechnol. 2020, 8, 609.doi: 10.3389/fbioe.2020.00609 pmid: 32626698
- Lv, Y.; Wang, B.; Liu, G.; Tang, Y.; Lu, E.; Xie, K.; Lan, C.; Liu, J.; Qin, Z.; Wang, L. Metal material, properties and design methods of porous biomedical scaffolds for additive manufacturing: a review. Front Bioeng Biotechnol. 2021, 9, 641130.
- Gómez, S.; Vlad, M. D.; López, J.; Fernández, E. Design and properties of 3D scaffolds for bone tissue engineering. Acta Biomater. 2016, 42, 341-350.doi: S1742-7061(16)30309-9 pmid: 27370904
- Chen, H.; Liu, Y.; Wang, C.; Zhang, A.; Chen, B.; Han, Q.; Wang, J. Design and properties of biomimetic irregular scaffolds for bone tissue engineering. Comput Biol Med. 2021, 130, 104241.
- Liang, H.; Chao, L.; Xie, D.; Yang, Y.; Shi, J.; Zhang, Y.; Xue, B.; Shen, L.; Tian, Z.; Li, L.; Jiang, Q. Trabecular-like Ti-6Al-4V scaffold for bone repair: a diversified mechanical stimulation environment for bone regeneration. Compos B Eng. 2022, 241, 110057.
- Liang, H.; Yang, Y.; Xie, D.; Li, L.; Mao, N.; Wang, C.; Tian, Z.; Jiang, Q.; Shen, L. Trabecular-like Ti-6Al-4V scaffolds for orthopedic: fabrication by selective laser melting and in vitro biocompatibility. J Mater Sci Technol. 2019, 35, 1284-1297.
- Zhang, L. C.; Liu, Y.; Li, S.; Hao, Y. Additive manufacturing of titanium alloys by electron beam melting: a review. Adv Eng Mater. 2018, 20, 1700842.
- Enneking, W. F.; Dunham, W.; Gebhardt, M. C.; Malawar, M.; Pritchard, D. J. A system for the functional evaluation of reconstructive procedures after surgical treatment of tumors of the musculoskeletal system. Clin Orthop Relat Res. 1993, 241-246.
- Wong, K. C.; Kumta, S. M.; Geel, N. V.; Demol, J. One-step reconstruction with a 3D-printed, biomechanically evaluated custom implant after complex pelvic tumor resection. Comput Aided Surg. 2015, 20, 14-23.doi: 10.3109/10929088.2015.1076039 pmid: 26290317
- Wang, J.; Min, L.; Lu, M.; Zhang, Y.; Wang, Y.; Luo, Y.; Zhou, Y.; Duan, H.; Tu, C. Three-dimensional-printed custom-made hemipelvic endoprosthesis for primary malignancies involving acetabulum: the design solution and surgical techniques. J Orthop Surg Res. 2019, 14, 389.doi: 10.1186/s13018-019-1455-8 pmid: 31775805
- Li, Z.; Luo, Y.; Lu, M.; Wang, Y.; Gong, T.; He, X.; Hu, X.; Long, J.; Zhou, Y.; Min, L.; Tu, C. Biomimetic design and clinical application of Ti-6Al-4V lattice hemipelvis prosthesis for pelvic reconstruction. J Orthop Surg Res. 2024, 19, 210.doi: 10.1186/s13018-024-04672-5 pmid: 38561755
- Li, J.; Yang, Y.; Sun, Z.; Peng, K.; Liu, K.; Xu, P.; Li, J.; Wei, X.; He, X. Integrated evaluation of biomechanical and biological properties of the biomimetic structural bone scaffold: Biomechanics, simulation analysis, and osteogenesis. Mater Today Bio. 2024, 24, 100934.
- Liu, J.; Wang, R.; Gong, X.; Zhu, Y.; Shen, C.; Zhu, Z.; Li, Y.; Li, Z.; Ren, Z.; Chen, X.; Bian, W.; Wang, D.; Yang, X.; Zhang, Y. Ti6Al4V biomimetic scaffolds for bone tissue engineering: Fabrication, biomechanics and osseointegration. Mater Des. 2023, 234, 112330.
- Wu, Y.; Wang, Y.; Liu, M.; Shi, D.; Hu, N.; Feng, W. Mechanical properties and in vivo assessment of electron beam melted porous structures for orthopedic applications. Metals. 2023, 13, 1034.
- Du, Y.; Liang, H.; Xie, D.; Mao, N.; Zhao, J.; Tian, Z.; Wang, C.; Shen, L. Design and statistical analysis of irregular porous scaffolds for orthopedic reconstruction based on voronoi tessellation and fabricated via selective laser melting (SLM). Mater Chem Phys. 2020, 239, 121968.
- Loh, Q. L.; Choong, C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev. 2013, 19, 485-502.
- Wang, C.; Xu, D.; Lin, L.; Li, S.; Hou, W.; He, Y.; Sheng, L.; Yi, C.; Zhang, X.; Li, H.; Li, Y.; Zhao, W.; Yu, D. Large-pore-size Ti6Al4V scaffolds with different pore structures for vascularized bone regeneration. Mater Sci Eng C Mater Biol Appl. 2021, 131, 112499.
- Yin, B.; Ma, P.; Chen, J.; Wang, H.; Wu, G.; Li, B.; Li, Q.; Huang, Z.; Qiu, G.; Wu, Z. Hybrid macro-porous titanium ornamented by degradable 3D Gel/nHA micro-scaffolds for bone tissue regeneration. Int J Mol Sci. 2016, 17, 575.doi: 10.3390/ijms17040575 pmid: 27092492
- Huang, G.; Ceccarelli, M.; Huang, Q.; Zhang, W.; Yu, Z.; Chen, X.; Mai, J. Design and feasibility study of a leg-exoskeleton assistive wheelchair robot with tests on gluteus medius muscles. Sensors (Basel). 2019, 19, 548.
- Chimutengwende-Gordon, M.; Dowling, R.; Pendegrass, C.; Blunn, G. Determining the porous structure for optimal soft-tissue ingrowth: An in vivo histological study. PloS One. 2018, 13, e0206228.
- Almela, T.; Brook, I. M.; Khoshroo, K.; Rasoulianboroujeni, M.; Fahimipour, F.; Tahriri, M.; Dashtimoghadam, E.; El-Awa, A.; Tayebi, L.; Moharamzadeh, K. Simulation of cortico-cancellous bone structure by 3D printing of bilayer calcium phosphate-based scaffolds. Bioprinting. 2017, 6, 1-7.
- Zhang, T.; Wei, Q.; Zhou, H.; Jing, Z.; Liu, X.; Zheng, Y.; Cai, H.; Wei, F.; Jiang, L.; Yu, M.; Cheng, Y.; Fan, D.; Zhou, W.; Lin, X.; Leng, H.; Li, J.; Li, X.; Wang, C.; Tian, Y.; Liu, Z. Three-dimensional-printed individualized porous implants: A new “implant-bone” interface fusion concept for large bone defect treatment. Bioact Mater. 2021, 6, 3659-3670.doi: 10.1016/j.bioactmat.2021.03.030 pmid: 33898870
- Song, P.; Hu, C.; Pei, X.; Sun, J.; Sun, H.; Wu, L.; Jiang, Q.; Fan, H.; Yang, B.; Zhou, C.; Fan, Y.; Zhang, X. Dual modulation of crystallinity and macro-/microstructures of 3D printed porous titanium implants to enhance stability and osseointegration. J Mater Chem B. 2019, 7, 2865-2877.doi: 10.1039/c9tb00093c pmid: 32255089
- Shah, F. A.; Thomsen, P.; Palmquist, A. Osseointegration and current interpretations of the bone-implant interface. Acta Biomater. 2019, 84, 1-15.doi: S1742-7061(18)30672-X pmid: 30445157
- Guo, Z.; Peng, Y.; Shen, Q.; Li, J.; He, P.; Yuan, P.; Liu, Y.; Que, Y.; Guo, W.; Hu, Y.; Xu, S. Reconstruction with 3D-printed prostheses after type I + II + III internal hemipelvectomy: Finite element analysis and preliminary outcomes. Front Bioeng Biotechnol. 2022, 10, 1036882.
- Han, Q.; Zhang, K.; Zhang, Y.; Wang, C.; Yang, K.; Zou, Y.; Chen, B.; Wang, J. Individual resection and reconstruction of pelvic tumor with three-dimensional printed customized hemi-pelvic prosthesis: A case report. Medicine (Baltimore). 2019, 98, e16658.