·
RESEARCH ARTICLE
·

Injectable body temperature responsive hydrogel for encephalitis treatment via sustained release of nano-anti-inflammatory agents

Yuqi Gai1 Huaijuan Zhou2,3 Yingting Yang2 Jiatian Chen1 Bowen Chi4 Pei Li5 Yue Yin1,* Yilong Wang4,* Jinhua Li1,3,*
Show Less
1 School of Medical Technology, Beijing Institute of Technology, Beijing, China
2 Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
3 Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology (BIT), Zhuhai, Guangdong Province, China
4 Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
5 Center for Advanced Biotechnology & Medicine, Rutgers University, Piscataway, NJ, USA
Submitted: 31 May 2024 | Revised: 10 July 2024 | Accepted: 30 August 2024 | Published: 28 September 2024
Copyright © 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Skull defects are common in the clinical practice of neurosurgery, and they are easily complicated by encephalitis, which seriously threatens the life and health safety of patients. The treatment of encephalitis is not only to save the patient but also to benefit the society. Based on the advantages of injectable hydrogels such as minimally invasive surgery, self-adaptation to irregularly shaped defects, and easy loading and delivery of nanomedicines, an injectable hydrogel that can be crosslinked in situ at the ambient temperature of the brain for the treatment of encephalitis caused by cranial defects is developed. The hydrogel is uniformly loaded with nanodrugs formed by cationic liposomes and small molecule drugs dexmedetomidine hydrochloride (DEX-HCl), which can directly act on the meninges to achieve sustained release delivery of anti-inflammatory nanodrug preparations and achieve the goal of long-term anti-inflammation at cranial defects. This is the first time that DEX-HCl has been applied within this therapeutic system, which is innovative. Furthermore, this study is expected to alleviate the long-term suffering of patients, improve the clinical medication strategies for anti-inflammatory treatment, promote the development of new materials for cranial defect repair, and expedite the translation of research outcomes into clinical practice.

References
  1. Bellotti, E.; Schilling, A. L.; Little, S. R.; Decuzzi, P. Injectable thermoresponsive hydrogels as drug delivery system for the treatment of central nervous system disorders: A review. J Control Release. 2021, 329, 16-35.
  2. Obermeier, B.; Daneman, R.; Ransohoff, R. M. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013, 19, 1584-1596.doi: 10.1038/nm.3407 pmid: 24309662
  3. Venkatesan, A.; Michael, B. D.; Probasco, J. C.; Geocadin, R. G.; Solomon, T. Acute encephalitis in immunocompetent adults. Lancet. 2019, 393, 702-716.doi: S0140-6736(18)32526-1 pmid: 30782344
  4. GBD 2015 Neurological Disorders Collaborator Group. Global, regional, and national burden of neurological disorders during 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 2017, 16, 877-897.doi: S1474-4422(17)30299-5 pmid: 28931491
  5. Cheng, Y.; Tran Minh, N.; Tran Minh, Q.; Khandelwal, S.; Clapham, H. E. Estimates of Japanese Encephalitis mortality and morbidity: A systematic review and modeling analysis. PLoS Negl Trop Dis. 2022, 16, e0010361.
  6. World Health Organization. Why encephalitis matters? Report of the virtual meeting, 28-29 June 2022. https://www.who.int/publications/i/item/9789240069176. Accessed July 13, 2024.
  7. GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 459-480.doi: S1474-4422(18)30499-X pmid: 30879893
  8. Nosadini, M.; Thomas, T.; Eyre, M.; Anlar, B.; Armangue, T.; Benseler, S. M.; Cellucci, T.; Deiva, K.; Gallentine, W.; Gombolay, G.; Gorman, M. P.; Hacohen, Y.; Jiang, Y.; Lim, B. C.; Muscal, E.; Ndondo, A.; Neuteboom, R.; Rostásy, K.; Sakuma, H.; Sharma, S.; Tenembaum, S. N.; Van Mater, H. A.; Wells, E.; Wickstrom, R.; Yeshokumar, A. K.; Irani, S. R.; Dalmau, J.; Lim, M.; Dale, R. C. International consensus recommendations for the treatment of pediatric NMDAR antibody encephalitis. Neurol Neuroimmunol Neuroinflamm. 2021, 8, e1052.
  9. Smeyne, R. J.; Noyce, A. J.; Byrne, M.; Savica, R.; Marras, C. Infection and risk of Parkinson's disease. J Parkinsons Dis. 2021, 11, 31-43.
  10. Ray, S. T. J.; Abdel-Mannan, O.; Sa, M.; Fuller, C.; Wood, G. K.; Pysden, K.; Yoong, M.; McCullagh, H.; Scott, D.; McMahon, M.; Thomas, N.; Taylor, M.; Illingworth, M.; McCrea, N.; Davies, V.; Whitehouse, W.; Zuberi, S.; Guthrie, K.; Wassmer, E.; Shah, N.; Baker, M. R.; Tiwary, S.; Tan, H. J.; Varma, U.; Ram, D.; Avula, S.; Enright, N.; Hassell, J.; Ross Russell, A. L.; Kumar, R.; Mulholland, R. E.; Pett, S.; Galea, I.; Thomas, R. H.; Lim, M.; Hacohen, Y.; Solomon, T.; Griffiths, M. J.; Michael, B. D.; Kneen, R.; CoroNerve study group. Neurological manifestations of SARS-CoV-2 infection in hospitalised children and adolescents in the UK: a prospective national cohort study. Lancet Child Adolesc Health. 2021, 5, 631-641.doi: 10.1016/S2352-4642(21)00193-0 pmid: 34273304
  11. Pilotto, A.; Masciocchi, S.; Volonghi, I.; Crabbio, M.; Magni, E.; De Giuli, V.; Caprioli, F.; Rifino, N.; Sessa, M.; Gennuso, M.; Cotelli, M. S.; Turla, M.; Balducci, U.; Mariotto, S.; Ferrari, S.; Ciccone, A.; Fiacco, F.; Imarisio, A.; Risi, B.; Benussi, A.; Premi, E.; Focà E.; Caccuri, F.; Leonardi, M.; Gasparotti, R.; Castelli, F.; Zanusso, G.; Pezzini, A.; Padovani, A. Clinical presentation and outcomes of severe acute respiratory syndrome coronavirus 2-related encephalitis: the ENCOVID multicenter study. J Infect Dis. 2021, 223, 28-37.doi: 10.1093/infdis/jiaa609 pmid: 32986824
  12. Matthews, E.; Beckham, J. D.; Piquet, A. L.; Tyler, K. L.; Chauhan, L.; Pastula, D. M. Herpesvirus-associated encephalitis: an update. Curr Trop Med Rep. 2022, 9, 92-100.doi: 10.1007/s40475-022-00255-8 pmid: 36186545
  13. Stahl, J. P.; Mailles, A. Herpes simplex virus encephalitis update. Curr Opin Infect Dis. 2019, 32, 239-243.doi: 10.1097/QCO.0000000000000554 pmid: 30921087
  14. Gurgel Assis, M. S.; Fernandes Pedrosa, T. C.; de Moraes, F. S.; Caldeira, T. G.; Pereira, G. R.; de Souza, J.; Ruela, A. L. M. Novel insights to enhance therapeutics with acyclovir in the management of herpes simplex encephalitis. J Pharm Sci. 2021, 110, 1557-1571.
  15. Nance, E.; Pun, S. H.; Saigal, R.; Sellers, D. L. Drug delivery to the central nervous system. Nat Rev Mater. 2022, 7, 314-331.
  16. Wang, T.; Lei, H.; Li, X.; Yang, N.; Ma, C.; Li, G.; Gao, X.; Ge, J.; Liu, Z.; Cheng, L.; Chen, G. Magnetic targeting nanocarriers combined with focusing ultrasound for enhanced intracerebral hemorrhage therapy. Small. 2023, 19, e2206982.
  17. Yokel, R. A. Nanoparticle brain delivery: a guide to verification methods. Nanomedicine (Lond). 2020, 15, 409-432.
  18. Liu, J.; Sun, M.; Li, Z.; Xiang, H.; Wang, Q.; Xin, X.; Shen, Y. Catalytic nanoreactors promote GLUT1-mediated BBB permeation by generating nitric oxide for potentiating glioblastoma ferroptosis. Chem Eng J. 2024, 483, 149233.
  19. Chen, Y. X.; Wei, C. X.; Lyu, Y. Q.; Chen, H. Z.; Jiang, G.; Gao, X. L. Biomimetic drug-delivery systems for the management of brain diseases. Biomater Sci. 2020, 8, 1073-1088.
  20. Zhang, T. T.; Li, W.; Meng, G.; Wang, P.; Liao, W. Strategies for transporting nanoparticles across the blood-brain barrier. Biomater Sci. 2016, 4, 219-229.
  21. Ren, X.; Xu, R.; Xu, C.; Su, J. Harnessing exosomes for targeted therapy: strategy and application. Biomater Transl. 2024, 5, 46-58.doi: 10.12336/biomatertransl.2024.01.005 URL
  22. Guo, H.; Guo, M.; Xia, X.; Shao, Z. Membrane-coated nanoparticles as a biomimetic targeted delivery system for tumour therapy. Biomater Transl. 2024, 5, 33-45.doi: 10.12336/biomatertransl.2024.01.004 URL
  23. Li, J.; Zhou, H.; Liu, C.; Zhang, S.; Du, R.; Deng, Y.; Zou, X. Biomembrane-inspired design of medical micro/nanorobots: From cytomembrane stealth cloaks to cellularized Trojan horses. Aggregate. 2023, 4, e359.
  24. Lou, M.; Zhao, Y. Satisfactory therapy results of combining nimustine with nicardipine against glioma at advanced stage. J Cancer Res Ther. 2015, 11, 1030.doi: 10.4103/0973-1482.154033 pmid: 26881613
  25. Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021, 20, 101-124.doi: 10.1038/s41573-020-0090-8 pmid: 33277608
  26. Li, G.; Liu, S.; Chen, Y.; Zhao, J.; Xu, H.; Weng, J.; Yu, F.; Xiong, A.; Udduttula, A.; Wang, D.; Liu, P.; Chen, Y.; Zeng, H. An injectable liposome-anchored teriparatide incorporated gallic acid-grafted gelatin hydrogel for osteoarthritis treatment. Nat Commun. 2023, 14, 3159.doi: 10.1038/s41467-023-38597-0 pmid: 37258510
  27. Joshi, N.; Yan, J.; Levy, S.; Bhagchandani, S.; Slaughter, K. V.; Sherman, N. E.; Amirault, J.; Wang, Y.; Riegel, L.; He, X.; Rui, T. S.; Valic, M.; Vemula, P. K.; Miranda, O. R.; Levy, O.; Gravallese, E. M.; Aliprantis, A. O.; Ermann, J.; Karp, J. M. Towards an arthritis flare-responsive drug delivery system. Nat Commun. 2018, 9, 1275.doi: 10.1038/s41467-018-03691-1 pmid: 29615615
  28. Wang, C.; Yang, Y.; Cao, Y.; Liu, K.; Shi, H.; Guo, X.; Liu, W.; Hao, R.; Song, H.; Zhao, R. Nanocarriers for the delivery of antibiotics into cells against intracellular bacterial infection. Biomater Sci. 2023, 11, 432-444.
  29. Su, Y.; Fan, X.; Pang, Y. Nano-based ocular drug delivery systems: an insight into the preclinical/clinical studies and their potential in the treatment of posterior ocular diseases. Biomater Sci. 2023, 11, 4490-4507.
  30. Wang, Q.; Jiang, N.; Fu, B.; Huang, F.; Liu, J. Self-assembling peptide-based nanodrug delivery systems. Biomater Sci. 2019, 7, 4888-4911.
  31. Pape, K.; Tamouza, R.; Leboyer, M.; Zipp, F. Immunoneuropsychiatry - novel perspectives on brain disorders. Nat Rev Neurol. 2019, 15, 317-328.doi: 10.1038/s41582-019-0174-4 pmid: 30988501
  32. Waltl, I.; Kalinke, U. Beneficial and detrimental functions of microglia during viral encephalitis. Trends Neurosci. 2022, 45, 158-170.
  33. Ma, X.; Gao, F.; Su, W.; Ran, Y.; Bilalijiang, T.; Tuolhen, Y.; Tian, G.; Ye, L.; Feng, Z.; Xi, J.; Liu, Z. Multifunctional injectable hydrogel promotes functional recovery after stroke by modulating microglial polarization, angiogenesis and neuroplasticity. Chem Eng J. 2023, 464, 142520.
  34. Zheng, W.; Zhao, K.; Song, L.; Qian, Z.; Liu, W.; Zhu, Y.; Mao, Z.; Gao, C. ROS-scavenging microgels containing PTPσ receptor modulatory peptides synergistically alleviate inflammation and promote functional recovery post stroke. Chem Eng J. 2024, 483, 149225.
  35. Colombo, E.; Farina, C. Astrocytes: Key Regulators of Neuroinflammation. Trends Immunol. 2016, 37, 608-620.doi: S1471-4906(16)30072-2 pmid: 27443914
  36. Liu, Y.; Zhang, F.; Long, L.; Li, J.; Liu, Z.; Hu, C.; Chen, X.; Zan, X.; Xu, J.; Wang, Y. Dual-function hydrogels with sequential release of GSK3β inhibitor and VEGF inhibit inflammation and promote angiogenesis after stroke. Chem Eng J. 2022, 433, 133671.
  37. Mei, B.; Li, J.; Zuo, Z. Dexmedetomidine attenuates sepsis-associated inflammation and encephalopathy via central α2A adrenoceptor. Brain Behav Immun. 2021, 91, 296-314.doi: 10.1016/j.bbi.2020.10.008 pmid: 33039659
  38. Venkatesan, A.; Tunkel, A. R.; Bloch, K. C.; Lauring, A. S.; Sejvar, J.; Bitnun, A.; Stahl, J. P.; Mailles, A.; Drebot, M.; Rupprecht, C. E.; Yoder, J.; Cope, J. R.; Wilson, M. R.; Whitley, R. J.; Sullivan, J.; Granerod, J.; Jones, C.; Eastwood, K.; Ward, K. N.; Durrheim, D. N.; Solbrig, M. V.; Guo-Dong, L.; Glaser, C. A.; International Encephalitis Consortium. Case definitions, diagnostic algorithms, and priorities in encephalitis: consensus statement of the international encephalitis consortium. Clin Infect Dis. 2013, 57, 1114-1128.doi: 10.1093/cid/cit458 pmid: 23861361
  39. Najjar, S.; Pearlman, D. M.; Alper, K.; Najjar, A.; Devinsky, O. Neuroinflammation and psychiatric illness. J Neuroinflammation. 2013, 10, 43.
  40. Wang, K.; Chen, Y.; Ahn, S.; Zheng, M.; Landoni, E.; Dotti, G.; Savoldo, B.; Han, Z. GD2-specific CAR T cells encapsulated in an injectable hydrogel control retinoblastoma and preserve vision. Nat Cancer. 2020, 1, 990-997.
  41. Tischner, D.; Reichardt, H. M. Glucocorticoids in the control of neuroinflammation. Mol Cell Endocrinol. 2007, 275, 62-70.doi: 10.1016/j.mce.2007.03.007 pmid: 17555867
  42. Zamanian, J. L.; Xu, L.; Foo, L. C.; Nouri, N.; Zhou, L.; Giffard, R. G.; Barres, B. A. Genomic analysis of reactive astrogliosis. J Neurosci. 2012, 32, 6391-6410.doi: 10.1523/JNEUROSCI.6221-11.2012 pmid: 22553043
  43. Liddelow, S. A.; Guttenplan, K. A.; Clarke, L. E.; Bennett, F. C.; Bohlen, C. J.; Schirmer, L.; Bennett, M. L.; Münch, A. E.; Chung, W. S.; Peterson, T. C.; Wilton, D. K.; Frouin, A.; Napier, B. A.; Panicker, N.; Kumar, M.; Buckwalter, M. S.; Rowitch, D. H.; Dawson, V. L.; Dawson, T. M.; Stevens, B.; Barres, B. A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017, 541, 481-487.
  44. Sun, Y. B.; Zhao, H.; Mu, D. L.; Zhang, W.; Cui, J.; Wu, L.; Alam, A.; Wang, D. X.; Ma, D. Dexmedetomidine inhibits astrocyte pyroptosis and subsequently protects the brain in in vitro and in vivo models of sepsis. Cell Death Dis. 2019, 10, 167.
  45. Tseng, T. C.; Tao, L.; Hsieh, F. Y.; Wei, Y.; Chiu, I. M.; Hsu, S. H. An Injectable, self-healing hydrogel to repair the central nervous system. Adv Mater. 2015, 27, 3518-3524.
  46. Li, Q.; Shao, X.; Dai, X.; Guo, Q.; Yuan, B.; Liu, Y.; Jiang, W. Recent trends in the development of hydrogel therapeutics for the treatment of central nervous system disorders. NPG Asia Mater. 2022, 14, 14.
  47. Zhan, W.; Wang, C. H. Convection enhanced delivery of liposome encapsulated doxorubicin for brain tumour therapy. J Control Release. 2018, 285, 212-229.
  48. Chen, C.; Sun-Waterhouse, D.; Zhao, J.; Zhang, Y.; Waterhouse, G. I. N.; Lin, L.; Zhao, M.; Sun, W. Method for loading liposomes with soybean protein isolate hydrolysate influences the antioxidant efficiency of liposomal systems: Adding after liposomes formation or before lipid film hydration. Food Hydrocoll. 2022, 129, 107629.
  49. Abrami, M.; Siviello, C.; Grassi, G.; Larobina, D.; Grassi, M. Investigation on the thermal gelation of Chitosan/β-Glycerophosphate solutions. Carbohydr Polym. 2019, 214, 110-116.
  50. Tang, S.; Yang, J.; Lin, L.; Peng, K.; Chen, Y.; Jin, S.; Yao, W. Construction of physically crosslinked chitosan/sodium alginate/calcium ion double-network hydrogel and its application to heavy metal ions removal. Chem Eng J. 2020, 393, 124728.
  51. Huang, W.; Cheng, S.; Wang, X.; Zhang, Y.; Chen, L.; Zhang, L. Noncompressible hemostasis and bone regeneration induced by an absorbable bioadhesive self-healing hydrogel. Adv Funct Mater. 2021, 31, 2009189.
  52. Kim, H. J.; Choi, B. H.; Jun, S. H.; Cha, H. J. Sandcastle worm-inspired blood-resistant bone graft binder using a sticky mussel protein for augmented in vivo bone regeneration. Adv Healthc Mater. 2016, 5, 3191-3202.
  53. Magdanz, V.; Khalil, I. S. M.; Simmchen, J.; Furtado, G. P.; Mohanty, S.; Gebauer, J.; Xu, H.; Klingner, A.; Aziz, A.; Medina-Sánchez, M.; Schmidt, O. G.; Misra, S. IRONSperm: sperm-templated soft magnetic microrobots. Sci Adv. 2020, 6, eaba5855.
  54. Ren, S.; Dai, Y.; Li, C.; Qiu, Z.; Wang, X.; Tian, F.; Zhou, S.; Liu, Q.; Xing, H.; Lu, Y.; Chen, X.; Li, N. Pharmacokinetics and pharmacodynamics evaluation of a thermosensitive chitosan based hydrogel containing liposomal doxorubicin. Eur J Pharm Sci. 2016, 92, 137-145.doi: 10.1016/j.ejps.2016.07.002 pmid: 27388491
  55. Cohen, J. The immunopathogenesis of sepsis. Nature. 2002, 420, 885-891.
  56. Soares, D. G.; Zhang, Z.; Mohamed, F.; Eyster, T. W.; de Souza Costa, C. A.; Ma, P. X. Simvastatin and nanofibrous poly(l-lactic acid) scaffolds to promote the odontogenic potential of dental pulp cells in an inflammatory environment. Acta Biomater. 2018, 68, 190-203.doi: S1742-7061(17)30803-6 pmid: 29294374
  57. Zhang, H. Y.; Wang, Y.; He, Y.; Wang, T.; Huang, X. H.; Zhao, C. M.; Zhang, L.; Li, S. W.; Wang, C.; Qu, Y. N.; Jiang, X. X. A1 astrocytes contribute to murine depression-like behavior and cognitive dysfunction, which can be alleviated by IL-10 or fluorocitrate treatment. J Neuroinflammation. 2020, 17, 200.
  58. Albashari, A.; He, Y.; Zhang, Y.; Ali, J.; Lin, F.; Zheng, Z.; Zhang, K.; Cao, Y.; Xu, C.; Luo, L.; Wang, J.; Ye, Q. Thermosensitive bFGF-modified hydrogel with dental pulp stem cells on neuroinflammation of spinal cord injury. ACS Omega. 2020, 5, 16064-16075.doi: 10.1021/acsomega.0c01379 pmid: 32656428
  59. Li, Y.; Wang, M.; Sun, M.; Wang, X.; Pei, D.; Lei, B.; Li, A. Engineering antioxidant poly (citrate-gallic acid)-Exosome hybrid hydrogel with microglia immunoregulation for Traumatic Brain Injury-post neuro-restoration. Compos B Eng. 2022, 242, 110034.
  60. Zhang, M.; Zhang, R.; Chen, H.; Zhang, X.; Zhang, Y.; Liu, H.; Li, C.; Chen, Y.; Zeng, Q.; Huang, G. Injectable supramolecular hybrid hydrogel delivers IL-1β-stimulated exosomes to target neuroinflammation. ACS Appl Mater Interfaces. 2023, 15, 6486-6498.
  61. Liu, Y.; Tan, Y.; Cheng, G.; Ni, Y.; Xie, A.; Zhu, X.; Yin, C.; Zhang, Y.; Chen, T. Customized intranasal hydrogel delivering methylene blue ameliorates cognitive dysfunction against Alzheimer's disease. Adv Mater. 2024, 36, e2307081.
  62. Yao, M.; Chen, Y.; Zhang, J.; Gao, F.; Ma, S.; Guan, F. Chitosan-based thermosensitive composite hydrogel enhances the therapeutic efficacy of human umbilical cord MSC in TBI rat model. Mater Today Chem. 2019, 14, 100192.
  63. Xu, D.; Qiao, T.; Wang, Y.; Wang, Q. S.; Cui, Y. L. Alginate nanogels-based thermosensitive hydrogel to improve antidepressant-like effects of albiflorin via intranasal delivery. Drug Deliv. 2021, 28, 2137-2149.doi: 10.1080/10717544.2021.1986604 pmid: 34617853
  64. Mahajan, S.; Nangare, S.; Chaudhari, A.; Patil, G. Synthesis of chitosan-graphene oxide thermosensitive in situ hydrogel for nasal delivery of rasagiline mesylate: in-vitro-ex vivo characterization. J Drug Deliv Sci Technol. 2024, 95, 105549.
  65. Gholizadeh, H.; Cheng, S.; Pozzoli, M.; Messerotti, E.; Traini, D.; Young, P.; Kourmatzis, A.; Ong, H. X. Smart thermosensitive chitosan hydrogel for nasal delivery of ibuprofen to treat neurological disorders. Expert Opin Drug Deliv. 2019, 16, 453-466.doi: 10.1080/17425247.2019.1597051 pmid: 30884987
Share
Back to top