Recent advances in mitochondrial transplantation to treat disease
Mitochondrial transplantation (MT), an innovative regenerative technique widely used to treat diseases caused by mitochondrial dysfunction, shows great promise for clinical application. This procedure can increase the number of mitochondria and improve the function of damaged mitochondria, resulting in increased adenosine triphosphate levels, decreased reactive oxygen species production, improved Ca2+ buffering capacity, modulated inflammatory response, and reduced apoptosis to protect cells, thus promoting tissue repair. In this review, we describe research advances in MT over the last five years, focusing on its application in treating various diseases, including ischaemic injuries (of the kidney, heart, lung, and liver), neurodegenerative disorders, spinal cord injury, sepsis, diabetes mellitus, stroke, and ultraviolet radiation injuries, as well as in procedures such as organ transplantation, focusing on instances where MT demonstrated good efficacy. We also cover the application of engineered mitochondria and mitochondrial combination therapies and present the latest advances in improving MT efficiency, as well as the current clinical applications and shortcomings of MT, aiming to provide a theoretical foundation for enhanced MT utilisation in the future.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
- Nakamura, Y.; Park, J. H.; Hayakawa, K. Therapeutic use of extracellular mitochondria in CNS injury and disease. Exp Neurol. 2020, 324, 113114.
- Gollihue, J. L.; Rabchevsky, A. G. Prospects for therapeutic mitochondrial transplantation. 2017, 35, 70-79.
- Liao, P. C.; Tandarich, L. C.; Hollenbeck, P. J. ROS regulation of axonal mitochondrial transport is mediated by Ca2+ and JNK in Drosophila. PLoS One. 2017, 12, e0178105.
- Llorente-Folch, I.; Rueda, C. B.; Pardo, B.; Szabadkai, G.; Duchen, M. R.; Satrustegui, J. The regulation of neuronal mitochondrial metabolism by calcium. J Physiol. 2015, 593, 3447-3462.
- Pernas, L.; Scorrano, L. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol. 2016, 78, 505-531.
- Archer, S. L. Mitochondrial dynamics--mitochondrial fission and fusion in human diseases. N Engl J Med. 2013, 369, 2236-2251.
- Chan, D. C. Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol. 2020, 15, 235-259.
- Cheng, X. T.; Huang, N.; Sheng, Z. H. Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. 2022, 110, 1899-1923.
- Zhao, J.; Zhang, J.; Yu, M.; Xie, Y.; Huang, Y.; Wolff, D. W.; Abel, P. W.; Tu, Y. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. 2013, 32, 4814-4824.
- Peiris-Pagès, M.; Bonuccelli, G.; Sotgia, F.; Lisanti, M. P. Mitochondrial fission as a driver of stemness in tumor cells: mDIVI1 inhibits mitochondrial function, cell migration and cancer stem cell (CSC) signalling. 2018, 9, 13254-13275.
- Han, Y.; Cho, U.; Kim, S.; Park, I. S.; Cho, J. H.; Dhanasekaran, D. N.; Song, Y. S. Tumour microenvironment on mitochondrial dynamics and chemoresistance in cancer. Free Radic Res. 2018, 52, 1271-1287.
- Alexander, J. F.; Seua, A. V.; Arroyo, L. D.; Ray, P. R.; Wangzhou, A.; Heiβ-Lückemann, L.; Schedlowski, M.; Price, T. J.; Kavelaars, A.; Heijnen, C. J. Nasal administration of mitochondria reverses chemotherapy-induced cognitive deficits. 2021, 11, 3109- 3130.
- Chaturvedi, R. K.; Flint Beal, M. Mitochondrial diseases of the brain. Free Radic Biol Med. 2013, 63, 1-29.
- López-Lluch, G. Mitochondrial activity and dynamics changes regarding metabolism in ageing and obesity. Mech Ageing Dev. 2017, 162, 108-121.
- McInnes, J. Mitochondrial-associated metabolic disorders: foundations, pathologies and recent progress. Nutr Metab (Lond). 2013, 10, 63.
- Seyfried, T. N.; Flores, R. E.; Poff, A. M.; D’Agostino, D. P. Cancer as a metabolic disease: implications for novel therapeutics. 2014, 35, 515-527.
- Johri, A.; Beal, M. F. Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther. 2012, 342, 619-630.
- Guaragnella, N.; Palermo, V.; Galli, A.; Moro, L.; Mazzoni, C.; Giannattasio, S. The expanding role of yeast in cancer research and diagnosis: insights into the function of the oncosuppressors p53 and BRCA1/2. FEMS Yeast Res. 2014, 14, 2-16.
- Tait, S. W.; Green, D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010, 11, 621-632.
- Wang, C.; Youle, R. J. The role of mitochondria in apoptosis*. Annu Rev Genet. 2009, 43, 95-118.
- Oberst, A.; Bender, C.; Green, D. R. Living with death: the evolution of the mitochondrial pathway of apoptosis in animals. Cell Death Differ. 2008, 15, 1139-1146.
- Kaur, M. M.; Sharma, D. S. Mitochondrial repair as potential pharmacological target in cerebral ischemia. 2022, 63, 23-31.
- Hayakawa, K.; Esposito, E.; Wang, X.; Terasaki, Y.; Liu, Y.; Xing, C.; Ji, X.; Lo, E. H. Transfer of mitochondria from astrocytes to neurons after stroke. 2016, 535, 551-555.
- Tan, Y. L.; Eng, S. P.; Hafez, P.; Abdul Karim, N.; Law, J. X.; Ng, M. H. Mesenchymal stromal cell mitochondrial transfer as a cell rescue strategy in regenerative medicine: a review of evidence in preclinical models. Stem Cells Transl Med. 2022, 11, 814-827.
- Hernández-Cruz, E. Y.; Amador-Martínez, I.; Aranda-Rivera, A. K.; Cruz-Gregorio, A.; Pedraza Chaverri, J. Renal damage induced by cadmium and its possible therapy by mitochondrial transplantation. Chem Biol Interact. 2022, 361, 109961.
- Seydi, E.; Rahemi, M.; Esmaily, H.; Arjmand, A.; Pourahmad, J. Mitochondrial transplantation attenuates toxicity in rat renal proximal tubular cells caused by Favipiravir. J Pharm Pharmacol. 2023, 75, 1458- 1466.
- Preble, J. M.; Pacak, C. A.; Kondo, H.; MacKay, A. A.; Cowan, D. B.; McCully, J. D. Rapid isolation and purification of mitochondria for transplantation by tissue dissociation and differential filtration. J Vis Exp. 2014, e51682.
- Rossi, A.; Asthana, A.; Riganti, C.; Sedrakyan, S.; Byers, L. N.; Robertson, J.; Senger, R. S.; Montali, F.; Grange, C.; Dalmasso, A.; Porporato, P. E.; Palles, C.; Thornton, M. E.; Da Sacco, S.; Perin, L.; Ahn, B.; McCully, J.; Orlando, G.; Bussolati, B. Mitochondria transplantation mitigates damage in an in vitro model of renal tubular injury and in an ex vivo model of DCD renal transplantation. Ann Surg. 2023, 278, e1313-e1326.
- Jabbari, H.; Roushandeh, A. M.; Rostami, M. K.; Razavi-Toosi, M. T.; Shokrgozar, M. A.; Jahanian-Najafabadi, A.; Kuwahara, Y.; Roudkenar, M. H. Mitochondrial transplantation ameliorates ischemia/reperfusion-induced kidney injury in rat. Biochim Biophys Acta Mol Basis Dis. 2020, 1866, 165809.
- Pang, Y. L.; Fang, S. Y.; Cheng, T. T.; Huang, C. C.; Lin, M. W.; Lam, C. F.; Chen, K. B. Viable allogeneic mitochondria transplantation improves gas exchange and alveolar-capillary permeability in rats with endotoxin-induced acute lung injuries. Int J Med Sci. 2022, 19, 1036- 1046.
- Moskowitzova, K.; Orfany, A.; Liu, K.; Ramirez-Barbieri, G.; Thedsanamoorthy, J. K.; Yao, R.; Guariento, A.; Doulamis, I. P.; Blitzer, D.; Shin, B.; Snay, E. R.; Inkster, J. A. H.; Iken, K.; Packard, A. B.; Cowan, D. B.; Visner, G. A.; Del Nido, P. J.; McCully, J. D. Mitochondrial transplantation enhances murine lung viability and recovery after ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol. 2020, 318, L78-L88.
- Morrison, T. J.; Jackson, M. V.; Cunningham, E. K.; Kissenpfennig, A.; McAuley, D. F.; O’Kane, C. M.; Krasnodembskaya, A. D. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med. 2017, 196, 1275-1286.
- Yao, X.; Ma, Y.; Zhou, W.; Liao, Y.; Jiang, Z.; Lin, J.; He, Q.; Wu, H.; Wei, W.; Wang, X.; Björklund, M.; Ouyang, H. In-cytoplasm mitochondrial transplantation for mesenchymal stem cells engineering and tissue regeneration. Bioeng Transl Med. 2022, 7, e10250.
- Sun, C. K.; Chang, C. L.; Lin, Y. C.; Kao, Y. H.; Chang, L. T.; Yen, C. H.; Shao, P. L.; Chen, C. H.; Leu, S.; Yip, H. K. Systemic administration of autologous adipose-derived mesenchymal stem cells alleviates hepatic ischemia-reperfusion injury in rats. Crit Care Med. 2012, 40, 1279-1290.
- Zhao, Z.; Hou, Y.; Zhou, W.; Keerthiga, R.; Fu, A. Mitochondrial transplantation therapy inhibit carbon tetrachloride-induced liver injury through scavenging free radicals and protecting hepatocytes. Bioeng Transl Med. 2021, 6, e10209.
- Zhu, L.; Zhang, J.; Zhou, J.; Lu, Y.; Huang, S.; Xiao, R.; Yu, X.; Zeng, X.; Liu, B.; Liu, F.; Sun, M.; Dai, M.; Hao, Q.; Li, J.; Wang, T.; Li, T.; Hu, Q. Mitochondrial transplantation attenuates hypoxic pulmonary hypertension. 2016, 7, 48925-48940.
- Masuzawa, A.; Black, K. M.; Pacak, C. A.; Ericsson, M.; Barnett, R. J.; Drumm, C.; Seth, P.; Bloch, D. B.; Levitsky, S.; Cowan, D. B.; McCully, J. D. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2013, 304, H966-982.
- Kaza, A. K.; Wamala, I.; Friehs, I.; Kuebler, J. D.; Rathod, R. H.; Berra, I.; Ericsson, M.; Yao, R.; Thedsanamoorthy, J. K.; Zurakowski, D.; Levitsky, S.; Del Nido, P. J.; Cowan, D. B.; McCully, J. D. Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion. J Thorac Cardiovasc Surg. 2017, 153, 934-943.
- Guariento, A.; Blitzer, D.; Doulamis, I.; Shin, B.; Moskowitzova, K.; Orfany, A.; Ramirez-Barbieri, G.; Staffa, S. J.; Zurakowski, D.; Del Nido, P. J.; McCully, J. D. Preischemic autologous mitochondrial transplantation by intracoronary injection for myocardial protection. J Thorac Cardiovasc Surg. 2020, 160, e15-e29.
- Weixler, V.; Lapusca, R.; Grangl, G.; Guariento, A.; Saeed, M. Y.; Cowan, D. B.; Del Nido, P. J.; McCully, J. D.; Friehs, I. Autogenous mitochondria transplantation for treatment of right heart failure. J Thorac Cardiovasc Surg. 2021, 162, e111-e121.
- Hwang, J. W.; Lee, M. J.; Chung, T. N.; Lee, H. A. R.; Lee, J. H.; Choi, S. Y.; Park, Y. J.; Kim, C. H.; Jin, I.; Kim, S. H.; Kwak, H. B.; Heo, J. W.; Na, K.; Choi, S.; Choi, Y. S.; Kim, K. The immune modulatory effects of mitochondrial transplantation on cecal slurry model in rat. Crit Care. 2021, 25, 20.
- Mokhtari, B.; Hamidi, M.; Badalzadeh, R.; Mahmoodpoor, A. Mitochondrial transplantation protects against sepsis-induced myocardial dysfunction by modulating mitochondrial biogenesis and fission/fusion and inflammatory response. Mol Biol Rep. 2023, 50, 2147- 2158.
- Zhang, Z.; Yan, C.; Miao, J.; Pu, K.; Ma, H.; Wang, Q. Muscle-derived mitochondrial transplantation reduces inflammation, enhances bacterial clearance, and improves survival in sepsis. 2021, 56, 108-118.
- Nascimento-Dos-Santos, G.; de-Souza-Ferreira, E.; Lani, R.; Faria, C. C.; Araújo, V. G.; Teixeira-Pinheiro, L. C.; Vasconcelos, T.; Gonçalo, T.; Santiago, M. F.; Linden, R.; Galina, A.; Petrs-Silva, H. Neuroprotection from optic nerve injury and modulation of oxidative metabolism by transplantation of active mitochondria to the retina. Biochim Biophys Acta Mol Basis Dis. 2020, 1866, 165686.
- Fang, S. Y.; Roan, J. N.; Lee, J. S.; Chiu, M. H.; Lin, M. W.; Liu, C. C.; Lam, C. F. Transplantation of viable mitochondria attenuates neurologic injury after spinal cord ischemia. J Thorac Cardiovasc Surg. 2021, 161, e337-e347.
- Xu, J.; Shi, C.; Yuan, F.; Ding, Y.; Xie, Y.; Liu, Y.; Zhu, F.; Lu, H.; Duan, C.; Hu, J.; Jiang, L. Targeted transplantation of engineered mitochondrial compound promotes functional recovery after spinal cord injury by enhancing macrophage phagocytosis. Bioact Mater. 2024, 32, 427-444.
- Javani, G.; Ghaffari-Nasab, A.; Farajdokht, F.; Mohaddes, G. Chronic stress-induced apoptosis is mitigated by young mitochondria transplantation in the prefrontal cortex of aged rats. Iran J Basic Med Sci. 2023, 26, 725-730.
- Berridge, M. V.; Schneider, R. T.; McConnell, M. J. Mitochondrial transfer from astrocytes to neurons following ischemic insult: guilt by association? Cell Metab. 2016, 24, 376-378.
- Nakamura, Y.; Lo, E. H.; Hayakawa, K. Placental mitochondria therapy for cerebral ischemia-reperfusion injury in mice. 2020, 51, 3142- 3146.
- Kuo, C. C.; Su, H. L.; Chang, T. L.; Chiang, C. Y.; Sheu, M. L.; Cheng, F. C.; Chen, C. J.; Sheehan, J.; Pan, H. C. Prevention of axonal degeneration by perineurium injection of mitochondria in a sciatic nerve crush injury model. 2017, 80, 475-488.
- Bai, J.; Yu, B.; Li, C.; Cheng, H.; Guan, Y.; Ren, Z.; Zhang, T.; Song, X.; Jia, Z.; Su, T.; Tao, B.; Gao, H.; Yang, B.; Liang, L.; Xiong, X.; Zhou, X.; Yin, L.; Peng, J.; Shang, A.; Wang, Y. Mesenchymal stem cell-derived mitochondria enhance extracellular matrix-derived grafts for the repair of nerve defect. Adv Healthc Mater. 2024, 13, e2302128.
- Zhai, J.; Chen, Z.; Chen, P.; Yang, W.; Wei, H. Adipose derived mesenchymal stem cells-derived mitochondria transplantation ameliorated erectile dysfunction induced by cavernous nerve injury. World J Mens Health. 2024, 42, 188-201.
- Alway, S. E.; Paez, H. G.; Pitzer, C. R.; Ferrandi, P. J.; Khan, M. M.; Mohamed, J. S.; Carson, J. A.; Deschenes, M. R. Mitochondria transplant therapy improves regeneration and restoration of injured skeletal muscle. J Cachexia Sarcopenia Muscle. 2023, 14, 493-507.
- Lee, A. R.; Woo, J. S.; Lee, S. Y.; Na, H. S.; Cho, K. H.; Lee, Y. S.; Lee, J. S.; Kim, S. A.; Park, S. H.; Kim, S. J.; Cho, M. L. Mitochondrial transplantation ameliorates the development and progression of osteoarthritis. Immune Netw. 2022, 22, e14.
- Orfany, A.; Arriola, C. G.; Doulamis, I. P.; Guariento, A.; Ramirez- Barbieri, G.; Moskowitzova, K.; Shin, B.; Blitzer, D.; Rogers, C.; Del Nido, P. J.; McCully, J. D. Mitochondrial transplantation ameliorates acute limb ischemia. J Vasc Surg. 2020, 71, 1014-1026.
- Dubinin, M. V.; Mikheeva, I. B.; Stepanova, A. E.; Igoshkina, A. D.; Cherepanova, A. A.; Semenova, A. A.; Sharapov, V. A.; Kireev, II; Belosludtsev, K. N. Mitochondrial transplantation therapy ameliorates muscular dystrophy in mdx mouse model. 2024, 14, 316.
- Patel, S. P.; Michael, F. M.; Arif Khan, M.; Duggan, B.; Wyse, S.; Darby, D. R.; Chaudhuri, K.; Pham, J. T.; Gollihue, J.; DeRouchey, J. E.; Sullivan, P. G.; Dziubla, T. D.; Rabchevsky, A. G. Erodible thermogelling hydrogels for localized mitochondrial transplantation to the spinal cord. 2022, 64, 145-155.
- Ramirez-Barbieri, G.; Moskowitzova, K.; Shin, B.; Blitzer, D.; Orfany, A.; Guariento, A.; Iken, K.; Friehs, I.; Zurakowski, D.; Del Nido, P. J.; McCully, J. D. Alloreactivity and allorecognition of syngeneic and allogeneic mitochondria. Mitochondrion. 2019, 46, 103-115.
- Spees, J. L.; Olson, S. D.; Whitney, M. J.; Prockop, D. J. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci U S A. 2006, 103, 1283-1288.
- Li, X.; Zhang, Y.; Yeung, S. C.; Liang, Y.; Liang, X.; Ding, Y.; Ip, M. S.; Tse, H. F.; Mak, J. C.; Lian, Q. Mitochondrial transfer of induced pluripotent stem cell-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke-induced damage. Am J Respir Cell Mol Biol. 2014, 51, 455-465.
- Court, A. C.; Le-Gatt, A.; Luz-Crawford, P.; Parra, E.; Aliaga-Tobar, V.; Bátiz, L. F.; Contreras, R. A.; Ortúzar, M. I.; Kurte, M.; Elizondo- Vega, R.; Maracaja-Coutinho, V.; Pino-Lagos, K.; Figueroa, F. E.; Khoury, M. Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response. EMBO Rep. 2020, 21, e48052.
- Boukelmoune, N.; Chiu, G. S.; Kavelaars, A.; Heijnen, C. J. Mitochondrial transfer from mesenchymal stem cells to neural stem cells protects against the neurotoxic effects of cisplatin. Acta Neuropathol Commun. 2018, 6, 139.
- Crewe, C.; Funcke, J. B.; Li, S.; Joffin, N.; Gliniak, C. M.; Ghaben, A. L.; An, Y. A.; Sadek, H. A.; Gordillo, R.; Akgul, Y.; Chen, S.; Samovski, D.; Fischer-Posovszky, P.; Kusminski, C. M.; Klein, S.; Scherer, P. E. Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes. Cell Metab. 2021, 33, 1853-1868.e11.
- Moskowitzova, K.; Shin, B.; Liu, K.; Ramirez-Barbieri, G.; Guariento, A.; Blitzer, D.; Thedsanamoorthy, J. K.; Yao, R.; Snay, E. R.; Inkster, J. A. H.; Orfany, A.; Zurakowski, D.; Cowan, D. B.; Packard, A. B.; Visner, G. A.; Del Nido, P. J.; McCully, J. D. Mitochondrial transplantation prolongs cold ischemia time in murine heart transplantation. J Heart Lung Transplant. 2019, 38, 92-99.
- Park, A.; Oh, M.; Lee, S. J.; Oh, K. J.; Lee, E. W.; Lee, S. C.; Bae, K. H.; Han, B. S.; Kim, W. K. Mitochondrial transplantation as a novel therapeutic strategy for mitochondrial diseases. Int J Mol Sci. 2021, 22, 4793.
- Lieser, M. J.; Park, J.; Natori, S.; Jones, B. A.; Bronk, S. F.; Gores, G. J. Cholestasis confers resistance to the rat liver mitochondrial permeability transition. Gastroenterology. 1998, 115, 693-701.
- Divakaruni, A. S.; Brand, M. D. The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda). 2011, 26, 192-205.
- Yu, Z.; Hou, Y.; Zhou, W.; Zhao, Z.; Liu, Z.; Fu, A. The effect of mitochondrial transplantation therapy from different gender on inhibiting cell proliferation of malignant melanoma. Int J Biol Sci. 2021, 17, 2021-2033.
- Justo, R.; Boada, J.; Frontera, M.; Oliver, J.; Bermúdez, J.; Gianotti, M. Gender dimorphism in rat liver mitochondrial oxidative metabolism and biogenesis. Am J Physiol Cell Physiol. 2005, 289, C372-378.
- Hayashida, K.; Takegawa, R.; Shoaib, M.; Aoki, T.; Choudhary, R. C.; Kuschner, C. E.; Nishikimi, M.; Miyara, S. J.; Rolston, D. M.; Guevara, S.; Kim, J.; Shinozaki, K.; Molmenti, E. P.; Becker, L. B. Mitochondrial transplantation therapy for ischemia reperfusion injury: a systematic review of animal and human studies. J Transl Med. 2021, 19, 214.
- Blitzer, D.; Guariento, A.; Doulamis, I. P.; Shin, B.; Moskowitzova, K.; Barbieri, G. R.; Orfany, A.; Del Nido, P. J.; McCully, J. D. Delayed transplantation of autologous mitochondria for cardioprotection in a porcine model. Ann Thorac Surg. 2020, 109, 711-719.
- Koch, R. E.; Josefson, C. C.; Hill, G. E. Mitochondrial function, ornamentation, and immunocompetence. Biol Rev Camb Philos Soc. 2017, 92, 1459-1474.
- Desdín-Micó, G.; Soto-Heredero, G.; Aranda, J. F.; Oller, J.; Carrasco, E.; Gabandé-Rodríguez, E.; Blanco, E. M.; Alfranca, A.; Cussó, L.; Desco, M.; Ibañez, B.; Gortazar, A. R.; Fernández-Marcos, P.; Navarro, M. N.; Hernaez, B.; Alcamí, A.; Baixauli, F.; Mittelbrunn, M. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science. 2020, 368, 1371-1376.
- Yu, S. H.; Kim, S.; Kim, Y.; Lee, S. E.; Park, J. H.; Cho, G.; Ha, J. C.; Jung, H.; Lim, S. M.; Han, K.; Lee, H. K.; Kang, Y. C.; Kim, C. H. Human umbilical cord mesenchymal stem cell-derived mitochondria (PN-101) attenuate LPS-induced inflammatory responses by inhibiting NFκB signaling pathway. BMB Rep. 2022, 55, 136-141.
- Jackson, M. V.; Morrison, T. J.; Doherty, D. F.; McAuley, D. F.; Matthay, M. A.; Kissenpfennig, A.; O’Kane, C. M.; Krasnodembskaya, A. D. Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS. Stem Cells. 2016, 34, 2210-2223.
- Játiva, S.; Calle, P.; Torrico, S.; Muñoz, Á.; García, M.; Martinez, I.; Sola, A.; Hotter, G. Mitochondrial transplantation enhances phagocytic function and decreases lipid accumulation in foam cell macrophages. Biomedicines. 2022, 10, 329.
- Ikeda, G.; Santoso, M. R.; Tada, Y.; Li, A. M.; Vaskova, E.; Jung, J. H.; O’Brien, C.; Egan, E.; Ye, J.; Yang, P. C. Mitochondria-rich extracellular vesicles from autologous stem cell-derived cardiomyocytes restore energetics of ischemic myocardium. J Am Coll Cardiol. 2021, 77, 1073- 1088.
- Bertero, E.; Maack, C.; O’Rourke, B. Mitochondrial transplantation in humans: “magical” cure or cause for concern? J Clin Invest. 2018, 128, 5191-5194.
- Hsu, C. H.; Roan, J. N.; Fang, S. Y.; Chiu, M. H.; Cheng, T. T.; Huang, C. C.; Lin, M. W.; Lam, C. F. Transplantation of viable mitochondria improves right ventricular performance and pulmonary artery remodeling in rats with pulmonary arterial hypertension. J Thorac Cardiovasc Surg. 2022, 163, e361-e373.
- Chang, J. C.; Liu, K. H.; Li, Y. C.; Kou, S. J.; Wei, Y. H.; Chuang, C. S.; Hsieh, M.; Liu, C. S. Functional recovery of human cells harbouring the mitochondrial DNA mutation MERRF A8344G via peptide-mediated mitochondrial delivery. Neurosignals. 2013, 21, 160-173.
- Macheiner, T.; Fengler, V. H.; Agreiter, M.; Eisenberg, T.; Madeo, F.; Kolb, D.; Huppertz, B.; Ackbar, R.; Sargsyan, K. Magnetomitotransfer: An efficient way for direct mitochondria transfer into cultured human cells. Sci Rep. 2016, 6, 35571.
- Chang, J. C.; Chang, H. S.; Wu, Y. C.; Cheng, W. L.; Lin, T. T.; Chang, H. J.; Chen, S. T.; Liu, C. S. Antitumor actions of intratumoral delivery of membrane-fused mitochondria in a mouse model of triple-negative breast cancers. Onco Targets Ther. 2020, 13, 5241-5255.
- Gäbelein, C. G.; Feng, Q.; Sarajlic, E.; Zambelli, T.; Guillaume-Gentil, O.; Kornmann, B.; Vorholt, J. A. Mitochondria transplantation between living cells. PLoS Biol. 2022, 20, e3001576.
- Kim, M. J.; Hwang, J. W.; Yun, C. K.; Lee, Y.; Choi, Y. S. Delivery of exogenous mitochondria via centrifugation enhances cellular metabolic function. Sci Rep. 2018, 8, 3330.
- Baudo, G.; Wu, S.; Massaro, M.; Liu, H.; Lee, H.; Zhang, A.; Hamilton, D. J.; Blanco, E. Polymer-functionalized mitochondrial transplantation to fibroblasts counteracts a pro-fibrotic phenotype. Int J Mol Sci. 2023, 24, 10913.
- Wu, S.; Zhang, A.; Li, S.; Chatterjee, S.; Qi, R.; Segura-Ibarra, V.; Ferrari, M.; Gupte, A.; Blanco, E.; Hamilton, D. J. Polymer functionalization of isolated mitochondria for cellular transplantation and metabolic phenotype alteration. Adv Sci (Weinh). 2018, 5, 1700530.
- Galvan, D. L.; Green, N. H.; Danesh, F. R. The hallmarks of mitochondrial dysfunction in chronic kidney disease. Kidney Int. 2017, 92, 1051-1057.
- Kubat, G. B.; Kartal, Y.; Atalay, O.; Ulger, O.; Ekinci, O.; Celik, E.; Safali, M.; Urkan, M.; Karahan, S.; Ozler, M.; Cicek, Z.; Budak, M. T. Investigation of the effect of isolated mitochondria transplantation on renal ischemia-reperfusion injury in rats. Toxicol Appl Pharmacol. 2021, 433, 115780.
- Doulamis, I. P.; Guariento, A.; Duignan, T.; Kido, T.; Orfany, A.; Saeed, M. Y.; Weixler, V. H.; Blitzer, D.; Shin, B.; Snay, E. R.; Inkster, J. A.; Packard, A. B.; Zurakowski, D.; Rousselle, T.; Bajwa, A.; Parikh, S. M.; Stillman, I. E.; Del Nido, P. J.; McCully, J. D. Mitochondrial transplantation by intra-arterial injection for acute kidney injury. Am J Physiol Renal Physiol. 2020, 319, F403-F413.
- Arjmand, A.; Shiranirad, S.; Ameritorzani, F.; Kamranfar, F.; Seydi, E.; Pourahmad, J. Mitochondrial transplantation against gentamicin-induced toxicity on rat renal proximal tubular cells: the higher activity of female rat mitochondria. In Vitro Cell Dev Biol Anim. 2023, 59, 31-40.
- Cloer, C. M.; Givens, C. S.; Buie, L. K.; Rochelle, L. K.; Lin, Y. T.; Popa, S.; Shelton, R. V. M.; Zhan, J.; Zimmerman, T. R.; Jones, B. G.; Lesesne, Z.; Hogan, S. S.; Petersen, T. H. Mitochondrial transplant after ischemia reperfusion promotes cellular salvage and improves lung function during ex-vivo lung perfusion. J Heart Lung Transplant. 2023, 42, 575-584.
- Lin, H. C.; Liu, S. Y.; Lai, H. S.; Lai, I. R. Isolated mitochondria infusion mitigates ischemia-reperfusion injury of the liver in rats. Shock. 2013, 39, 304-310.
- Ulger, O.; Kubat, G. B.; Cicek, Z.; Celik, E.; Atalay, O.; Suvay, S.; Ozler, M. The effects of mitochondrial transplantation in acetaminophen-induced liver toxicity in rats. Life Sci. 2021, 279, 119669.
- Lu, T.; Zhang, J.; Cai, J.; Xiao, J.; Sui, X.; Yuan, X.; Li, R.; Li, Y.; Yao, J.; Lv, G.; Chen, X.; Chen, H.; Zeng, K.; Liu, Y.; Chen, W.; Chen, G.; Yang, Y.; Zheng, J.; Zhang, Y. Extracellular vesicles derived from mesenchymal stromal cells as nanotherapeutics for liver ischaemia-reperfusion injury by transferring mitochondria to modulate the formation of neutrophil extracellular traps. Biomaterials. 2022, 284, 121486.
- Cowan, D. B.; Yao, R.; Akurathi, V.; Snay, E. R.; Thedsanamoorthy, J. K.; Zurakowski, D.; Ericsson, M.; Friehs, I.; Wu, Y.; Levitsky, S.; Del Nido, P. J.; Packard, A. B.; McCully, J. D. Intracoronary delivery of mitochondria to the ischemic heart for cardioprotection. PLoS One. 2016, 11, e0160889.
- Sun, C.; Liu, X.; Wang, B.; Wang, Z.; Liu, Y.; Di, C.; Si, J.; Li, H.; Wu, Q.; Xu, D.; Li, J.; Li, G.; Wang, Y.; Wang, F.; Zhang, H. Endocytosis-mediated mitochondrial transplantation: Transferring normal human astrocytic mitochondria into glioma cells rescues aerobic respiration and enhances radiosensitivity. Theranostics. 2019, 9, 3595-3607.
- Lesnefsky, E. J.; Chen, Q.; Slabe, T. J.; Stoll, M. S.; Minkler, P. E.; Hassan, M. O.; Tandler, B.; Hoppel, C. L. Ischemia, rather than reperfusion, inhibits respiration through cytochrome oxidase in the isolated, perfused rabbit heart: role of cardiolipin. Am J Physiol Heart Circ Physiol. 2004, 287, H258-267.
- Chen, Q.; Moghaddas, S.; Hoppel, C. L.; Lesnefsky, E. J. Reversible blockade of electron transport during ischemia protects mitochondria and decreases myocardial injury following reperfusion. J Pharmacol Exp Ther. 2006, 319, 1405-1412.
- Meerson, F. Z.; Zaletayeva, T. A.; Lagutchev, S. S.; Pshennikova, M. G. Structure and mass of mitochondria in the process of compensatory hyperfunction and hypertrophy of the heart. Exp Cell Res. 1964, 36, 568-578.
- Weiss, R. G.; Gerstenblith, G.; Bottomley, P. A. ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc Natl Acad Sci U S A. 2005, 102, 808-813.
- Bisaccia, G.; Ricci, F.; Gallina, S.; Di Baldassarre, A.; Ghinassi, B. Mitochondrial dysfunction and heart disease: critical appraisal of an overlooked association. Int J Mol Sci. 2021, 22, 614.
- Russo, M. J.; Iribarne, A.; Hong, K. N.; Ramlawi, B.; Chen, J. M.; Takayama, H.; Mancini, D. M.; Naka, Y. Factors associated with primary graft failure after heart transplantation. Transplantation. 2010, 90, 444-450.
- Sun, X.; Chen, H.; Gao, R.; Huang, Y.; Qu, Y.; Yang, H.; Wei, X.; Hu, S.; Zhang, J.; Wang, P.; Zou, Y.; Hu, K.; Ge, J.; Sun, A. Mitochondrial transplantation ameliorates doxorubicin-induced cardiac dysfunction via activating glutamine metabolism. iScience. 2023, 26, 107790.
- Ali Pour, P.; Kenney, M. C.; Kheradvar, A. Bioenergetics Consequences of Mitochondrial Transplantation in Cardiomyocytes. J Am Heart Assoc. 2020, 9, e014501.
- Roche, S.; D’Ippolito, G.; Gomez, L. A.; Bouckenooghe, T.; Lehmann, S.; Montero-Menei, C. N.; Schiller, P. C. Comparative analysis of protein expression of three stem cell populations: models of cytokine delivery system in vivo. Int J Pharm. 2013, 440, 72-82.
- Alemany, V. S.; Nomoto, R.; Saeed, M. Y.; Celik, A.; Regan, W. L.; Matte, G. S.; Recco, D. P.; Emani, S. M.; Del Nido, P. J.; McCully, J. D. Mitochondrial transplantation preserves myocardial function and viability in pediatric and neonatal pig hearts donated after circulatory death. J Thorac Cardiovasc Surg. 2024, 167, e6-e21.
- Guariento, A.; Doulamis, I. P.; Duignan, T.; Kido, T.; Regan, W. L.; Saeed, M. Y.; Hoganson, D. M.; Emani, S. M.; Fynn-Thompson, F.; Matte, G. S.; Del Nido, P. J.; McCully, J. D. Mitochondrial transplantation for myocardial protection in ex-situ‒perfused hearts donated after circulatory death. J Heart Lung Transplant. 2020, 39, 1279- 1288.
- Hayashida, K.; Takegawa, R.; Endo, Y.; Yin, T.; Choudhary, R. C.; Aoki, T.; Nishikimi, M.; Murao, A.; Nakamura, E.; Shoaib, M.; Kuschner, C.; Miyara, S. J.; Kim, J.; Shinozaki, K.; Wang, P.; Becker, L. B. Exogenous mitochondrial transplantation improves survival and neurological outcomes after resuscitation from cardiac arrest. BMC Med. 2023, 21, 56.
- Shin, B.; Saeed, M. Y.; Esch, J. J.; Guariento, A.; Blitzer, D.; Moskowitzova, K.; Ramirez-Barbieri, G.; Orfany, A.; Thedsanamoorthy, J. K.; Cowan, D. B.; Inkster, J. A.; Snay, E. R.; Staffa, S. J.; Packard, A. B.; Zurakowski, D.; Del Nido, P. J.; McCully, J. D. A novel biological strategy for myocardial protection by intracoronary delivery of mitochondria: safety and efficacy. JACC Basic Transl Sci. 2019, 4, 871-888.
- Lin, Z. J.; Kim, S.; Cui, H. X.; Han, K.; Lee, H. K.; Kim, C. H.; Kang, Y. C.; Zhang, Y. H. Human platelet mitochondria improve the mitochondrial and cardiac function of donor heart. Pflugers Arch. 2023, 475, 267-275.
- Lin, L.; Xu, H.; Bishawi, M.; Feng, F.; Samy, K.; Truskey, G.; Barbas, A. S.; Kirk, A. D.; Brennan, T. V. Circulating mitochondria in organ donors promote allograft rejection. Am J Transplant. 2019, 19, 1917-1929.
- Gan, I.; Jiang, J.; Lian, D.; Huang, X.; Fuhrmann, B.; Liu, W.; Haig, A.; Jevnikar, A. M.; Zhang, Z. X. Mitochondrial permeability regulates cardiac endothelial cell necroptosis and cardiac allograft rejection. Am J Transplant. 2019, 19, 686-698.
- Doulamis, I. P.; Guariento, A.; Duignan, T.; Orfany, A.; Kido, T.; Zurakowski, D.; Del Nido, P. J.; McCully, J. D. Mitochondrial transplantation for myocardial protection in diabetic hearts. Eur J Cardiothorac Surg. 2020, 57, 836-845.
- Mokhtari, B.; Badalzadeh, R. Mitochondria-targeted combination treatment strategy counteracts myocardial reperfusion injury of aged rats by modulating autophagy and inflammatory response. Mol Biol Rep. 2023, 50, 3973-3983.
- Liu, H.; Li, Z.; Cao, Y.; Cui, Y.; Yang, X.; Meng, Z.; Wang, R. Effect of chondrocyte mitochondrial dysfunction on cartilage degeneration: a possible pathway for osteoarthritis pathology at the subcellular level. Mol Med Rep. 2019, 20, 3308-3316.
- Yu, M.; Wang, D.; Chen, X.; Zhong, D.; Luo, J. BMSCs-derived mitochondria improve osteoarthritis by ameliorating mitochondrial dysfunction and promoting mitochondrial biogenesis in chondrocytes. Stem Cell Rev Rep. 2022, 18, 3092-3111.
- Guo, Y.; Chi, X.; Wang, Y.; Heng, B. C.; Wei, Y.; Zhang, X.; Zhao, H.; Yin, Y.; Deng, X. Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing. Stem Cell Res Ther. 2020, 11, 245.
- Maezawa, T.; Tanaka, M.; Kanazashi, M.; Maeshige, N.; Kondo, H.; Ishihara, A.; Fujino, H. Astaxanthin supplementation attenuates immobilization-induced skeletal muscle fibrosis via suppression of oxidative stress. J Physiol Sci. 2017, 67, 603-611.
- Lee, J. M.; Hwang, J. W.; Kim, M. J.; Jung, S. Y.; Kim, K. S.; Ahn, E. H.; Min, K.; Choi, Y. S. Mitochondrial transplantation modulates inflammation and apoptosis, alleviating tendinopathy both in vivo and in vitro. Antioxidants (Basel). 2021, 10, 696.
- Budge, K. M.; Neal, M. L.; Richardson, J. R.; Safadi, F. F. Glycoprotein NMB: an Emerging Role in Neurodegenerative Disease. Mol Neurobiol. 2018, 55, 5167-5176.
- Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S. G.; Croteau, D. L.; Bohr, V. A. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019, 15, 565-581.
- Kauppila, T. E. S.; Kauppila, J. H. K.; Larsson, N. G. Mammalian mitochondria and aging: an update. Cell Metab. 2017, 25, 57-71.
- Balaban, R. S.; Nemoto, S.; Finkel, T. Mitochondria, oxidants, and aging. Cell. 2005, 120, 483-495.
- Noh, S. E.; Lee, S. J.; Lee, T. G.; Park, K. S.; Kim, J. H. Inhibition of cellular senescence hallmarks by mitochondrial transplantation in senescence-induced ARPE-19 cells. Neurobiol Aging. 2023, 121, 157-165.
- Swerdlow, R. H. Mitochondria and mitochondrial cascades in Alzheimer’s disease. J Alzheimers Dis. 2018, 62, 1403-1416.
- Sharma, C.; Kim, S.; Nam, Y.; Jung, U. J.; Kim, S. R. Mitochondrial dysfunction as a driver of cognitive impairment in Alzheimer’s disease. Int J Mol Sci. 2021, 22, 4850.
- Nitzan, K.; Benhamron, S.; Valitsky, M.; Kesner, E. E.; Lichtenstein, M.; Ben-Zvi, A.; Ella, E.; Segalstein, Y.; Saada, A.; Lorberboum-Galski, H.; Rosenmann, H. Mitochondrial transfer ameliorates cognitive deficits, neuronal loss, and gliosis in Alzheimer’s disease mice. J Alzheimers Dis. 2019, 72, 587-604.
- Zhang, Z.; Wei, D.; Li, Z.; Guo, H.; Wu, Y.; Feng, J. Hippocampal mitochondrial transplantation alleviates age-associated cognitive decline via enhancing wnt signaling and neurogenesis. Comput Intell Neurosci. 2022, 2022, 9325302.
- Palomer, E.; Buechler, J.; Salinas, P. C. Wnt signaling deregulation in the aging and Alzheimer’s brain. Front Cell Neurosci. 2019, 13, 227.
- Mishra, M.; Raik, S.; Rattan, V.; Bhattacharyya, S. Mitochondria transfer as a potential therapeutic mechanism in Alzheimer’s disease-like pathology. Brain Res. 2023, 1819, 148544.
- Chen, T.; Majerníková, N.; Marmolejo-Garza, A.; Trombetta-Lima, M.; Sabogal-Guáqueta, A. M.; Zhang, Y.; Ten Kate, R.; Zuidema, M.; Mulder, P.; den Dunnen, W.; Gosens, R.; Verpoorte, E.; Culmsee, C.; Eisel, U. L. M.; Dolga, A. M. Mitochondrial transplantation rescues neuronal cells from ferroptosis. Free Radic Biol Med. 2023, 208, 62-72.
- Chen, W. W.; Zhang, X.; Huang, W. J. Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep. 2016, 13, 3391-3396.
- Zhao, J.; Qu, D.; Xi, Z.; Huan, Y.; Zhang, K.; Yu, C.; Yang, D.; Kang, J.; Lin, W.; Wu, S.; Wang, Y. Mitochondria transplantation protects traumatic brain injury via promoting neuronal survival and astrocytic BDNF. Transl Res. 2021, 235, 102-114.
- Pendergrass, J. C.; Targum, S. D.; Harrison, J. E. Cognitive impairment associated with cancer: a brief review. Innov Clin Neurosci. 2018, 15, 36-44.
- Yan, C.; Ma, Z.; Ma, H.; Li, Q.; Zhai, Q.; Jiang, T.; Zhang, Z.; Wang, Q. Mitochondrial transplantation attenuates brain dysfunction in sepsis by driving microglial M2 polarization. Mol Neurobiol. 2020, 57, 3875-3890.
- Amin, S. N. Platelets: the peripheral donor of mitochondria for diabetes-induced cognitive impairment. Clin Sci (Lond). 2021, 135, 593- 595.
- Ma, H.; Jiang, T.; Tang, W.; Ma, Z.; Pu, K.; Xu, F.; Chang, H.; Zhao, G.; Gao, W.; Li, Y.; Wang, Q. Transplantation of platelet-derived mitochondria alleviates cognitive impairment and mitochondrial dysfunction in db/db mice. Clin Sci (Lond). 2020, 134, 2161-2175.
- Robicsek, O.; Ene, H. M.; Karry, R.; Ytzhaki, O.; Asor, E.; McPhie, D.; Cohen, B. M.; Ben-Yehuda, R.; Weiner, I.; Ben-Shachar, D. Isolated mitochondria transfer improves neuronal differentiation of schizophrenia-derived induced pluripotent stem cells and rescues deficits in a rat model of the disorder. Schizophr Bull. 2018, 44, 432-442.
- Wang, Y.; Ni, J.; Gao, C.; Xie, L.; Zhai, L.; Cui, G.; Yin, X. Mitochondrial transplantation attenuates lipopolysaccharide- induced depression-like behaviors. Prog Neuropsychopharmacol Biol Psychiatry. 2019, 93, 240-249.
- Javani, G.; Babri, S.; Farajdokht, F.; Ghaffari-Nasab, A.; Mohaddes, G. Mitochondrial transplantation improves anxiety- and depression-like behaviors in aged stress-exposed rats. Mech Ageing Dev. 2022, 202, 111632.
- Harris, J. J.; Jolivet, R.; Attwell, D. Synaptic energy use and supply. Neuron. 2012, 75, 762-777.
- Gollihue, J. L.; Patel, S. P.; Eldahan, K. C.; Cox, D. H.; Donahue, R. R.; Taylor, B. K.; Sullivan, P. G.; Rabchevsky, A. G. Effects of mitochondrial transplantation on bioenergetics, cellular incorporation, and functional recovery after spinal cord injury. J Neurotrauma. 2018, 35, 1800-1818.
- Xie, Q.; Zeng, J.; Zheng, Y.; Li, T.; Ren, J.; Chen, K.; Zhang, Q.; Xie, R.; Xu, F.; Zhu, J. Mitochondrial transplantation attenuates cerebral ischemia-reperfusion injury: possible involvement of mitochondrial component separation. Oxid Med Cell Longev. 2021, 2021, 1006636.
- Bamshad, C.; Habibi Roudkenar, M.; Abedinzade, M.; Yousefzadeh Chabok, S.; Pourmohammadi-Bejarpasi, Z.; Najafi-Ghalehlou, N.; Sato, T.; Tomita, K.; Jahanian-Najafabadi, A.; Feizkhah, A.; Mohammadi Roushandeh, A. Human umbilical cord-derived mesenchymal stem cells-harvested mitochondrial transplantation improved motor function in TBI models through rescuing neuronal cells from apoptosis and alleviating astrogliosis and microglia activation. Int Immunopharmacol. 2023, 118, 110106.
- Lee, E. H.; Kim, M.; Ko, S. H.; Kim, C. H.; Lee, M.; Park, C. H. Primary astrocytic mitochondrial transplantation ameliorates ischemic stroke. BMB Rep. 2023, 56, 90-95.
- Tseng, N.; Lambie, S. C.; Huynh, C. Q.; Sanford, B.; Patel, M.; Herson, P. S.; Ormond, D. R. Mitochondrial transfer from mesenchymal stem cells improves neuronal metabolism after oxidant injury in vitro: The role of Miro1. J Cereb Blood Flow Metab. 2021, 41, 761-770.
- Pourmohammadi-Bejarpasi, Z.; Roushandeh, A. M.; Saberi, A.; Rostami, M. K.; Toosi, S. M. R.; Jahanian-Najafabadi, A.; Tomita, K.; Kuwahara, Y.; Sato, T.; Roudkenar, M. H. Mesenchymal stem cells-derived mitochondria transplantation mitigates I/R-induced injury, abolishes I/R-induced apoptosis, and restores motor function in acute ischemia stroke rat model. Brain Res Bull. 2020, 165, 70-80.
- Sullivan, P. G.; Krishnamurthy, S.; Patel, S. P.; Pandya, J. D.; Rabchevsky, A. G. Temporal characterization of mitochondrial bioenergetics after spinal cord injury. J Neurotrauma. 2007, 24, 991-999.
- Huang, T.; Shen, J.; Lin, J.; Zheng, X. Effect of M2-like macrophage/ microglia-derived mitochondria transplantation in treatment of mouse spinal cord injury. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2022, 36, 751-759.
- Van den Bossche, J.; O’Neill, L. A.; Menon, D. Macrophage immunometabolism: where are we (going)? Trends Immunol. 2017, 38, 395-406.
- Zhu, Z.; Li, X.; Wang, X.; Zuo, X.; Ma, Y.; Gao, X.; Liang, Z.; Zhang, Z.; Song, Z.; Ding, T.; Ju, C.; Li, P.; Li, K.; Zhang, J.; Quan, H.; Wang, Z.; Hu, X. Photobiomodulation augments the effects of mitochondrial transplantation in the treatment of spinal cord injury in rats by facilitating mitochondrial transfer to neurons via Connexin 36. Bioeng Transl Med. 2023, 8, e10473.
- Wu, S. F.; Lin, C. Y.; Tsai, R. K.; Wen, Y. T.; Lin, F. H.; Chang, C. Y.; Shen, C. I.; Lin, S. Z.; Harn, H. J.; Chiou, T. W.; Liu, C. S.; Chen, Y. T.; Su, H. L. Mitochondrial transplantation moderately ameliorates retinal degeneration in royal college of surgeons rats. Biomedicines. 2022, 10, 2883.
- Singer, M.; Deutschman, C. S.; Seymour, C. W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G. R.; Chiche, J. D.; Coopersmith, C. M.; Hotchkiss, R. S.; Levy, M. M.; Marshall, J. C.; Martin, G. S.; Opal, S. M.; Rubenfeld, G. D.; van der Poll, T.; Vincent, J. L.; Angus, D. C. The Third International Consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016, 315, 801-810.
- Kim, Y. S.; Lee, H. A. R.; Lee, M. J.; Park, Y. J.; Mun, S.; Yune, C. J.; Chung, T. N.; Bae, J.; Kim, M. J.; Choi, Y. S.; Kim, K. The effects of mitochondrial transplantation on sepsis depend on the type of cell from which they are isolated. Int J Mol Sci. 2023, 24, 10113.
- He, H.; Xiong, L.; Jian, L.; Li, L.; Wu, Y.; Qiao, S. Role of mitochondria on UV-induced skin damage and molecular mechanisms of active chemical compounds targeting mitochondria. J Photochem Photobiol B. 2022, 232, 112464.
- Hu, S. S.; Li, R. Y.; Cao, X. H.; Liu, J. J.; Wang, Z. H.; Li, Z.; Yang, M. L.; Liu, J. W.; Hu, L. M.; Lin, C. J.; Liu, J.; Wang, C. M. Structural integrity is essential for the protective effect of mitochondrial transplantation against UV-induced cell death. J Photochem Photobiol B. 2022, 234, 112534.
- Cabrera, F.; Ortega, M.; Velarde, F.; Parra, E.; Gallardo, S.; Barba, D.; Soto, L.; Peña, G.; Pedroza, L. A.; Jorgensen, C.; Khoury, M.; Caicedo, A. Primary allogeneic mitochondrial mix (PAMM) transfer/transplant by MitoCeption to address damage in PBMCs caused by ultraviolet radiation. BMC Biotechnol. 2019, 19, 42.
- Schäfer, M.; Werner, S. Oxidative stress in normal and impaired wound repair. Pharmacol Res. 2008, 58, 165-171.
- Kim, S.; Kim, Y.; Yu, S. H.; Lee, S. E.; Park, J. H.; Cho, G.; Choi, C.; Han, K.; Kim, C. H.; Kang, Y. C. Platelet-derived mitochondria transfer facilitates wound-closure by modulating ROS levels in dermal fibroblasts. Platelets. 2022, 34, 2151996.
- Guariento, A.; Piekarski, B. L.; Doulamis, I. P.; Blitzer, D.; Ferraro, A. M.; Harrild, D. M.; Zurakowski, D.; Del Nido, P. J.; McCully, J. D.; Emani, S. M. Autologous mitochondrial transplantation for cardiogenic shock in pediatric patients following ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2021, 162, 992-1001.
- Emani, S. M.; Piekarski, B. L.; Harrild, D.; Del Nido, P. J.; McCully, J. D. Autologous mitochondrial transplantation for dysfunction after ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2017, 154, 286-289.
- Bertero, E.; O’Rourke, B.; Maack, C. Mitochondria do not survive calcium overload during transplantation. Circ Res. 2020, 126, 784-786.