·
REVIEW
·

Antibacterial sonodynamic nanomedicine: mechanism, category, and applications

Shuanglong Yi1 Yao Gao2 Luodan Yu1* Yu Chen2*
Show Less
1 Department of Radiology, Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
2 Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, China
Submitted: 25 April 2024 | Revised: 8 July 2024 | Accepted: 4 March 2025 | Published: 25 March 2025
Copyright © 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Sonodynamic therapy (SDT) has emerged as a cutting-edge strategy for combating multidrug-resistant bacterial infections. Unlike conventional antibiotics, SDT leverages the generation of reactive oxygen species during the treatment process to inflict multifaceted damage on bacterial cells, thereby significantly reducing the likelihood of developing drug resistance. Compared to other physical sterilisation methods, such as ultraviolet irradiation, SDT offers enhanced tissue penetration, making it particularly suitable for addressing deep-seated infections, including osteomyelitis. Despite its significant advantages, the clinical translation of SDT for antibacterial applications faces several challenges. This review discusses the fundamental mechanisms of SDT, with a focus on phenomena such as cavitation-induced reactions and piezocatalytic generation of reactive oxygen species. Furthermore, it provides a comprehensive analysis of various sonosensitisers used in SDT, emphasising their potential to enhance therapeutic outcomes in areas such as infected wound healing, bone regeneration, and the mitigation of deep tissue inflammation. While SDT shows great promise in addressing multidrug-resistant bacterial infections, further research and development are essential to overcome existing limitations and unlock its full clinical potential.

Keywords
antibacterial application
reactive oxygen species
sonodynamic therapy
sonosensitisers
Funding
This study was financially supported by National Natural Science Foundation of China (Nos. 52072393 and 32271457), Shanghai Shuguang Program (No. 21SG39), and Young Elite Scientists Sponsorship Program by CAST (YESS) (No. 2022-2024QNRC001).
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

  1. Porco, T. C.; Gao, D.; Scott, J. C.; Shim, E.; Enanoria, W. T.; Galvani, A. P.; Lietman, T. M. When does overuse of antibiotics become a tragedy of the commons? PLoS One. 2012, 7, e46505.

 

  1. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. 2022, 399, 629-655.

 

  1. Gupta, A.; Mumtaz, S.; Li, C. H.; Hussain, I.; Rotello, V. M. Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev. 2019, 48, 415-427.

 

  1. Bertagnolio, S.; Dobreva, Z.; Centner, C. M.; Olaru, I. D.; Donà, D.; Burzo, S.; Huttner, B. D.; Chaillon, A.; Gebreselassie, N.; Wi, T.; Hasso- Agopsowicz, M.; Allegranzi, B.; Sati, H.; Ivanovska, V.; Kothari, K. U.; Balkhy, H. H.; Cassini, A.; Hamers, R. L.; Weezenbeek, K. V.; WHO Research Agenda for AMR in Human Health Collaborators. WHO global research priorities for antimicrobial resistance in human health. The Lancet Microbe. 2024, 5, 100902.

 

  1. Roy, J.; Pandey, V.; Gupta, I.; Shekhar, H. Antibacterial sonodynamic therapy: current status and future perspectives. ACS Biomater Sci Eng. 2021, 7, 5326-5338.

 

  1. Zhang, Y.; Zhang, X.; Yang, H.; Yu, L.; Xu, Y.; Sharma, A.; Yin, P.; Li, X.; Kim, J. S.; Sun, Y. Advanced biotechnology-assisted precise sonodynamic therapy. Chem Soc Rev. 2021, 50, 11227-11248.

 

  1. Son, S.; Kim, J. H.; Wang, X.; Zhang, C.; Yoon, S. A.; Shin, J.; Sharma, A.; Lee, M. H.; Cheng, L.; Wu, J.; Kim, J. S. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem Soc Rev. 2020, 49, 3244-3261.

 

  1. Deepagan, V. G.; You, D. G.; Um, W.; Ko, H.; Kwon, S.; Choi, K. Y.; Yi, G. R.; Lee, J. Y.; Lee, D. S.; Kim, K.; Kwon, I. C.; Park, J. H. Long-circulating Au-TiO(2) nanocomposite as a sonosensitizer for ROS-mediated eradication of cancer. Nano Lett. 2016, 16, 6257-6264.

 

  1. Pitt, W. G.; Husseini, G. A.; Staples, B. J. Ultrasonic drug delivery--a general review. Expert Opin Drug Deliv. 2004, 1, 37-56.

 

  1. Nakonechny, F.; Nisnevitch, M. Different aspects of using ultrasound to combat microorganisms. Adv Funct Mater. 2021, 31, 2011042.

 

  1. Peng, H.; Yao, F.; Zhao, J.; Zhang, W.; Chen, L.; Wang, X.; Yang, P.; Tang, J.; Chi, Y. Unraveling mitochondria-targeting reactive oxygen species modulation and their implementations in cancer therapy by nanomaterials. Exploration (Beijing). 2023, 3, 20220115.

 

  1. Jana, D.; Zhao, Y. Strategies for enhancing cancer chemodynamic therapy performance. Exploration (Beijing). 2022, 2, 20210238.

 

  1. Wu, M.; Zhang, Z.; Liu, Z.; Zhang, J.; Zhang, Y.; Ding, Y.; Huang, T.; Xiang, D.; Wang, Z.; Dai, Y.; Wan, X.; Wang, S.; Qian, H.; Sun, Q.; Li, L. Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing. Nano Today. 2021, 37, 101104.

 

  1. Grosso, V.; Duco, W.; Soltermann., A. T. Physical and chemical bases for the use of artemisinin as a sonosensitizer for SDT treatments. Pharm Sci Biomed Anal J. 2019, 2, 116.

 

  1. Wang, G.; Wu, W.; Zhu, J. J.; Peng, D. The promise of low-intensity ultrasound: a review on sonosensitizers and sonocatalysts by ultrasonic activation for bacterial killing. Ultrason Sonochem. 2021, 79, 105781.

 

  1. Tran, K. V.; Kimura, T.; Kondo, T.; Koda, S. Quantification of frequency dependence of mechanical effects induced by ultrasound. Ultrason Sonochem. 2014, 21, 716-721.

 

  1. Li, C.; Teng, F.; Wu, F.; Zhang, H.; Zhang, C.; Zhang, D. Enhanced cavitation dose and reactive oxygen species production in microbubble-mediated sonodynamic therapy for inhibition of Escherichia coli and biofilm. Ultrason Sonochem. 2024, 105, 106853.

 

  1. Fan, L.; Idris Muhammad, A.; Bilyaminu Ismail, B.; Liu, D. Sonodynamic antimicrobial chemotherapy: an emerging alternative strategy for microbial inactivation. Ultrason Sonochem. 2021, 75, 105591.

 

  1. Araújo Martins, Y.; Zeferino Pavan, T.; Fonseca Vianna Lopez, R. Sonodynamic therapy: ultrasound parameters and in vitro experimental configurations. Int J Pharm. 2021, 610, 121243.

 

  1. Yang, Y.; Wang, X.; Qian, H.; Cheng, L. Titanium-based sonosensitizers for sonodynamic cancer therapy. Appl Mater Today. 2021, 25, 101215.

 

  1. Xing, X.; Zhao, S.; Xu, T.; Huang, L.; Zhang, Y.; Lan, M.; Lin, C.; Zheng, X.; Wang, P. Advances and perspectives in organic sonosensitizers for sonodynamic therapy. Coord Chem Rev. 2021, 445, 214087.

 

  1. Gong, Z.; Dai, Z. Design and challenges of sonodynamic therapy system for cancer theranostics: from equipment to sensitizers. Adv Sci (Weinh). 2021, 8, 2002178.

 

  1. Harris, F.; Dennison, S. R.; Phoenix, D. A. Sounding the death knell for microbes? Trends Mol Med. 2014, 20, 363-367.

 

  1. Hu, T.; Shen, W.; Meng, F.; Yang, S.; Yu, S.; Li, H.; Zhang, Q.; Gu, L.; Tan, C.; Liang, R. Boosting the sonodynamic cancer therapy performance of 2D layered double hydroxide nanosheet-based sonosensitizers via crystalline-to-amorphous phase transformation. Adv Mater. 2023, 35, e2209692.

 

  1. Cao, X.; Li, M.; Liu, Q.; Zhao, J.; Lu, X.; Wang, J. Inorganic sonosensitizers for sonodynamic therapy in cancer treatment. 2023, 19, e2303195.

 

  1. Hong, Y.; Zeng, J.; Wang, X.; Drlica, K.; Zhao, X. Post-stress bacterial cell death mediated by reactive oxygen species. Proc Natl Acad Sci U S A. 2019, 116, 10064-10071.

 

  1. Imlay, J. A. Pathways of oxidative damage. Annu Rev Microbiol. 2003, 57, 395-418.

 

  1. Rahman, M. M.; Ninomiya, K.; Ogino, C.; Shimizu, N. Ultrasound-induced membrane lipid peroxidation and cell damage of Escherichia coli in the presence of non-woven TiO2 fabrics. Ultrason Sonochem. 2010, 17, 738-743.

 

  1. Sun, D.; Pang, X.; Cheng, Y.; Ming, J.; Xiang, S.; Zhang, C.; Lv, P.; Chu, C.; Chen, X.; Liu, G.; Zheng, N. Ultrasound-switchable nanozyme augments sonodynamic therapy against multidrug-resistant bacterial infection. ACS Nano. 2020, 14, 2063-2076.

 

  1. LuTheryn, G.; Glynne-Jones, P.; Webb, J. S.; Carugo, D. Ultrasound-mediated therapies for the treatment of biofilms in chronic wounds: a review of present knowledge. Microb Biotechnol. 2020, 13, 613-628.

 

  1. Lin, X.; Song, J.; Chen, X.; Yang, H. Ultrasound-activated sensitizers and applications. Angew Chem Int Ed Engl. 2020, 59, 14212-14233.

 

  1. Cui, X.; Zhang, Z.; Yang, Y.; Li, S.; Lee, C. S. Organic radical materials in biomedical applications: State of the art and perspectives. Exploration (Beijing). 2022, 2, 20210264.

 

  1. Zhang, Y.; Zhang, H.; Zhuang, D.; Bi, L.; Hu, Z.; Cao, W. Hematoporphyrin monomethyl ether mediated sonodynamic antimicrobial chemotherapy on porphyromonas gingivalis in vitro. Microb Pathog. 2020, 144, 104192.

 

  1. Guo, J.; Xu, Y.; Liu, M.; Yu, J.; Yang, H.; Lei, W.; Huang, C. An MSN-based synergistic nanoplatform for root canal biofilm eradication via Fenton-enhanced sonodynamic therapy. J Mater Chem B. 2021, 9, 7686-7697.

 

  1. Yu, Y.; Tan, L.; Li, Z.; Liu, X.; Zheng, Y.; Feng, X.; Liang, Y.; Cui, Z.; Zhu, S.; Wu, S. Single-atom catalysis for efficient sonodynamic therapy of methicillin-resistant Staphylococcus aureus-infected osteomyelitis. ACS Nano. 2021, 15, 10628-10639.

 

  1. Geng, X.; Chen, Y.; Chen, Z.; Wei, X.; Dai, Y.; Yuan, Z. Oxygen-carrying biomimetic nanoplatform for sonodynamic killing of bacteria and treatment of infection diseases. Ultrason Sonochem. 2022, 84, 105972.

 

  1. Zhao, Y.; Hu, M.; Zhang, Y.; Liu, J.; Liu, C.; Choi, S. K.; Zhang, Z.; Song, L. Multifunctional therapeutic strategy of Ag-synergized dual-modality upconversion nanoparticles to achieve the rapid and sustained cidality of methicillin-resistant Staphylococcus aureus. Chem Eng J. 2020, 385, 123980.

 

  1. Liu, H.; Li, J.; Liu, X.; Li, Z.; Zhang, Y.; Liang, Y.; Zheng, Y.; Zhu, S.; Cui, Z.; Wu, S. Photo-sono interfacial engineering exciting the intrinsic property of herbal nanomedicine for rapid broad-spectrum bacteria killing. ACS Nano. 2021, 15, 18505-18519.

 

  1. Wang, R.; Song, C.; Gao, A.; Liu, Q.; Guan, W.; Mei, J.; Ma, L.; Cui, D. Antibody-conjugated liposomes loaded with indocyanine green for oral targeted photoacoustic imaging-guided sonodynamic therapy of Helicobacter pylori infection. Acta Biomater. 2022, 143, 418-427.

 

  1. Liang, S.; Deng, X.; Ma, P.; Cheng, Z.; Lin, J. Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy. Adv Mater. 2020, 32, e2003214.

 

  1. You, D. G.; Deepagan, V. G.; Um, W.; Jeon, S.; Son, S.; Chang, H.; Yoon, H. I.; Cho, Y. W.; Swierczewska, M.; Lee, S.; Pomper, M. G.; Kwon, I. C.; Kim, K.; Park, J. H. ROS-generating TiO2 nanoparticles for non-invasive sonodynamic therapy of cancer. Sci Rep. 2016, 6, 23200.

 

  1. Liu, Y.; Wang, Y.; Zhen, W.; Wang, Y.; Zhang, S.; Zhao, Y.; Song, S.; Wu, Z.; Zhang, H. Defect modified zinc oxide with augmenting sonodynamic reactive oxygen species generation. 2020, 251, 120075.

 

  1. Zhu, P.; Chen, Y.; Shi, J. Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO(3) -mediated piezoelectricity. Adv Mater. 2020, 32, e2001976.

 

  1. Gong, F.; Cheng, L.; Yang, N.; Betzer, O.; Feng, L.; Zhou, Q.; Li, Y.; Chen, R.; Popovtzer, R.; Liu, Z. Ultrasmall oxygen-deficient bimetallic oxide MnWO(X) nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy. Adv Mater. 2019, 31, e1900730.

 

  1. Fu, S.; Yang, R.; Ren, J.; Liu, J.; Zhang, L.; Xu, Z.; Kang, Y.; Xue, P. Catalytically active CoFe(2)O(4) nanoflowers for augmented sonodynamic and chemodynamic combination therapy with elicitation of robust immune response. ACS Nano. 2021, 15, 11953-11969.

 

  1. Yamaguchi, S.; Kobayashi, H.; Narita, T.; Kanehira, K.; Sonezaki, S.; Kudo, N.; Kubota, Y.; Terasaka, S.; Houkin, K. Sonodynamic therapy using water-dispersed TiO2-polyethylene glycol compound on glioma cells: comparison of cytotoxic mechanism with photodynamic therapy. Ultrason Sonochem. 2011, 18, 1197-1204.

 

  1. Xu, M.; Zhou, L.; Zheng, L.; Zhou, Q.; Liu, K.; Mao, Y.; Song, S. Sonodynamic therapy-derived multimodal synergistic cancer therapy. Cancer Lett. 2021, 497, 229-242.

 

  1. Su, K.; Tan, L.; Liu, X.; Cui, Z.; Zheng, Y.; Li, B.; Han, Y.; Li, Z.; Zhu, S.; Liang, Y.; Feng, X.; Wang, X.; Wu, S. Rapid photo-sonotherapy for clinical treatment of bacterial infected bone implants by creating oxygen deficiency using sulfur doping. ACS Nano. 2020, 14, 2077-2089.

 

  1. Han, X.; Huang, J.; Jing, X.; Yang, D.; Lin, H.; Wang, Z.; Li, P.; Chen, Y. Oxygen-deficient black titania for synergistic/enhanced sonodynamic and photoinduced cancer therapy at near infrared-II biowindow. ACS Nano. 2018, 12, 4545-4555.

 

  1. Pan, X.; Wu, N.; Tian, S.; Guo, J.; Wang, C.; Sun, Y.; Huang, Z.; Chen, F.; Wu, Q.; Jing, Y.; Yin, Z.; Zhao, B.; Xiong, X.; Liu, H.; Zhou, D. Inhalable MOF-derived nanoparticles for sonodynamic therapy of bacterial pneumonia. Adv Funct Mater. 2022, 32, 2112145.

 

  1. Lei, J.; Wang, C.; Feng, X.; Ma, L.; Liu, X.; Luo, Y.; Tan, L.; Wu, S.; Yang, C. Sulfur-regulated defect engineering for enhanced ultrasonic piezocatalytic therapy of bacteria-infected bone defects. Chem Eng J. 2022, 435, 134624.

 

  1. Yang, L. F.; Chu, D. Q.; Wang, L. M.; Ge, G.; Sun, H. L. Microemulsion-mediated synthesis of sedum rubrotinctum shaped Cu2O architecture with efficient sunlight driven photocatalytic activity. RSC Adv. 2016, 6, 960-966.

 

  1. Zhu, Y.; Hong, W.; Liu, X.; Tan, L.; Wu, J.; Mao, C.; Xiang, Y.; Wu, S.; Cheung, K. M. C.; Yeung, K. W. K. Rapid bacterial elimination achieved by sonodynamic Au@Cu(2)O hybrid nanocubes. 2021, 13, 15699-15710.

 

  1. Feng, X.; Ma, L.; Lei, J.; Ouyang, Q.; Zeng, Y.; Luo, Y.; Zhang, X.; Song, Y.; Li, G.; Tan, L.; Liu, X.; Yang, C. Piezo-augmented sonosensitizer with strong ultrasound-propelling ability for efficient treatment of osteomyelitis. ACS Nano. 2022, 16, 2546-2557.

 

  1. Yu, J.; Guo, Z.; Yan, J.; Bu, C.; Peng, C.; Li, C.; Mao, R.; Zhang, J.; Wang, Z.; Chen, S.; Yao, M.; Xie, Z.; Yang, C.; Yang, Y. Y.; Yuan, P.; Ding, X. Gastric acid-responsive ROS nanogenerators for effective treatment of helicobacter pylori infection without disrupting homeostasis of intestinal flora. Adv Sci (Weinh). 2023, 10, e2206957.

 

  1. He, D.; Wang, W.; Feng, N.; Zhang, Z.; Zhou, D.; Zhang, J.; Luo, H.; Li, Y.; Chen, X.; Wu, J. Defect-modified nano-BaTiO(3) as a sonosensitizer for rapid and high-efficiency sonodynamic sterilization. ACS Appl Mater Interfaces. 2023, 15, 15140-15151.

 

  1. Huang, J.; Hong, X.; Chen, S.; He, Y.; Xie, L.; Gao, F.; Zhu, C.; Jin, X.; Yan, H.; Ye, Y.; Shao, M.; Du, X.; Feng, G. Biomimetic metal-organic framework gated nanoplatform for sonodynamic therapy against extensively drug resistant bacterial lung infection. Adv Sci (Weinh). 2024, 11, e2402473.

 

  1. Pan, P.; Yue, Q.; Li, J.; Gao, M.; Yang, X.; Ren, Y.; Cheng, X.; Cui, P.; Deng, Y. Smart cargo delivery system based on mesoporous nanoparticles for bone disease diagnosis and treatment. Adv Sci (Weinh). 2021, 8, e2004586.

 

  1. O’Connor, A.; Furuta, T.; Gisbert, J. P.; O’Morain, C. Review - Treatment of helicobacter pylori infection 2020. 2020, 25 Suppl 1, e12743.

 

  1. Ghomi, E. R.; Lakshminarayanan, R.; Chellappan, V.; Verma, N. K.; Chinnappan, A.; Neisiany, R. E.; Amuthavalli, K.; Poh, Z. S.; Wong, B. H. S.; Dubey, N.; Narayan, R.; Ramakrishna, S. Electrospun aligned PCL/gelatin scaffolds mimicking the skin ECM for effective antimicrobial wound dressings. Adv Fiber Mater. 2023, 5, 235-251.

 

  1. Zhang, J.; Guo, H.; Liu, M.; Tang, K.; Li, S.; Fang, Q.; Du, H.; Zhou, X.; Lin, X.; Yang, Y.; Huang, B.; Yang, D. Recent design strategies for boosting chemodynamic therapy of bacterial infections. Exploration (Beijing). 2024, 4, 20230087.

 

  1. Wang, R.; Liu, Q.; Gao, A.; Tang, N.; Zhang, Q.; Zhang, A.; Cui, D. Recent developments of sonodynamic therapy in antibacterial application. 2022, 14, 12999-13017.
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Share
Back to top