·
ORIGINAL RESEARCH
·

Global trends on exosomes in spinal cord injury: a bibliometric analysis and mini-review

Jinxiang Shang1# Hangyang Xu2# Lu Xie3 He Lv4 Fei Wang5 Cong Jin5 Wenqing Liang6 Songou Zhang7*
Show Less
1 Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang Province, China
2 Department of Orthopedics, Zhuji People’s Hospital of Zhejiang Province, Shaoxing, Zhejiang Province, China
3 Department of Orthopedics, Shaoxing Sports School, Shaoxing, Zhejiang Province, China
4 Graduate School of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
5 Department of Orthopedics, Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, China
6 Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhoushan, Zhejiang Province, China
7 Department of Orthopedics, Ningbo University School of Medicine, Ningbo, Zhejiang Province, China
BMT 2025 , 6(2), 151–164; https://doi.org/10.12336/bmt.24.00004
Submitted: 24 January 2024 | Revised: 4 March 2024 | Accepted: 30 May 2024 | Published: 20 June 2025
Copyright © 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Spinal cord injury (SCI) is recognised as a debilitating condition that often leads to considerable disability and functional limitations. Exosomes, which can be derived from various cell types including bone marrow mesenchymal stem cells, adipose-derived stem cells, dental pulp stem cells, and macrophages, play a pivotal role in the post- SCI landscape. Collectively, it has been observed that these exosomes can modulate the immune response following SCI, regulate the inflammatory environment, inhibit secondary tissue damage, and support neuronal survival and axonal regrowth. However, it is noted that exosomes from different sources exhibit distinct characteristics. Therefore, it is deemed essential to gain a comprehensive understanding of the current knowledge and research directions regarding exosomes in SCI to foster the development of effective therapeutic interventions. In this bibliometric analysis, we conducted to search retrieve pertinent articles from the Web of Science Core Collection and identify pivotal publications, authors, institutions, countries, and keywords that have contributed significantly to the field. This bibliometric analysis offers a thorough examination of the present knowledge landscape and prevailing research trends pertaining to exosomes in the context of SCI. It acts as a valuable asset, catering not only to researchers but also to clinicians and policymakers engaged in research on SCI and therapeutic advancement. Ultimately, this knowledge mapping can advance our understanding of exosome biology and pave the way for innovative interventions to improve outcomes for individuals affected by SCI. 

Keywords
Bibliometric analysis
Dental pulp stem cells
Exosomes
Extracellular vesicle
Spinal cord injury
Funding
This study was supported by Zhejiang Provincial Department of Health Project (Nos. 2022KY1313 and 2022KY1288), Zhejiang Provincial Department of Science and Technology Project (Nos. Y202351225 and Y202145976), Shaoxing Science and Technology Plan Project (No. 2020A13011), and Shaoxing University Undergraduate Research Program (No. 2022LG014).
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

  1. Hu, X.; Xu, W.; Ren, Y.; Wang, Z.; He, X.; Huang, R.; Ma, B.; Zhao, J.; Zhu, R.; Cheng, L. Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2023, 8, 245.

 

  1. Ren, J.; Zhu, B.; Gu, G.; Zhang, W.; Li, J.; Wang, H.; Wang, M.; Song, X.; Wei, Z.; Feng, S. Schwann cell-derived exosomes containing MFG-E8 modify macrophage/microglial polarization for attenuating inflammation via the SOCS3/STAT3 pathway after spinal cord injury. Cell Death Dis. 2023, 14, 70.

 

  1. Yuan, F.; Zhou, Z. F. Exosomes derived from Taxol-resistant nasopharyngeal carcinoma (NPC) cells transferred DDX53 to NPC cells and promoted cancer resistance to Taxol. Eur Rev Med Pharmacol Sci. 2021, 25, 127-138.

 

  1. Liu, W.; Wang, Y.; Gong, F.; Rong, Y.; Luo, Y.; Tang, P.; Zhou, Z.; Zhou, Z.; Xu, T.; Jiang, T.; Yang, S.; Yin, G.; Chen, J.; Fan, J.; Cai, W. Exosomes derived from bone mesenchymal stem cells repair traumatic spinal cord injury by suppressing the activation of A1 neurotoxic reactive astrocytes. J Neurotrauma. 2019, 36, 469-484.

 

  1. Kigerl, K. A.; Gensel, J. C.; Ankeny, D. P.; Alexander, J. K.; Donnelly, D. J.; Popovich, P. G. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci. 2009, 29, 13435-13444.

 

  1. Huang, J. H.; Yin, X. M.; Xu, Y.; Xu, C. C.; Lin, X.; Ye, F. B.; Cao, Y.; Lin, F. Y. Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats. J Neurotrauma. 2017, 34, 3388-3396.

 

  1. Sun, G.; Li, G.; Li, D.; Huang, W.; Zhang, R.; Zhang, H.; Duan, Y.; Wang, B. hucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation. Mater Sci Eng C Mater Biol Appl. 2018, 89, 194-204.

 

  1. Liu, W.; Rong, Y.; Wang, J.; Zhou, Z.; Ge, X.; Ji, C.; Jiang, D.; Gong, F.; Li, L.; Chen, J.; Zhao, S.; Kong, F.; Gu, C.; Fan, J.; Cai, W. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization. J Neuroinflammation. 2020, 17, 47.

 

  1. Li, L.; Zhang, Y.; Mu, J.; Chen, J.; Zhang, C.; Cao, H.; Gao, J. Transplantation of human mesenchymal stem-cell-derived exosomes immobilized in an adhesive hydrogel for effective treatment of spinal cord injury. Nano Lett. 2020, 20, 4298-4305.

 

  1. Li, D.; Zhang, P.; Yao, X.; Li, H.; Shen, H.; Li, X.; Wu, J.; Lu, X. Exosomes derived from miR-133b-modified mesenchymal stem cells promote recovery after spinal cord injury. Front Neurosci. 2018, 12, 845.

 

  1. Kalluri, R.; LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science. 2020, 367, eaau6977.

 

  1. Lankford KL, Arroyo EJ, Nazimek K, Bryniarski K, Askenase PW, Kocsis JD (2018) Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord. PLoS One 13:e0190358.

 

  1. Xie, Y.; Sun, Y.; Liu, Y.; Zhao, J.; Liu, Q.; Xu, J.; Qin, Y.; He, R.; Yuan, F.; Wu, T.; Duan, C.; Jiang, L.; Lu, H.; Hu, J. Targeted delivery of RGD-CD146(+)CD271(+) human umbilical cord mesenchymal stem cell-derived exosomes promotes blood-spinal cord barrier repair after spinal cord injury. ACS Nano. 2023, 17, 18008-18024.

 

  1. Giovannelli, L.; Bari, E.; Jommi, C.; Tartara, F.; Armocida, D.; Garbossa, D.; Cofano, F.; Torre, M. L.; Segale, L. Mesenchymal stem cell secretome and extracellular vesicles for neurodegenerative diseases: risk-benefit profile and next steps for the market access. Bioact Mater. 2023, 29, 16-35.

 

  1. Mousavi, S. M.; Hosseindoost, S.; Mahdian, S. M. A.; Vousooghi, N.; Rajabi, A.; Jafari, A.; Ostadian, A.; Hamblin, M. R.; Hadjighassem, M.; Mirzaei, H. Exosomes released from U87 glioma cells treated with curcumin and/or temozolomide produce apoptosis in naive U87 cells. Pathol Res Pract. 2023, 245, 154427.

 

  1. Lu, Y.; Zhou, Y.; Zhang, R.; Wen, L.; Wu, K.; Li, Y.; Yao, Y.; Duan, R.; Jia, Y. Bone mesenchymal stem cell-derived extracellular vesicles promote recovery following spinal cord injury via improvement of the integrity of the blood-spinal cord barrier. Front Neurosci. 2019, 13, 209.

 

  1. Gu, J.; Jin, Z. S.; Wang, C. M.; Yan, X. F.; Mao, Y. Q.; Chen, S. Bone marrow mesenchymal stem cell-derived exosomes improves spinal cord function after injury in rats by activating autophagy. Drug Des Devel Ther. 2020, 14, 1621-1631.

 

  1. Gao, Z. S.; Zhang, C. J.; Xia, N.; Tian, H.; Li, D. Y.; Lin, J. Q.; Mei, X. F.; Wu, C. Berberine-loaded M2 macrophage-derived exosomes for spinal cord injury therapy. Acta Biomater. 2021, 126, 211-223.

 

  1. Liang, Z. Y.; Xu, X. J.; Rao, J.; Yang, Z. L.; Wang, C. H.; Chen, C. M. Mesenchymal stem cell-derived exosomal miRNAs promote M2 macrophages polarization: therapeutic opportunities for spinal cord injury. Front Mol Neurosci. 2022, 15, 926928.

 

  1. Chang, Q.; Hao, Y.; Wang, Y.; Zhou, Y.; Zhuo, H.; Zhao, G. Bone marrow mesenchymal stem cell-derived exosomal microRNA-125a promotes M2 macrophage polarization in spinal cord injury by downregulating IRF5. Brain Res Bull. 2021, 170, 199-210.

 

  1. Li, R.; Zhao, K.; Ruan, Q.; Meng, C.; Yin, F. Bone marrow mesenchymal stem cell-derived exosomal microRNA-124-3p attenuates neurological damage in spinal cord ischemia-reperfusion injury by downregulating Ern1 and promoting M2 macrophage polarization. Arthritis Res Ther. 2020, 22, 75.

 

  1. Chen, Y.; Tian, Z.; He, L.; Liu, C.; Wang, N.; Rong, L.; Liu, B. Exosomes derived from miR-26a-modified MSCs promote axonal regeneration via the PTEN/AKT/mTOR pathway following spinal cord injury. Stem Cell Res Ther. 2021, 12, 224.

 

  1. Shu, J.; Wang, C.; Tao, Y.; Wang, S.; Cheng, F.; Zhang, Y.; Shi, K.; Xia, K.; Wang, R.; Wang, J.; Yu, C.; Chen, J.; Huang, X.; Xu, H.; Zhou, X.; Wu, H.; Liang, C.; Chen, Q.; Yan, S.; Li, F. Thermosensitive hydrogel-based GPR124 delivery strategy for rebuilding blood-spinal cord barrier. Bioeng Transl Med. 2023, 8, e10561.

 

  1. Ge, X.; Tang, P.; Rong, Y.; Jiang, D.; Lu, X.; Ji, C.; Wang, J.; Huang, C.; Duan, A.; Liu, Y.; Chen, X.; Chen, X.; Xu, Z.; Wang, F.; Wang, Z.; Li, X.; Zhao, W.; Fan, J.; Liu, W.; Yin, G.; Cai, W. Exosomal miR- 155 from M1-polarized macrophages promotes EndoMT and impairs mitochondrial function via activating NF-κB signaling pathway in vascular endothelial cells after traumatic spinal cord injury. Redox Biol. 2021, 41, 101932.

 

  1. Nie, H.; Jiang, Z. Bone mesenchymal stem cell-derived extracellular vesicles deliver microRNA-23b to alleviate spinal cord injury by targeting toll-like receptor TLR4 and inhibiting NF-κB pathway activation. Bioengineered. 2021, 12, 8157-8172.

 

  1. Yamagami, T.; Pleasure, D. E.; Lam, K. S.; Zhou, C. J. Transient activation of Wnt/β-catenin signaling reporter in fibrotic scar formation after compression spinal cord injury in adult mice. Biochem Biophys Res Commun. 2018, 496, 1302-1307.

 

  1. Zhao, C.; Zhou, X.; Qiu, J.; Xin, D.; Li, T.; Chu, X.; Yuan, H.; Wang, H.; Wang, Z.; Wang, D. Exosomes derived from bone marrow mesenchymal stem cells inhibit complement activation in rats with spinal cord injury. Drug Des Devel Ther. 2019, 13, 3693-3704.

 

  1. Cheng, J.; Chen, Z.; Liu, C.; Zhong, M.; Wang, S.; Sun, Y.; Wen, H.; Shu, T. Bone mesenchymal stem cell-derived exosome-loaded injectable hydrogel for minimally invasive treatment of spinal cord injury. Nanomedicine (Lond). 2021, 16, 1567-1579.

 

  1. Liang, Y.; Wu, J. H.; Zhu, J. H.; Yang, H. Exosomes secreted by hypoxia-pre-conditioned adipose-derived mesenchymal stem cells reduce neuronal apoptosis in rats with spinal cord injury. J Neurotrauma. 2022, 39, 701-714.

 

  1. Shao, M.; Jin, M.; Xu, S.; Zheng, C.; Zhu, W.; Ma, X.; Lv, F. Exosomes from long noncoding RNA-Gm37494-ADSCs repair spinal cord injury via shifting microglial M1/M2 polarization. Inflammation. 2020, 43, 1536-1547.

 

  1. Ren, Z. W.; Zhou, J. G.; Xiong, Z. K.; Zhu, F. Z.; Guo, X. D. Effect of exosomes derived from MiR-133b-modified ADSCs on the recovery of neurological function after SCI. Eur Rev Med Pharmacol Sci. 2019, 23, 52-60.

 

  1. Dama, G.; Hu, X.; Yan, Y.; Li, Y.; Li, H.; Yang, F.; Liu, Y.; Lin, J. Identification and protective role of CD34(+) stromal cells/telocytes in experimental autoimmune encephalomyelitis (EAE) mouse spleen. Histochem Cell Biol. 2023, 160, 11-25.

 

  1. Huang, T.; Jia, Z.; Fang, L.; Cheng, Z.; Qian, J.; Xiong, F.; Tian, F.; He, X. Extracellular vesicle-derived miR-511-3p from hypoxia preconditioned adipose mesenchymal stem cells ameliorates spinal cord injury through the TRAF6/S1P axis. Brain Res Bull. 2022, 180, 73-85.

 

  1. Zhou, Y.; Zhao, B.; Zhang, X. L.; Lu, Y. J.; Lu, S. T.; Cheng, J.; Fu, Y.; Lin, L.; Zhang, N. Y.; Li, P. X.; Zhang, J.; Zhang, J. Combined topical and systemic administration with human adipose-derived mesenchymal stem cells (hADSC) and hADSC-derived exosomes markedly promoted cutaneous wound healing and regeneration. Stem Cell Res Ther. 2021, 12, 257.

 

  1. Zhou, Y.; Zhang, X. L.; Lu, S. T.; Zhang, N. Y.; Zhang, H. J.; Zhang, J.; Zhang, J. Human adipose-derived mesenchymal stem cells-derived exosomes encapsulated in pluronic F127 hydrogel promote wound healing and regeneration. Stem Cell Res Ther. 2022, 13, 407.

 

  1. Liu, C.; Hu, F.; Jiao, G.; Guo, Y.; Zhou, P.; Zhang, Y.; Zhang, Z.; Yi, J.; You, Y.; Li, Z.; Wang, H.; Zhang, X. Dental pulp stem cell-derived exosomes suppress M1 macrophage polarization through the ROS-MAPK-NFκB P65 signaling pathway after spinal cord injury. J Nanobiotechnology. 2022, 20, 65.

 

  1. Fan, X. L.; Zhang, Y.; Li, X.; Fu, Q. L. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell Mol Life Sci. 2020, 77, 2771-2794.

 

  1. Andjus, P.; Kosanović, M.; Milićević, K.; Gautam, M.; Vainio, S. J.; Jagečić, D.; Kozlova, E. N.; Pivoriūnas, A.; Chachques, J. C.; Sakaj, M.; Brunello, G.; Mitrecic, D.; Zavan, B. Extracellular vesicles as innovative tool for diagnosis, regeneration and protection against neurological damage. Int J Mol Sci. 2020, 21, 6859.

 

  1. Gugliandolo, A.; Mazzon, E. Dental mesenchymal stem cell secretome: an intriguing approach for neuroprotection and neuroregeneration. Int J Mol Sci. 2021, 23, 456.

 

  1. Peng, P.; Yu, H.; Xing, C.; Tao, B.; Li, C.; Huang, J.; Ning, G.; Zhang, B.; Feng, S. Exosomes-mediated phenotypic switch of macrophages in the immune microenvironment after spinal cord injury. Biomed Pharmacother. 2021, 144, 112311.

 

  1. Yuan, F.; Peng, W.; Yang, Y.; Xu, J.; Liu, Y.; Xie, Y.; Huang, T.; Shi, C.; Ding, Y.; Li, C.; Qin, T.; Xie, S.; Zhu, F.; Lu, H.; Huang, J.; Hu, J. Endothelial progenitor cell-derived exosomes promote anti-inflammatory macrophages via SOCS3/JAK2/STAT3 axis and improve the outcome of spinal cord injury. J Neuroinflammation. 2023, 20, 156.

 

  1. Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S. A.; Mardani, F.; Seifi, B.; Mohammadi, A.; Afshari, J. T.; Sahebkar, A. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018, 233, 6425-6440.

 

  1. Kim, J. S.; Kolesnikov, M.; Peled-Hajaj, S.; Scheyltjens, I.; Xia, Y.; Trzebanski, S.; Haimon, Z.; Shemer, A.; Lubart, A.; Van Hove, H.; Chappell-Maor, L.; Boura-Halfon, S.; Movahedi, K.; Blinder, P.; Jung, S. A binary cre transgenic approach dissects microglia and CNS border-associated macrophages. Immunity. 2021, 54, 176-190.e7.

 

  1. Aguzzi, A.; Barres, B. A.; Bennett, M. L. Microglia: scapegoat, saboteur, or something else? Science. 2013, 339, 156-161.

 

  1. Li, C.; Qin, T.; Liu, Y.; Wen, H.; Zhao, J.; Luo, Z.; Peng, W.; Lu, H.; Duan, C.; Cao, Y.; Hu, J. Microglia-derived exosomal microRNA-151-3p enhances functional healing after spinal cord injury by attenuating neuronal apoptosis via regulating the p53/p21/CDK1 signaling pathway. Front Cell Dev Biol. 2021, 9, 783017.

 

  1. Rong, Y.; Ji, C.; Wang, Z.; Ge, X.; Wang, J.; Ye, W.; Tang, P.; Jiang, D.; Fan, J.; Yin, G.; Liu, W.; Cai, W. Small extracellular vesicles encapsulating CCL2 from activated astrocytes induce microglial activation and neuronal apoptosis after traumatic spinal cord injury. J Neuroinflammation. 2021, 18, 196.

 

  1. Zhang, M.; Wang, L.; Huang, S.; He, X. Exosomes with high level of miR-181c from bone marrow-derived mesenchymal stem cells inhibit inflammation and apoptosis to alleviate spinal cord injury. J Mol Histol. 2021, 52, 301-311.
Conflict of interest
The authors declare that they have no corporate or financial affiliations that could be interpreted as a potential conflict of interest.
Share
Back to top