Milk protein-based hydrogels: development and biomedical applications
Hydrogels are an advanced class of biomaterials with similar properties to living tissues. Several polymers have been investigated for the preparation of hydrogels that closely mimic the structural and functional properties of the extracellular matrix. Proteins with easily modifiable functional groups, specific biochemical effects, and sensitivity to external stimuli are promising candidates for the preparation of hydrogels for biomedical applications. Among them, natural milk proteins, due to their high yield, high-quality control, low cost, and certain biological properties, have become a major focus of research. However, there is a lack of comprehensive reviews focusing specifically on milk protein-based hydrogels. Here, we synthesise the developments in milk protein-based hydrogels, focusing primarily on hydrogels derived from milk proteins. We described the methods used to construct milk protein-based hydrogels and summarised advances in representative applications of milk protein-based hydrogels, such as controlled delivery and regenerative medicine, as well as related preclinical animal experiments and an exploratory clinical pilot study. Finally, we discuss the prospects of milk protein-based hydrogels in biomedical applications. We anticipate that this review will serve as a theoretical basis for the biomedical use of milk proteins and provide a reference for their continued development.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
- Han X, Alu A, Liu H, et al. Biomaterial-assisted biotherapy: A brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioact Mater. 2022;17:29-48. doi: 10.1016/j.bioactmat.2022.01.011
- Han S, Fisher JP, Mikos AG, Hogan KJ. Polymeric nanomaterials in 3D bioprinting for tissue engineering and drug delivery applications. Bioprinting. 2024;40:e00345. doi: 10.1016/j.bprint.2024.e00345
- Baumfeld D, Baumfeld T, Rezende RF, Lemos AV, Nery C. Corin ankle arthroplasty: Case-series. Foot Ankle Surg. 2022;28:745-749. doi: 10.1016/j.fas.2021.09.004
- Guo WY, Wang WH, Xu PY, Kankala RK, Chen AZ. Decellularised extracellular matrix-based injectable hydrogels for tissue engineering applications. Biomater Transl. 2024;5:114-128. doi: 10.12336/biomatertransl.2024.02.003
- He J, Sun Y, Gao Q, et al. Gelatin methacryloyl hydrogel, from standardization, performance, to biomedical application. Adv Healthc Mater. 2023;12:e2300395. doi: 10.1002/adhm.202300395
- Shou Y, Le Z, Cheng HS, et al. Mechano-activated cell therapy for accelerated diabetic wound healing. Adv Mater. 2023;35:e2304638. doi: 10.1002/adma.202304638
- Wancura M, Nkansah A, Robinson A, et al. PEG-based hydrogel coatings: Design tools for biomedical applications. Ann Biomed Eng. 2024;52:1804-1815. doi: 10.1007/s10439-023-03154-9
- Xeroudaki M, Rafat M, Moustardas P, et al. A double-crosslinked nanocellulose-reinforced dexamethasone-loaded collagen hydrogel for corneal application and sustained anti-inflammatory activity. Acta Biomater. 2023;172:234-248. doi: 10.1016/j.actbio.2023.10.020
- Nath PC, Debnath S, Sridhar K, Inbaraj BS, Nayak PK, Sharma M. A comprehensive review of food hydrogels: Principles, formation mechanisms, microstructure, and its applications. Gels. 2022;9;1. doi: 10.3390/gels9010001
- Wichterle O, Lím D. Hydrophilic gels for biological use. Nature. 1960;185:117-118. doi: 10.1038/185117a0
- Daly AC, Riley L, Segura T, Burdick JA. Hydrogel microparticles for biomedical applications. Nat Rev Mater. 2020;5:20-43. doi: 10.1038/s41578-019-0148-6
- Spicer CD. Hydrogel scaffolds for tissue engineering: The importance of polymer choice. Polym Chem. 2020;11:184-219. doi: 10.1039/C9PY01021A
- Correa S, Grosskopf AK, Lopez Hernandez H, et al. Translational applications of hydrogels. Chem Rev. 2021;121:11385-11457. doi: 10.1021/acs.chemrev.0c01177
- Fan Z, Cheng P, Zhang P, Zhang G, Han J. Rheological insight of polysaccharide/protein based hydrogels in recent food and biomedical fields: A review. Int J Biol Macromol. 2022;222:1642-1664. doi: 10.1016/j.ijbiomac.2022.10.082
- Soliman BG, Nguyen AK, Gooding JJ, Kilian KA. Advancing synthetic hydrogels through nature-inspired materials chemistry. Adv Mater. 2024;36:e2404235. doi: 10.1002/adma.202404235
- Malik B, Chawla R, Khatkar SK. Protein hydrogels: A concise review of properties and applications. Int J Pept Res Ther. 2023;29:94. doi: 10.1007/s10989-023-10567-6
- Dranseike D, Ota Y, Edwardson TG, et al. Designed modular protein hydrogels for biofabrication. Acta Biomater. 2024;177:107-117. doi: 10.1016/j.actbio.2024.02.019
- Zhang H, Kang L, Bhutto RA, Fan Y, Yi J. Formation of pea protein amyloid-like nanofibrils-derived hydrogels mediated by epigallocatechin gallate. Food Chem. 2024;459:140381. doi: 10.1016/j.foodchem.2024.140381
- Gupta MN, Uversky VN. Protein structure-function continuum model: Emerging nexuses between specificity, evolution, and structure. Protein Sci. 2024;33:e4968. doi: 10.1002/pro.4968
- Gondhalekar R, Kempes CP, McGlynn SE. Scaling of protein function across the tree of life. Genome Biol Evol. 2023;15:evad214. doi: 10.1093/gbe/evad214
- Genç H, Friedrich B, Alexiou C, Pietryga K, Cicha I, Douglas TEL. Endothelialization of whey protein isolate-based scaffolds for tissue regeneration. Molecules. 2023;28:7052. doi: 10.3390/molecules28207052
- Ben-Arye T, Shandalov Y, Ben-Shaul S, et al. Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nat Food. 2020;1:210-220. doi: 10.1038/s43016-020-0046-5
- Luo L, Zhang H, Zhang S, et al. Extracellular vesicle-derived silk fibroin nanoparticles loaded with MFGE8 accelerate skin ulcer healing by targeting the vascular endothelial cells. J Nanobiotechnology. 2023;21:455. doi: 10.1186/s12951-023-02185-7
- Sun L, Xu Y, Han Y, et al. Collagen-based hydrogels for cartilage regeneration. Orthop Surg. 2023;15:3026-3045. doi: 10.1111/os.13884
- Wei Z, Lei M, Wang Y, et al. Hydrogels with tunable mechanical plasticity regulate endothelial cell outgrowth in vasculogenesis and angiogenesis. Nat Commun. 2023;14:8307. doi: 10.1038/s41467-023-43768-0
- Wosicka-Frąckowiak H, Poniedziałek K, Woźny S, et al. Collagen and its derivatives servingV biomedical purposes: A review. Polymers (Basel). 2024;16:2668. doi: 10.3390/polym16182668
- Han X, Saengow C, Ju L, Ren W, Ewoldt RH, Irudayaraj J. Exosome-coated oxygen nanobubble-laden hydrogel augments intracellular delivery of exosomes for enhanced wound healing. Nat Commun. 2024;15:3435. doi: 10.1038/s41467-024-47696-5
- Liu L, Wang W, Huang L, et al. Injectable pathological microenvironment-responsive anti-inflammatory hydrogels for ameliorating intervertebral disc degeneration. Biomaterials. 2024;306:122509. doi: 10.1016/j.biomaterials.2024.122509
- Mohanto S, Narayana S, Merai KP, et al. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review. Int J Biol Macromol. 2023;253:127143. doi: 10.1016/j.ijbiomac.2023.127143
- Wei L, Li Y, Qiu X, et al. An underwater stable and durable gelatin composite hydrogel coating for biomedical applications. J Mater Chem B. 2023;11:11372-11383. doi: 10.1039/d3tb01817b
- Lujerdean C, Baci GM, Cucu AA, Dezmirean DS. The contribution of silk fibroin in biomedical engineering. Insects. 2022;13:286. doi: 10.3390/insects13030286
- Sahoo JK, Hasturk O, Falcucci T, Kaplan DL. Silk chemistry and biomedical material designs. Nat Rev Chem. 2023;7:302-318. doi: 10.1038/s41570-023-00486-x
- Wang T, Li Y, Liu J, et al. Intraarticularly injectable silk hydrogel microspheres with enhanced mechanical and structural stability to attenuate osteoarthritis. Biomaterials. 2022;286:121611. doi: 10.1016/j.biomaterials.2022.121611
- Kapoor S, Kundu SC. Silk protein-based hydrogels: Promising advanced materials for biomedical applications. Acta Biomater. 2016;31:17-32. doi: 10.1016/j.actbio.2015.11.034
- Hu L, Zhou J, He Z, et al. In situ-formed fibrin hydrogel scaffold loaded with human umbilical cord mesenchymal stem cells promotes skin wound healing. Cell Transplant. 2023;32:9636897231156215. doi: 10.1177/09636897231156215
- Lepsky VR, Natan S, Tchaicheeyan O, et al. FITC-dextran release from cell-embedded fibrin hydrogels. Biomolecules. 2021;11:337. doi: 10.3390/biom11020337
- Sanz-Horta R, Matesanz A, Gallardo A, et al. Technological advances in fibrin for tissue engineering. J Tissue Eng. 2023;14:20417314231190288. doi: 10.1177/20417314231190288
- Shaik R, Xu J, Wang Y, Hong Y, Zhang G. Fibrin-enriched cardiac extracellular matrix hydrogel promotes in vitro angiogenesis. ACS Biomater Sci Eng. 2023;9:877-888. doi: 10.1021/acsbiomaterials.2c01148
- Hu Z, Cao W, Shen L, et al. Scalable milk-derived whey protein hydrogel as an implantable biomaterial. ACS Appl Mater Interfaces. 2022;14:28501-28513. doi: 10.1186/s40824-023-00346-1
- Remondetto GE, Beyssac E, Subirade M. Iron availability from whey protein hydrogels: An in vitro study. J Agric Food Chem. 2004;52:8137-8143. doi: 10.1021/jf040286h
- Zhu Q, Zhou X, Zhang Y, et al. White-light crosslinkable milk protein bioadhesive with ultrafast gelation for first-aid wound treatment. Biomater Res. 2023;27:6. doi: 10.1186/s40824-023-00346-1
- Huang Y, Zhu Q, Zhu Y, et al. Rapid UV photo-cross-linking of α-lactalbumin hydrogel biomaterial to enable wound healing. ACS Omega. 2024;9:401-412. doi: 10.1021/acsomega.3c05793
- Broyard C, Gaucheron F. Modifications of structures and functions of caseins: A scientific and technological challenge. Dairy Sci Technol. 2015;95:831-862. doi: 10.1007/s13594-015-0220-y
- Brandelli A, Daroit DJ, Corrêa AP. Whey as a source of peptides with remarkable biological activities. Food Res Int. 2015;73:149-161. doi: 10.1016/j.foodres.2015.01.016
- Bielecka M, Cichosz G, Czeczot H. Antioxidant, antimicrobial and anticarcinogenic activities of bovine milk proteins and their hydrolysates - a review. Int Dairy J. 2022;127:105208. doi: 10.1016/j.idairyj.2021.105208
- Cui Q, Duan Y, Zhang M, et al. Peptide profiles and antioxidant capacity of extensive hydrolysates of milk protein concentrate. J Dairy Sci. 2022;105:7972-7985. doi: 10.3168/jds.2021-21496
- Wang B, Timilsena YP, Blanch E, Adhikari B. Lactoferrin: Structure, function, denaturation and digestion. Crit Rev Food Sci Nutr. 2019;59:580-596. doi: 10.1080/10408398.2017.1381583
- Groot F, Geijtenbeek TB, Sanders RW, et al. Lactoferrin prevents dendritic cell-mediated human immunodeficiency virus type 1 transmission by blocking the DC-SIGN--gp120 interaction. J Virol. 2005;79:3009-3015. doi: 10.1128/JVI.79.5.3009-3015.2005
- Bonuccelli G, Castello-Cros R, Capozza F, et al. The milk protein α-casein functions as a tumor suppressor via activation of STAT1 signaling, effectively preventing breast cancer tumor growth and metastasis. Cell Cycle. 2012;11:3972-3982. doi: 10.4161/cc.22227
- Kumar R, Vincy A, Rani K, et al. Facile synthesis of multifunctional carbon dots derived from camel milk for Mn(7+) sensing and antiamyloid and anticancer activities. ACS Omega. 2023;8:36521-36533. doi: 10.1021/acsomega.3c05485
- Dalavi PA, Prabhu A, Sajida M, Murugan SS, Jayachandran V. Casein-assisted exfoliation of tungsten disulfide nanosheets for biomedical applications. Colloids Surf B Biointerfaces. 2023;232:113595. doi: 10.1016/j.colsurfb.2023.113595
- Wang X, Chen C, Bao Y, Wang Y, Leonidovna Strakh Y. Encapsulation of three different types of polyphenols in casein using a customized pH-driven method: Preparation and characterization. Food Res Int. 2024;189:114547. doi: 10.1016/j.foodres.2024.114547
- Peniche H, Razonado IA, Alcouffe P, et al. Wet-spun chitosan-sodium caseinate fibers for biomedicine: From spinning process to physical properties. Int J Mol Sci. 2024;25:1768. doi: 10.3390/ijms25031768
- Charron PN, Tahir I, Foley C, White G, Floreani RA. Whey protein isolate composites as potential scaffolds for cultivated meat. ACS Appl Bio Mater. 2024;7:2153-2163. doi: 10.1021/acsabm.3c00944
- Gunasekaran S, Ko S, Xiao L. Use of whey proteins for encapsulation and controlled delivery applications. J Food Eng. 2007;83:31-40. doi: 10.1016/j.jfoodeng.2006.11.001
- Mudgil P, AlMazroui M, Redha AA, Kilari BP, Srikumar S, Maqsood S. Cow and camel milk-derived whey and casein protein hydrolysates demonstrated effective antifungal properties against selected Candida species. J Dairy Sci. 2022;105:1878-1888. doi: 10.3168/jds.2021-20944
- Park YW, Juárez M, Ramos M, Haenlein GFW. Physico-chemical characteristics of goat and sheep milk. Small Ruminant Res. 2007;68:88-113. doi: 10.1016/j.smallrumres.2006.09.013
- Abaee A, Mohammadian M, Jafari SM. Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems. Trends Food Sci Technol. 2017;70:69-81. doi: 10.1016/j.tifs.2017.10.011
- Rehan F, Ahemad N, Gupta M. Casein nanomicelle as an emerging biomaterial-A comprehensive review. Colloids Surf B Biointerfaces. 2019;179:280-292. doi: 10.1016/j.colsurfb.2019.03.051
- Khan MA, Hemar Y, Li J, Yang Z, De Leon-Rodriguez LM. Fabrication, characterization, and potential applications of re-assembled casein micelles. Crit Rev Food Sci Nutr. 2024;64:7916-7940. doi: 10.1080/10408398.2023.2193846
- Wusigale, Liang L, Luo YC. Casein and pectin: Structures, interactions, and applications. Trends Food Sci Technol. 2020;97:391-403. doi: 10.1016/j.tifs.2020.01.027
- Ostertag F, Schmidt CM, Berensmeier S, Hinrichs J. Development and validation of an RP-HPLC DAD method for the simultaneous quantification of minor and major whey proteins. Food Chem. 2021;342:128176. doi: 10.1016/j.foodchem.2020.128176
- De Wit JN. Marschall Rhône-Poulenc award lecture. Nutritional and functional characteristics of whey proteins in food products. J Dairy Sci. 1998;81:597-608. doi: 10.3168/jds.s0022-0302(98)75613-9
- Permyakov EA. α-Lactalbumin, amazing calcium-binding protein. Biomolecules. 2020;10:1210. doi: 10.3390/biom10091210
- Xu X, Hu J, Xue H, et al. A. Applications of human and bovine serum albumins in biomedical engineering: A review. Int J Biol Macromol. 2023;253:126914. doi: 10.1016/j.ijbiomac.2023.126914
- Li X, Li B, Huang J, Zhu H, Li Y, Shi G. A molecular imprinting photoelectrochemical sensor modified by polymer brushes and its detection for BSA. Chem Eng J. 2024;483:149297. doi: 10.1016/j.cej.2024.149297
- Baker HM, Baker CJ, Smith CA, Baker EN. Metal substitution in transferrins: Specific binding of cerium (IV) revealed by the crystal structure of cerium-substituted human lactoferrin. J Biol Inorg Chem. 2000;5:692-698. doi: 10.1007/s007750000157
- Kowalczyk P, Kaczyńska K, Kleczkowska P, Bukowska-Ośko I, Kramkowski K, Sulejczak D. The lactoferrin phenomenon-a miracle molecule. Molecules. 2022;27:2941. doi: 10.3390/molecules27092941
- Nezlin R. Dynamic aspects of the immunoglobulin structure. Immunol Invest. 2019;48:771-780. doi: 10.1080/08820139.2019.1597110
- Nawaz N, Wen S, Wang F, et al. Lysozyme and its application as antibacterial agent in food industry. Molecules. 2022;27:6305. doi: 10.3390/molecules27196305
- Yang Y, Xu Q, Wang X, Bai Z, Xu X, Ma J. Casein-based hydrogels: Advances and prospects. Food Chem. 2024;447:138956. doi: 10.1016/j.foodchem.2024.138956
- Zhong Y, Lin Q, Yu H, et al. Construction methods and biomedical applications of PVA-based hydrogels. Front Chem. 2024;12:1376799. doi: 10.3389/fchem.2024.1376799
- Wang Z, Deng Y, Zhang Y, et al. Fibrous whey protein mediated homogeneous and soft-textured emulsion gels for elderly: Enhancement of bioaccessibility for curcumin. Food Chem. 2024;437:137850. doi: 10.1016/j.foodchem.2023.137850
- Mulvihill DM, Donovan M. Whey proteins and their thermal denaturation - a review. Ir J Food Sci Technol. 1987;11:43-75. doi: 10.2307/25558153
- Oldfield DJ, Singh H, Taylor MW, Pearce KN. Kinetics of denaturation and aggregation of whey proteins in skim milk heated in an ultra-high temperature (UHT) pilot plant. Int Dairy J. 1998;8:311-318. doi: 10.1016/S0958-6946(98)00089-2
- Gezimati J. Aggregation and Gelation of Bovine b-Lactoglobulin, a-Lactalbumin and Serum Albumin. Palmerston North, New Zealand: Massey University; 1995.
- Hines ME, Foegeding EA. Interactions of alpha-lactalbumin and bovine serum albumin with beta-lactoglobulin in thermally induced gelation. J Agric Food Chem. 1993;41:341-346.
- Fertsch B, Müller M, Hinrichs J. Firmness of pressure-induced casein and whey protein gels modulated by holding time and rate of pressure release. Innov Food Sci Emerg Technol. 2003;4:143-150. doi: 10.1016/S1466-8564(03)00008-0
- Van Camp J, Huyghebaert A. A comparative rheological study of heat and high pressure induced whey protein gels. Food Chem. 1995;54:357-364.
- He JS, Mu TH, Wang J. A comparative in vitro study of the digestibility of heat- and high pressure-induced gels prepared from industrial milk whey proteins. High Press Res. 2013;33:328-335. doi: 10.1080/08957959.2013.780056
- Tan J, Joyner HS. Characterizing and modeling wear-recovery behaviors of acid-induced casein hydrogels. Wear. 2019;424-425:33-39.
- Ju ZY, Kilara A. Textural properties of cold-set gels induced from heat-denatured whey protein isolates. J Food Sci. 1998;63:288-292.
- Venturi S, Rossi B, Tortora M, et al. Amyloidogenic and non-amyloidogenic molten globule conformation of β-lactoglobulin in self-crowded regime. Int J Biol Macromol. 2023;242:124621. doi: 10.1016/j.ijbiomac.2023.124621
- Alting AC, de Jongh HH, Visschers RW, Simons JW. Physical and chemical interactions in cold gelation of food proteins. J Agric Food Chem. 2002;50:4682-4689. doi: 10.1021/jf011657m
- Veerman C, Baptist H, Sagis LM, van der Linden E. A new multistep Ca2+-induced cold gelation process for beta-lactoglobulin. J Agric Food Chem 2003;51:3880-3885. doi: 10.1021/jf0261396
- Marangoni AG, Barbut S, McGauley SE, Marcone M, Narine SS. On the structure of particulate gels-the case of salt-induced cold gelation of heat-denatured whey protein isolate. Food Hydrocolloids. 2000;14:61-74. doi: 10.1016/S0268-005X(99)00046-6
- Tang Z, He H, Zhu L, et al. A general protein unfolding-chemical coupling strategy for pure protein hydrogels with mechanically strong and multifunctional properties. Adv Sci (Weinh). 2022;9:e2102557. doi: 10.1002/advs.202102557
- Song F, Zhang LM, Yang C, Yan L. Genipin-crosslinked casein hydrogels for controlled drug delivery. Int J Pharm. 2009;373:41-47. doi: 10.1016/j.ijpharm.2009.02.005
- Wang Z, Deng Y, Zhang Y, et al. Impacts of citric acid concentration and pH value on mechanism and rheological properties of cold-set whey protein fibrils hydrogels. LWT. 2023;183:114872. doi: 10.1016/j.lwt.2023.114872
- Wang E, Wen H, Guo P, et al. Fabrication of methacrylated casein/alginate microspheres crosslinked by UV light coupled with Ca2+ chelation for pH-sensitive drug delivery. Colloid Polym Sci. 2022;300:553-567. doi: 10.1007/s00396-021-04917-3
- Haas S, Körner S, Zintel L, Hubbuch J. Changing mechanical properties of photopolymerized, dityrosine-crosslinked protein-based hydrogels. Front Bioeng Biotechnol. 2022;10:1006438. doi: 10.3389/fbioe.2022.1006438
- Yin W, Su R, Qi W, He Z. A casein-polysaccharide hybrid hydrogel cross-linked by transglutaminase for drug delivery. J Mater Sci. 2012;47:2045-2055. doi: 10.1007/s10853-011-6005-7
- Damodaran S, Agyare KK. Effect of microbial transglutaminase treatment on thermal stability and pH-solubility of heat-shocked whey protein isolate. Food Hydrocolloids. 2013;30:12-18. doi: 10.1016/j.foodhyd.2012.04.012
- Schorsch C, Carrie H, Norton IT. Cross-linking casein micelles by a microbial transglutaminase: Influence of cross-links in acid-induced gelation. Int Dairy J. 2000;10:529-539. doi: 10.1016/S0958-6946(00)00069-8
- Ahmed I, Chen H, Li J, Wang B, Li Z, Huang G. Enzymatic crosslinking and food allergenicity: A comprehensive review. Compr Rev Food Sci Food Saf. 2021;20:5856-5879. doi: 10.1111/1541-4337.12855
- Jung J, Wicker L. Laccase mediated conjugation of heat treated β-lactoglobulin and sugar beet pectin. Carbohydr Polym. 2012;89:1244-1249. doi: 10.1016/j.carbpol.2012.04.028
- Jiang Z, Yuan X, Yao K, et al. Laccase-aided modification: Effects on structure, gel properties and antioxidant activities of α-lactalbumin. LWT. 2017;80:355-363. doi: 10.1016/j.lwt.2017.02.043
- Monogioudi E, Creusot N, Kruus K, Gruppen H, Buchert J, Mattinen ML. Cross-linking of β-casein by Trichoderma reesei tyrosinase and Streptoverticillium mobaraense transglutaminase followed by SEC– MALLS. Food Hydrocolloids. 2009;23:2008-2015.
- Thalmann C, Lötzbeyer, T. Enzymatic cross-linking of proteins with tyrosinase. Eur Food Res Technol. 2002;214:276-281. doi: 10.1007/s00217-001-0455-0
- Xu J, Fan Z, Duan L, Gao G. A tough, stretchable, and extensively sticky hydrogel driven by milk protein. Polym Chem. 2018;9:2617-2624. doi: 10.1039/C8PY00319J
- Ma J, Lee J, Han SS, Oh KH, Nam KT, Sun JY. Highly stretchable and notch-insensitive hydrogel based on polyacrylamide and milk protein. ACS Appl Mater Interfaces. 2016;8:29220-29226. doi: 10.1021/acsami.6b10912
- Twomey M, Keogh MK, Mehra RAJ, O’Kennedy BT. Gel characteristics of β-lactoglobulin, whey protein concentrate and whey protein isolate. J Texture Stud. 1997;28:387-403. doi: 10.1111/j.1745-4603.1997.tb00124.x
- Xiao Y, Liu Y, Wang Y, et al. Heat-induced whey protein isolate gels improved by cellulose nanocrystals: Gelling properties and microstructure. Carbohydr Polym. 2020;231:115749. doi: 10.1016/j.carbpol.2019.115749
- Bhattacharjee C, Saha S, Biswas A, Kundu M, Ghosh L, Das KP. Structural changes of beta-lactoglobulin during thermal unfolding and refolding- -an FT-IR and circular dichroism study. Protein J. 2005;24:27-35. doi: 10.1007/s10930-004-0603-z
- Nicolai T, Chassenieux C. Heat-induced gelation of plant globulins. Curr Opin Food Sci. 2019;27:18-22. doi: 10.1016/j.cofs.2019.04.005
- Beyer R, Silcock Patrick J. Gelling Agents and Gels Containing Them. US Patent US-6610348-B2; 2003.
- Chen B, Zhou K, Wang Y, et al. Insight into the mechanism of textural deterioration of myofibrillar protein gels at high temperature conditions. Food Chem. 2020;330:127186. doi: 10.1016/j.foodchem.2020.127186
- Wang L, Moraru CI. High-pressure structuring of milk protein concentrate: Effect of pH and calcium. J Dairy Sci. 2021;104:4074-4083. doi: 10.3168/jds.2020-19483
- Inoue M, Hayashi T, Hikiri S, Ikeguchi M, Kinoshita M. Hydration properties of a protein at low and high pressures: Physics of pressure denaturation. J Chem Phys. 2020;152:065103. doi: 10.1063/1.5140499
- Wang Y, Zhou Y, Wang XX, et al. Origin of high-pressure induced changes in the properties of reduced-sodium chicken myofibrillar protein gels containing CaCl(2): Physicochemical and molecular modification perspectives. Food Chem. 2020;319:126535. doi: 10.1016/j.foodchem.2020.126535
- Pastore A, Temussi PA. Unfolding under pressure: An NMR perspective. ChemBioChem. 2023;24:e202300164. doi: 10.1002/cbic.202300164
- Ravash N, Peighambardoust SH, Soltanzadeh M, Pateiro M, Lorenzo JM. Impact of high-pressure treatment on casein micelles, whey proteins, fat globules and enzymes activity in dairy products: A review. Crit Rev Food Sci Nutr. 2022;62:2888-2908. doi: 10.1080/10408398.2020.1860899
- Kakati N, Ahari D, Parmar PR, Deshmukh OS, Bandyopadhyay D. Lactic acid-induced colloidal microrheology of synovial fluids. ACS Biomater Sci Eng. 2024;10:3378-3386. doi: 10.1021/acsbiomaterials.3c01846
- Alting AC, Weijers M, de Hoog EH, et al. Acid-induced cold gelation of globular proteins: Effects of protein aggregate characteristics and disulfide bonding on rheological properties. J Agric Food Chem. 2004;52:623-631. doi: 10.1021/jf034753r
- Alting AC, Hamer RJ, de Kruif CG, Visschers RW. Formation of disulfide bonds in acid-induced gels of preheated whey protein isolate. J Agric Food Chem. 2000;48:5001-5007. doi: 10.1021/jf000474h
- Li X, Guo C, Yang X, Guo Y. Acid-induced mixed methylcellulose and casein gels: Structures, physical properties and formation mechanism. Food Chem. 2022;366:130561. doi: 10.1016/j.foodchem.2021.130561
- Belwal VK, Chaudhary N. Amyloids and their untapped potential as hydrogelators. Soft Matter. 2020;16:10013-10028. doi: 10.1039/D0SM01578D
- Veerman C, Ruis H, Sagis LM, van der Linden E. Effect of electrostatic interactions on the percolation concentration of fibrillar beta-lactoglobulin gels. Biomacromolecules. 2002;3:869-873. doi: 10.1021/bm025533+
- Gosal WS, Clark AH, Pudney PDA, Ross-Murphy SB. Novel amyloid fibrillar networks derived from a globular protein: β-lactoglobulin. Langmuir. 2002;18:7174-7181. doi: 10.1021/la025531a
- Simpson LW, Good TA, Leach JB. Protein folding and assembly in confined environments: Implications for protein aggregation in hydrogels and tissues. Biotechnol Adv. 2020;42:107573. doi: 10.1016/j.biotechadv.2020.107573
- Anthuparambil ND, Timmermann S, Dargasz M, et al. Salt induced slowdown of kinetics and dynamics during thermal gelation of egg-yolk. J Chem Phys. 2024;161:055102. doi: 10.1063/5.0219004
- Li H, Zhang Y, Liu T, et al. Transglutaminase, glucono-δ-lactone, and citric acid-induced whey protein isolation-milk fat emulsion gel embedding lutein and its application in processed cheese. J Dairy Sci. 2023;106:6635-6645. doi: 10.3168/jds.2022-23097
- Babaei J, Khodaiyan F, Mohammadian M, Sheikhi M. In vitro digestibility and functional attributes of the whey protein heat-induced hydrogels reinforced by various polysaccharides and CaCl2. Food Measure. 2022;16:19-28. doi: 10.1007/s11694-021-01142-y
- Cao C, Li X, Yin Y, Kong B, Sun F, Liu Q. Effects of sodium chloride on the physical and oxidative stability of filled hydrogel particles fabricated with phase separation behavior. Foods. 2021;10:1027. doi: 10.3390/foods10051027
- Martin AH, de Jong GA. Enhancing the in vitro Fe(2+) bio-accessibility using ascorbate and cold-set whey protein gel particles. Dairy Sci Technol. 2012;92:133-149. doi: 10.1007/s13594-011-0055-0
- Da Silva MV, Delgado JMPQ, Gonçalves MP. Impact of MG2+ and tara gum concentrations on flow and textural properties of WPI solutions and cold-set gels. Int J Food Prop. 2010;13:972-982. doi: 10.1080/10942910902927128
- Mohammadian M, Madadlou A. Cold-set hydrogels made of whey protein nanofibrils with different divalent cations. Int J Biol Macromol. 2016;89:499-506. doi: 10.1016/j.ijbiomac.2016.05.009
- Gao Y, Peng K, Mitragotri S. Covalently crosslinked hydrogels via step-growth reactions: Crosslinking chemistries, polymers, and clinical impact. Adv Mater. 2021;33:e2006362. doi: 10.1002/adma.202006362
- Farjami T, Madadlou A, Labbafi M. Characteristics of the bulk hydrogels made of the citric acid cross-linked whey protein microgels. Food Hydrocolloids. 2015;50:159-165. doi: 10.1016/j.foodhyd.2015.04.011
- Teimouri S, Dekiwadia C, Kasapis S. Decoupling diffusion and macromolecular relaxation in the release of vitamin B6 from genipin-crosslinked whey protein networks. Food Chem. 2021;346:128886. doi: 10.1016/j.foodchem.2020.128886
- Abaee A, Madadlou A, Saboury AA. The formation of non-heat-treated whey protein cold-set hydrogels via non-toxic chemical cross-linking. Food Hydrocolloids. 2017;63:43-49. doi: 10.1016/j.foodhyd.2016.08.024
- Liu Z, Tang Z, Zhu L, et al. Natural protein-based hydrogels with high strength and rapid self-recovery. Int J Biol Macromol. 2019;141:108-116. doi: 10.1016/j.ijbiomac.2019.08.258
- Li NN, Fu CP, Zhang LM. Using casein and oxidized hyaluronic acid to form biocompatible composite hydrogels for controlled drug release. Mater Sci Eng C Mater Biol Appl. 2014;36:287-293. doi: 10.1016/j.msec.2013.12.025
- Goodarzi H, Jadidi K, Pourmotabed S, Sharifi E, Aghamollaei H. Preparation and in vitro characterization of cross-linked collagen-gelatin hydrogel using EDC/NHS for corneal tissue engineering applications. Int J Biol Macromol. 2019;126:620-632. doi: 10.1016/j.ijbiomac.2018.12.125
- Gong H, Zi Y, Kan G, et al. Preparation of food-grade EDC/NHS-crosslinked gelatin nanoparticles and their application for Pickering emulsion stabilization. Food Chem. 2024;436:137700. doi: 10.1016/j.foodchem.2023.137700
- Liu Y, Wang Y, Shen S, et al. Novel natural microbial preservative nisin/ Tremella fuciformis polysaccharide (TFP)/Lactobacillus plantarum (LP) live particle (NTN@LP) and its effect on the accumulation of biogenic amines during sausage fermentation. Chem Eng J. 2022;427:131713. doi: 10.1016/j.cej.2021.131713
- Akao T, Kobashi K, Aburada M. Enzymic studies on the animal and intestinal bacterial metabolism of geniposide. Biol Pharm Bull. 1994;17:1573-1576. doi: 10.1248/bpb.17.1573
- Lin J, Guo X, Ai C, Zhang T, Yu S. Genipin crosslinked sugar beet pectin-whey protein isolate/bovine serum albumin conjugates with enhanced emulsifying properties. Food Hydrocolloids. 2020;105:105802. doi: 10.1016/j.foodhyd.2020.105802
- López-López D, Razo-Hernández RS, Millán-Pacheco C, et al. Ligand-based drug design of genipin derivatives with cytotoxic activity against HeLa cell line: A structural and theoretical study. Pharmaceuticals (Basel). 2023;16:1647. doi: 10.3390/ph16121647
- Yun J, Nam IH, Lee H, et al. In situ photo-crosslinkable protein bioadhesive for bone graft fixation. J Dent Res. 2024;103:409-418. doi: 10.1177/00220345231224709
- Yano S, Iwase T, Shibata M, Miyamoto Y, Shimasaki T, Teramoto N. Synthesis of photocrosslinkable copolymers of cinnamoyl group-modified methacrylate and 2-hydroxyethyl methacrylate, and fibroblast cell growth on their thin films. J Photopolym Sci Technol. 2020;32:823-833. doi: 10.2494/photopolymer.32.823
- Moon SH, Hwang HJ, Jeon HR, Park SJ, Bae IS, Yang YJ. Photocrosslinkable natural polymers in tissue engineering. Front Bioeng Biotechnol. 2023;11:1127757. doi: 10.3389/fbioe.2023.1127757
- Mu X, Sahoo JK, Cebe P, Kaplan DL. Photo-crosslinked silk fibroin for 3D printing. Polymers (Basel). 2020;12:2936. doi: 10.3390/polym12122936
- Alavarse AC, Frachini ECG, da Silva R, Lima VH, Shavandi A, Petri DFS. Crosslinkers for polysaccharides and proteins: Synthesis conditions, mechanisms, and crosslinking efficiency, a review. Int J Biol Macromol. 2022;202:558-596. doi: 10.1016/j.ijbiomac.2022.01.029
- Robert B, Chenthamara D, Subramaniam S. Fabrication and biomedical applications of Arabinoxylan, Pectin, Chitosan, soy protein, and silk fibroin hydrogels via laccase - ferulic acid redox chemistry. Int J Biol Macromol. 2022;201:539-556. doi: 10.1016/j.ijbiomac.2021.12.103
- Tang CH, Ma CY. Modulation of the thermal stability of β-lactoglobulin by transglutaminase treatment. Eur Food Res Technol. 2007;225:649-652. doi: 10.1007/s00217-006-0460-4
- Shi R, Ma C, Li J, et al. Characterization of TGase-induced whey protein isolate: Impact of HPHP pretreatment. J Food Eng. 2020;282:110025. doi: 10.1016/j.jfoodeng.2020.110025
- Ouyang Y, Xu J, Ji F, et al. Properties of transglutaminase-induced myofibrillar/wheat gluten gels. J Food Sci. 2021;86:2387-2397. doi: 10.1111/1750-3841.15774
- Zheng L, Regenstein JM, Zhou L, Mokhtar SM, Wang Z. Gel properties and structural characteristics of composite gels of soy protein isolate and silver carp protein. Gels. 2023;9:420. doi: 10.3390/gels9050420
- Nieuwenhuizen WF, Dekker HL, de Koning LJ, Gröneveld T, de Koster CG, de Jong GA. Modification of glutamine and lysine residues in holo and apo alpha-lactalbumin with microbial transglutaminase. J Agric Food Chem. 2003;51:7132-7139. doi: 10.1021/jf0300644
- Yang R, Shao H, Yan Y, et al. Changes in structural and functional properties of whey protein cross-linked by polyphenol oxidase. Food Res Int. 2023;164:112377. doi: 10.1016/j.foodres.2022.112377
- Agunbiade M, Le Roes-Hill M. Application of bacterial tyrosinases in organic synthesis. World J Microbiol Biotechnol. 2021;38:2. doi: 10.1007/s11274-021-03186-0
- Scheibel DM, Gitsov IPI, Gitsov I. Enzymes in “green” synthetic chemistry: Laccase and lipase. Molecules. 2024;29:989. doi: 10.3390/molecules29050989
- Færgemand M, Otte J, Qvist KB. Cross-linking of whey proteins by enzymatic oxidation. J Agric Food Chem. 1998;46:1326-1333.
- Lin H, Yu Z, Wang Q, et al. Application of laccase catalysis in bond formation and breakage: A review. Catalysts. 2023;13:750. doi: 10.3390/catal13040750
- Hurrell RF, Finot PA, Cuq JL. Protein-polyphenol reactions. 1. Nutritional and metabolic consequences of the reaction between oxidized caffeic acid and the lysine residues of casein. Br J Nutr. 1982;47:191-211. doi: 10.1079/bjn19820027
- Pourmohammadi K, Abedi E. Enzymatic modifications of gluten protein: Oxidative enzymes. Food Chem. 2021;356:129679. doi: 10.1016/j.foodchem.2021.129679
- Yan J, Li S, Chen G, et al. Formation, physicochemical properties, and comparison of heat- and enzyme-induced whey protein-gelatin composite hydrogels. Food Hydrocolloids. 2023;137:108384. doi: 10.1016/j.foodhyd.2022.108384
- Zhao Y, Yan M, Xue S, Zhang T, Shen, X. Influence of ultrasound and enzymatic cross-linking on freeze-thaw stability and release properties of whey protein isolate hydrogel. J Dairy Sci. 2022;105:7253-7265. doi: 10.3168/jds.2021-21605
- Cona C, Bailey K, Barker E. Characterization methods to determine interpenetrating polymer network (IPN) in hydrogels. Polymers (Basel). 2024;16:2050. doi: 10.3390/polym16142050
- Bhardwaj D, Bhaskar R, Sharma AK, Garg M, Han SS, Agrawal G. Gelatin/polyacrylamide-based antimicrobial and self-healing hydrogel film for wound healing application. ACS Appl Bio Mater. 2024;7:879-891. doi: 10.1021/acsabm.3c00903
- Awasthi S, Gaur JK, Bobji MS, Srivastava C. Nanoparticle-reinforced polyacrylamide hydrogel composites for clinical applications: A review. J Mater Sci. 2022;57:8041-8063. doi: 10.1007/s10853-022-07146-3
- Onishchenko AI, Prokopiuk VY, Chumachenko VA, et al. Hemocompatibility of dextran-graft-polyacrylamide/zinc oxide nanosystems: Hemolysis or eryptosis? Nanotechnology. 2023;35:035102. doi: 10.1088/1361-6528/ad02a3
- Zhu C, Wu W, Soladoye OP, Zhang N, Zhang Y, Fu Y. Towards food-derived self-assembling peptide-based hydrogels: Insights into preparation, characterization and mechanism. Food Chem. 2024;459:140397. doi: 10.1016/j.foodchem.2024.140397
- Pimont-Farge M, Perreault V, Brisson G, et al. Hydrogel formation from peptides of a β-lactoglobulin tryptic hydrolysate: Contribution of self-assembling peptide β-Lg f1-8. Food Hydrocolloids. 2023;141:108765. doi: 10.1016/j.foodhyd.2023.108765
- Patel P, Thareja P. Hydrogels differentiated by length scales: A review of biopolymer-based hydrogel preparation methods, characterization techniques, and targeted applications. Eur Polym J. 2022;163:110935. doi: 10.1016/j.eurpolymj.2021.110935
- Kayani A, Raza A, Si J, Dutta D, Zhou Q, Ge Z. Polymersome membrane engineering with active targeting or controlled permeability for responsive drug delivery. Biomacromolecules. 2023;24:4622-4645. doi: 10.1021/acs.biomac.3c00839
- Hao Y, Ji Z, Zhou H, et al. Lipid-based nanoparticles as drug delivery systems for cancer immunotherapy. MedComm (2020). 2023;4:e339. doi: 10.1002/mco2.339
- Semwal R, Joshi SK, Semwal RB, Semwal DK. Recent developments and potential for clinical use of casein as a drug carrier. Curr Drug Deliv. 2023;20:250-260. doi: 10.2174/1567201819666220513085552
- Kazemi-Taskooh Z, Varidi M. Designation and characterization of cold-set whey protein-gellan gum hydrogel for iron entrapment. Food Hydrocolloids. 2021;111:106205. doi: 10.1016/j.foodhyd.2020.106205
- Remondetto GE, Paquin P, Subirade M. Cold gelation of β-lactoglobulin in the presence of iron. J Food Sci. 2002;67:586-595. doi: 10.1111/j.1365-2621.2002.tb10643.x
- Martin AH, de Jong GAH. Impact of protein pre-treatment conditions on the iron encapsulation efficiency of whey protein cold-set gel particles. Eur Food Res Technol. 2012;234:995-1003. doi: 10.1007/s00217-012-1717-8
- Xiao Y, Han C, Yang H, Liu M, Meng X, Liu B. Layer (whey protein isolate) -by-layer (xanthan gum) microencapsulation enhances survivability of L. bulgaricus and L. paracasei under simulated gastrointestinal juice and thermal conditions. Int J Biol Macromol. 2020;148:238-247. doi: 10.1016/j.ijbiomac.2020.01.113
- Sun H, Zhang M, Liu Y, et al. Improved viability of Lactobacillus plantarum embedded in whey protein concentrate/pullulan/trehalose hydrogel during freeze drying. Carbohydr Polym. 2021;260:117843. doi: 10.1016/j.carbpol.2021.117843
- Zhang M, Cai D, Song Q, et al. Effect on viability of microencapsulated lactobacillus rhamnosus with the whey protein-pullulan gels in simulated gastrointestinal conditions and properties of gels. Food Sci Anim Resour. 2019;39:459-473. doi: 10.5851/kosfa.2019.e42
- Zhang AQ, He JL, Wang Y, et al. Whey protein isolate modified with sodium tripolyphosphate gel: A novel pH-sensitive system for controlled release of Lactobacillus plantarum. Food Hydrocolloids. 2021;120:106924. doi: 10.1016/j.foodhyd.2021.106924
- Nascimento LGL, Casanova F, Silva NFN, et al. Use of a crosslinked casein micelle hydrogel as a carrier for jaboticaba (Myrciaria cauliflora) extract. Food Hydrocolloids. 2020;106:105872. doi: 10.1016/j.foodhyd.2020.105872
- Nobari Azar FA, Pezeshki A, Ghanbarzadeh B, et al. Pectin-sodium caseinat hydrogel containing olive leaf extract-nano lipid carrier: Preparation, characterization and rheological properties. LWT. 2021;148:111757. doi: 10.1016/j.lwt.2021.111757
- Ozel B, Aydin O, Grunin L, Oztop MH. Physico-chemical changes of composite whey protein hydrogels in simulated gastric fluid conditions. J Agric Food Chem. 2018;66:9542-9555. doi: 10.1021/acs.jafc.8b02829
- Zand-Rajabi H, Madadlou A. Citric acid cross-linking of heat-set whey protein hydrogel influences its textural attributes and caffeine uptake and release behaviour. Int Dairy J. 2016;61:142-147. doi: 10.1016/j.idairyj.2016.05.008
- Di Martino A, Khan YA, Durpekova S, Sedlarik V, Elich O, Cechmankova J. Ecofriendly renewable hydrogels based on whey protein and for slow release of fertilizers and soil conditioning. J Clean Prod. 2021;285:124848. doi: 10.1016/j.jclepro.2020.124848
- Simão AR, Fragal VH, Lima AMO, et al. pH-responsive hybrid hydrogels: chondroitin sulfate/casein trapped silica nanospheres for controlled drug release. Int J Biol Macromol. 2020;148:302-315. doi: 10.1016/j.ijbiomac.2020.01.093
- How SC, Lin TH, Chang CC, Wang SS. Examining the effect of bovine serum albumin on the properties and drug release behavior of β-lactoglobulin-derived amyloid fibril-based hydrogels. Int J Biol Macromol. 2021;184:79-91. doi: 10.1016/j.ijbiomac.2021.06.003
- Allen LH. Advantages and limitations of iron amino acid chelates as iron fortificants. Nutr Rev. 2002;60:S18-21; discussion S45. doi: 10.1301/002966402320285047
- Ji J, Jin W, Liu SJ, Jiao Z, Li X. Probiotics, prebiotics, and postbiotics in health and disease. MedComm (2020). 2023;4:e420. doi: 10.1002/mco2.420
- Ouwehand AC, Salminen SJ. The health effects of cultured milk products with viable and non-viable bacteria. Int Dairy J. 1998;8:749-758. doi: 10.1016/S0958-6946(98)00114-9
- Lu Y, Li H, Wang J, et al. Engineering bacteria-activated multifunctionalized hydrogel for promoting diabetic wound healing. Adv Funct Mater. 2021;31:2105749. doi: 10.1002/adfm.202105749
- Pedrali D, Scarafoni A, Giorgi A, Lavelli V. Binary alginate-whey protein hydrogels for antioxidant encapsulation. Antioxidants (Basel). 2023;12:1192. doi: 10.3390/antiox12061192
- Tan J, Luo Y, Guo Y, et al. Development of alginate-based hydrogels: Crosslinking strategies and biomedical applications. Int J Biol Macromol. 2023;239:124275. doi: 10.1016/j.ijbiomac.2023.124275
- Liu Z, Liu C, Sun X, et al. Fabrication and characterization of cold-gelation whey protein-chitosan complex hydrogels for the controlled release of curcumin. Food Hydrocolloids. 2020;103:105619. doi: 10.1016/j.foodhyd.2019.105619
- Wang H, Guo Y, Jiang Y, et al. Exosome-loaded biomaterials for tendon/ ligament repair. Biomater Transl. 2024;5:129-143. doi: 10.12336/biomatertransl.2024.02.004
- Caplan AI. Mesenchymal stem cells and COVID-19: The process of discovery and of translation. Biomater Transl. 2021;2:307-311. doi: 10.12336/biomatertransl.2021.04.006
- Seo JY, Park SB, Kim SY, Seo GJ, Jang HK, Lee TJ. Acoustic and magnetic stimuli-based three-dimensional cell culture platform for tissue engineering. Tissue Eng Regen Med. 2023;20:563-580. doi: 10.1007/s13770-023-00539-8
- Yin S, Cao Y. Hydrogels for large-scale expansion of stem cells. Acta Biomater. 2021;128:1-20. doi: 10.1016/j.actbio.2021.03.026
- Douglas TEL, Vandrovcová M, Kročilová N, et al. Application of whey protein isolate in bone regeneration: Effects on growth and osteogenic differentiation of bone-forming cells. J Dairy Sci. 2018;101:28-36. doi: 10.3168/jds.2017-13119
- Chaudhuri O, Cooper-White J, Janmey PA, Mooney DJ, Shenoy VB. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature. 2020;584:535-546. doi: 10.1038/s41586-020-2612-2
- Reyhani V, Zibaee S, Mokaberi P, Amiri-Tehranizadeh Z, Babayan- Mashhadi F, Chamani J. Encapsulation of purified lactoferrin from camel milk on calcium alginate nanoparticles and its effect on growth of osteoblasts cell line MG-63. J Iran Chem Soc. 2022;19:131-145. doi: 10.1007/s13738-021-02295-9
- Cai S, Wu C, Yang W, Liang W, Yu H, Liu L. Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnol Rev. 2020;9:971-989. doi: 10.1515/ntrev-2020-0076
- Desmet T, Morent R, De Geyter N, Leys C, Schacht E, Dubruel P. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: A review. Biomacromolecules. 2009;10:2351-2378. doi: 10.1021/bm900186s
- Ong J, Zhao J, Levy GK, Macdonald J, Justin AW, Markaki AE. Functionalisation of a heat-derived and bio-inert albumin hydrogel with extracellular matrix by air plasma treatment. Sci Rep. 2020;10:12429. doi: 10.1038/s41598-020-69301-7
- Xie M, Su J, Zhou S, Li J, Zhang K. Application of hydrogels as three-dimensional bioprinting ink for tissue engineering. Gels. 2023;9:88. doi: 10.3390/gels9020088
- Dec P, Modrzejewski A, Pawlik A. Existing and novel biomaterials for bone tissue engineering. Int J Mol Sci. 2022;24:529. doi: 10.3390/ijms24010529
- Elkhoury K, Morsink M, Sanchez-Gonzalez L, Kahn C, Tamayol A, Arab-Tehrany E. Biofabrication of natural hydrogels for cardiac, neural, and bone tissue engineering applications. Bioact Mater. 2021;6:3904-3923. doi: 10.1016/j.bioactmat.2021.03.040
- Xue X, Hu Y, Wang S, Chen X, Jiang Y, Su J. Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering. Bioact Mater. 2022;12:327-339. doi: 10.1016/j.bioactmat.2021.10.029
- Gkioni K, Leeuwenburgh SC, Douglas TE, Mikos AG, Jansen JA. Mineralization of hydrogels for bone regeneration. Tissue Eng Part B Rev. 2010;16:577-585. doi: 10.1089/ten.TEB.2010.0462
- Norris K, Kocot M, Tryba AM, et al. Marine-inspired enzymatic mineralization of dairy-derived whey protein isolate (WPI) hydrogels for bone tissue regeneration. Mar Drugs. 2020;18:294. doi: 10.3390/md18060294
- Dziadek M, Charuza K, Kudlackova R, et al. Modification of heat-induced whey protein isolate hydrogel with highly bioactive glass particles results in promising biomaterial for bone tissue engineering. Mater Des. 2021;205:109749. doi: 10.1016/j.matdes.2021.109749
- Murphy A, Goldberg S. Mechanical complications of myocardial infarction. Am J Med. 2022;135:1401-1409. doi: 10.1016/j.amjmed.2022.08.017
- Zou Y, Li L, Li Y, et al. Restoring cardiac functions after myocardial infarction-ischemia/reperfusion via an exosome anchoring conductive hydrogel. ACS Appl Mater Interfaces. 2021;13:56892-56908. doi: 10.1021/acsami.1c16481
- Hu W, Yang C, Guo X, et al. Research advances of injectable functional hydrogel materials in the treatment of myocardial infarction. Gels. 2022;8:423. doi: 10.3390/gels8070423
- Hao T, Qian M, Zhang Y, et al. An injectable dual-function hydrogel protects against myocardial ischemia/reperfusion injury by modulating ROS/NO disequilibrium. Adv Sci (Weinh). 2022;9:e2105408. doi: 10.1002/advs.202105408
- Hong X, Tian G, Dai B, et al. Copper-loaded milk-protein derived microgel preserves cardiac metabolic homeostasis after myocardial infarction. Adv Sci (Weinh). 2024;11:e2401527. doi: 10.1002/advs.202401527
- Cao Y, Lee BH, Irvine SA, Wong YS, Bianco Peled H, Venkatraman S. Inclusion of cross-linked elastin in gelatin/PEG hydrogels favourably influences fibroblast phenotype. Polymers (Basel). 2020;12:670. doi: 10.3390/polym12030670
- Sadiq A, Shah A, Jeschke MG, et al. The role of serotonin during skin healing in post-thermal injury. Int J Mol Sci. 2018;19:1034. doi: 10.3390/ijms19041034
- Leon AC, Davis LL, Kraemer HC. The role and interpretation of pilot studies in clinical research. J Psychiatr Res. 2011;45:626-629. doi: 10.1016/j.jpsychires.2010.10.008
- Ito S, Hirobe S, Kuwabara Y, et al. Immunogenicity of Milk protein-containing hydrophilic gel patch for epicutaneous immunotherapy for milk allergy. Pharm Res. 2020;37:35. doi: 10.1007/s11095-019-2728-y
- Wang S, Zhang Y, Yang M, et al. Characterization of transgenic silkworm yielded biomaterials with calcium-binding activity. PLoS One. 2016;11:e0159111. doi: 10.1371/journal.pone.0159111
- Cui X, Li J, Hartanto Y, et al. Advances in extrusion 3D bioprinting: A focus on multicomponent hydrogel-based bioinks. Adv Healthc Mater. 2020;9:e1901648. doi: 10.1002/adhm.201901648
- Gao F, Xu Z, Liang Q, et al. Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds. Adv Sci (Weinh). 2019;6:1900867. doi: 10.1002/advs.201900867
- Serrano DR, Kara A, Yuste I, et al. 3D printing technologies in personalized medicine, nanomedicines, and biopharmaceuticals. Pharmaceutics. 2023;15:313. doi: 10.3390/pharmaceutics15020313
- Zhang RZ, Shi Q, Zhao H, et al. In vivo study of dual functionalized mussel-derived bioactive peptides promoting 3D-printed porous Ti6Al4V scaffolds for repair of rabbit femoral defects. J Biomater Appl. 2022;37:942-958. doi: 10.1177/08853282221117209
- Li X, Liu Y, Qi X, et al. Sensitive activatable nanoprobes for real-time ratiometric magnetic resonance imaging of reactive oxygen species and ameliorating inflammation in vivo. Adv Mater. 2022;34:e2109004. doi: 10.1002/adma.202109004
- Peng Y, He D, Ge X, et al. Construction of heparin-based hydrogel incorporated with Cu5.4O ultrasmall nanozymes for wound healing and inflammation inhibition. Bioact Mater. 2021;6:3109-3124. doi: 10.1016/j.bioactmat.2021.02.006
- Jin X, Ou Z, Huang X, et al. CO enhances agomir transfection under pathological conditions to inhibit MMP overexpression. Nano Today. 2023;51:101898. doi: 10.1016/j.nantod.2023.101898