Surface modification of polyetheretherketone for boosted osseointegration: a review
The field of orthopaedic implants has experienced rapid growth in recent decades, evolving from a few obscure examples to become one of the most vibrant domains within regenerative medicine. Polyetheretherketone (PEEK) stands out as a formidable competitor in this field due to its exceptional biocompatibility and appropriate mechanical strength. However, the clinical application of PEEK is limited by its inherent biological inertness. Therefore, numerous studies have focused on overcoming the bio-inert issue of PEEK using surface activation techniques. It is necessary to delve into the intricate effects of these modifications and their corresponding methods. In this review, we provide a comprehensive summary of contemporary research on surface modification for enhancing osseointegration of PEEK implants, categorising them into four parts based on their modification methods and techniques used: (1) physical treatment, (2) wet chemical methods, (3) combination of physical and chemical treatments, and (4) bioactive coating. Finally, we outline the challenges and unmet needs that must be addressed by future designs of PEEK surfaces. Overall, altering the surface morphology and/or surface group of PEEK to obtain a rough, porous, hydrophilic, and bioactive surface, or incorporating bioactive agents/coatings with bone-forming abilities onto the surface of PEEK has shown great potential for promoting osseointegration, which can serve as a solid foundation for subsequent clinical translation.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
- Reznikov N, Bilton M, Lari L, Stevens MM, Kröger R. Fractal-like hierarchical organization of bone begins at the nanoscale. Science. 2018;360:eaao2189. doi: 10.1126/science.aao2189
- Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering. Nat Rev Mater. 2020;5:584-603. doi: 10.1038/s41578-020-0204-2
- Depalle B, McGilvery CM, Nobakhti S, Aldegaither N, Shefelbine SJ, Porter AE. Osteopontin regulates type I collagen fibril formation in bone tissue. Acta Biomater. 2021;120:194-202. doi: 10.1016/j.actbio.2020.04.040
- DiGirolamo DJ, Clemens TL, Kousteni S. The skeleton as an endocrine organ. Nat Rev Rheumatol. 2012;8:674-683. doi: 10.1038/nrrheum.2012.157
- Stevens MM. Biomaterials for bone tissue engineering. Mater Today. 2008;11:18-25.
- Zhu G, Zhang T, Chen M, et al. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact Mater. 2021;6:4110-4140. doi: 10.1016/j.bioactmat.2021.03.043
- Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143-162. doi: 10.1016/j.biomaterials.2018.07.017
- Lopes D, Martins-Cruz C, Oliveira MB, Mano JF. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials. 2018;185:240-275. doi: 10.1016/j.biomaterials.2018.09.028
- Hu C, Ashok D, Nisbet DR, GautamV. Bioinspired surface modification of orthopedic implants for bone tissue engineering. Biomaterials. 2019;219:119366. doi: 10.1016/j.biomaterials.2019.119366
- Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res. 1986;299-308.
- Mauffrey C, Barlow BT, Smith W. Management of segmental bone defects. J Am Acad Orthop Surg. 2015;23:143-153.doi: 10.5435/ JAAOS-D-14-00018
- Steijvers E, Ghei A, Xia Z. Manufacturing artificial bone allografts: A perspective. Biomater Transl. 2022;3:65-80.
- Deng J, Wang X, Zhang W, et al. Versatile hypoxic extracellular vesicles laden in an injectable and bioactive hydrogel for accelerated bone regeneration. Adv Funct Mater. 2023;33:2211664. doi: 10.1002/adfm.202370132
- Huang J, Zhai D, Xue J, Li T, Ren D, Wu C. Bioinspired laminated bioceramics with high toughness for bone tissue engineering. Regen Biomater. 2022;9:rbac055.
- Tao Z, Yuan Z, Zhou D, et al. Fabrication of magnesium-doped porous polylactic acid microsphere for bone regeneration. Biomater Transl. 2023;4:280-290. doi: 10.12336/biomatertransl.2023.04.007
- Wang Y, Feng Z, Liu X, et al. Titanium alloy composited with dual-cytokine releasing polysaccharide hydrogel to enhance osseointegration via osteogenic and macrophage polarization signaling pathways. Regen Biomater. 2022;9:rbac003. doi: 10.1093/rb/rbac003
- Shuai C, Wang Z, Zhang H, et al. Biosoluble ceramic fiber reinforced poly(L-lactic acid) bone scaffold: Degradation and bioactivity. Npj Mater Degrad. 2022;6:87. doi: 10.1038/s41529-022-00297-3
- Bai Z, Hu K, Shou Z, et al. Layer-by-layer assembly of procyanidin and collagen promotes mesenchymal stem cell proliferation and osteogenic differentiation in vitro and in vivo. Regen Biomater. 2023;10:rbac107.
- Ullah I, Ou P, Xie L, et al. Diffusion-driven fabrication of calcium and phosphorous-doped zinc oxide heterostructures on titanium to achieve dual functions of osteogenesis and preventing bacterial infections. Acta Biomater. 2024;175:382-394. doi: 10.1016/j.actbio.2023.12.046
- Zhou Q, Chen W, Gu C, et al. Selenium-modified bone cement promotes osteoporotic bone defect repair in ovariectomized rats by restoring GPx1-mediated mitochondrial antioxidant functions. Regen Biomater. 2023;10:rbad011. doi: 10.1093/rb/rbad011
- Jing X, Ding Q, Wu Q, et al. Magnesium-based materials in orthopaedics: Material properties and animal models. Biomater Transl. 2021, 2, 197-213.
- Miao X, Yang S, Zhu J, et al. Bioactive mineralized small intestinal submucosa acellular matrix/PMMA bone cement for vertebral bone regeneration. Regen Biomater. 2023;10:rbad040. doi: 10.1093/rb/rbad040
- Zhao F, Gao A, Liao Q, et al. Balancing the anti-bacterial and pro-osteogenic properties of Ti-based implants by partial conversion of ZnO nanorods into hybrid zinc phosphate nanostructures. Adv Funct Mater. 2024;34:2311812. doi: 10.1002/adfm.202311812
- Huang L, Gong W, Huang G, Li J, Wu J, Dong Y. The additive effects of bioactive glasses and photobiomodulation on enhancing bone regeneration. Regen Biomater. 2023;10:rbad024. doi: 10.1093/rb/rbad024
- Wang DX, He Y, Bi L, et al. Enhancing the bioactivity of poly(lactic-co-glycolic acid) scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model. Int J Nanomedicine. 2013;8:1855-1865. doi: 10.2147/ijn.s43706
- Ma Z, Liu B, Li S, et al. A novel biomimetic trabecular bone metal plate for bone repair and osseointegration. Regen Biomater. 2023;10:rbad003.
- Ren Y, Ma C, Yu Y, et al. Poly(l-lactic acid)-based double-layer composite scaffold for bone tissue repair. Regen Biomater. 2024;11:rbad093. doi: 10.1093/rb/rbad093
- Qi L, Zhao T, Yan J, et al. Advances in magnesium-containing bioceramics for bone repair. Biomater Transl. 2024;5:3-20.
- Zhang B, Yin X, Zhang F, et al. Customized bioceramic scaffolds and metal meshes for challenging large-size mandibular bone defect regeneration and repair. Regen Biomater. 2023;10:rbad057. doi: 10.1093/rb/rbad057
- Gao J, Ding X, Yu X, et al. Cell-free bilayered porous scaffolds for osteochondral regeneration fabricated by continuous 3D-printing using nascent physical hydrogel as ink. Adv Healthc Mater. 2021;10:e2001404. doi: 10.1002/adhm.202001404
- Duan P, Pan Z, Cao L, et al. Restoration of osteochondral defects by implanting bilayered poly(lactide-co-glycolide) porous scaffolds in rabbit joints for 12 and 24 weeks. J Orthop Translat. 2019;19:68-80. doi: 10.1016/j.jot.2019.04.006
- Liang X, Duan P, Gao J, et al. Bilayered PLGA/PLGA-HAp composite scaffold for osteochondral tissue engineering and tissue regeneration. ACS Biomater Sci Eng. 2018;4:3506-3521. doi: 10.1021/acsbiomaterials.8b00552.s001
- Pan Z, Duan P, Liu X, et al. Effect of porosities of bilayered porous scaffolds on spontaneous osteochondral repair in cartilage tissue engineering. Regen Biomater. 2015;2:9-19. doi: 10.1093/rb/rbv001
- Sun W, Yang K, Zou Y, et al. In vitro and in vivo degradation, biocompatibility and bone repair performance of strontium-doped montmorillonite coating on Mg-Ca alloy. Regen Biomater. 2024;11:rbae027. doi: 10.1093/rb/rbae027
- Feng P, Zhao R, Tang W, et al. Structural and functional adaptive artificial bone: Materials, fabrications, and properties. Adv Funct Mater. 2023:33:2214726. doi: 10.1002/adfm.202214726
- Buck E, Li H, Cerruti M. Surface modification strategies to improve the osseointegration of poly(etheretherketone) and its composites. Macromol Biosci. 2020;20:e1900271. doi: 10.1002/mabi.201900271
- Chen Z, Chen Y, Ding J, Yu L. Blending strategy to modify PEEK-based orthopedic implants. Compos B Eng. 2023;250:110427.
- Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28:4845-4869. doi: 10.1016/j.biomaterials.2007.07.013
- Ma T, Zhang J, Sun S, Meng W, Zhang Y, Wu J. Current treatment methods to improve the bioactivity and bonding strength of PEEK for dental application: A systematic review. Eur Polym J. 2023;183:111757. doi: 10.1016/j.eurpolymj.2022.111757
- He M, Huang Y, Xu H, et al. Modification of polyetheretherketone implants: From enhancing bone integration to enabling multi-modal therapeutics. Acta Biomater. 2021;129:18-32. doi: 10.2139/ssrn.3797424
- Pu F, Yu Y, Zhang Z, et al. Research and application of medical polyetheretherketone as bone repair material. Macromol Biosci. 2023;23:e2300032.
- Zheng W, Wu D, Zhang Y, et al. Multifunctional modifications of polyetheretherketone implants for bone repair: A comprehensive review. Biomater Adv. 2023;154:213607.
- Zheng Z, Liu P, Zhang X, et al. Strategies to improve bioactive and antibacterial properties of polyetheretherketone (PEEK) for use as orthopedic implants. Mater Today Bio. 2022;16:100402. doi: 10.1016/j.mtbio.2022.100402
- Han X, Gao W, Zhou Z, et al. Application of biomolecules modification strategies on PEEK and its composites for osteogenesis and antibacterial properties. Colloids Surf B Biointerfaces. 2022;215:112492. doi: 10.1016/j.colsurfb.2022.112492
- Jiang P, Zhang Y, Hu R, et al. Advanced surface engineering of titanium materials for biomedical applications: From static modification to dynamic responsive regulation. Bioact Mater. 2023;27:15-57. doi: 10.1016/j.bioactmat.2023.03.006
- Oshida Y. Surface modifications. In: Bioscience and Bioengineering of Titanium Materials. 2nd ed. Oxford: Elsevier; 2013. p. 341-456. doi: 10.1016/b978-0-444-62625-7.00011-x
- Petlin DG, Tverdokhlebov SI, Anissimov YG. Plasma treatment as an efficient tool for controlled drug release from polymeric materials: A review. J Control Release. 2017;266:57-74. doi: 10.1016/j.jconrel.2017.09.023
- Liu C, Bai J, Wang Y, et al. The effects of three cold plasma treatments on the osteogenic activity and antibacterial property of PEEK. Dent Mater. 2021;37:81-93.
- Fu Q, Gabriel M, Schmidt F, Müller WD, Schwitalla AD. The impact of different low-pressure plasma types on the physical, chemical and biological surface properties of PEEK. Dent Mater. 2021;37:e15-e22. doi: 10.1016/j.dental.2020.09.020
- Lu T, Wen J, Qian S, et al. Enhanced osteointegration on tantalum-implanted polyetheretherketone surface with bone-like elastic modulus. Biomaterials. 2015;51:173-183. doi: 10.1016/j.biomaterials.2015.02.018
- Ouyang L, Zhao Y, Jin G, et al. Influence of sulfur content on bone formation and antibacterial ability of sulfonated PEEK. Biomaterials. 2016;83:115-126.
- Zhao Y, Wong HM, Wang W, et al. Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone. Biomaterials. 2013;34:9264-9277. doi: 10.1016/j.biomaterials.2013.08.071
- Wang S, Deng Y, Yang L, Shi X, Yang W, Chen ZG. Enhanced antibacterial property and osteo-differentiation activity on plasma treated porous polyetheretherketone with hierarchical micro/nano-topography. J Biomater Sci Polym Ed. 2018;29:520-542. doi: 10.1080/09205063.2018.1425181
- Zheng Y, Liu L, Xiao L, Zhang Q, Liu Y. Enhanced osteogenic activity of phosphorylated polyetheretherketone via surface-initiated grafting polymerization of vinylphosphonic acid. Colloids Surf B Biointerfaces. 2019;173:591-598. doi: 10.1016/j.colsurfb.2018.10.031
- Flejszar M, Chmielarz P. Surface modifications of poly(ether ether ketone) via polymerization methods-current status and future prospects. Materials (Basel). 2020;13:999. doi: 10.3390/ma13040999
- Dong T, Duan C, Wang S, et al. Multifunctional surface with enhanced angiogenesis for improving long-term osteogenic fixation of poly(ether ether ketone) implants. ACS Appl Mater Interfaces. 2020;12:14971-14982. doi: 10.1021/acsami.0c02304.s001
- Niu Y, Guo L, Hu F, et al. Macro-microporous surface with sulfonic acid groups and micro-nano structures of PEEK/nano magnesium silicate composite exhibiting antibacterial activity and inducing cell responses. Int J Nanomedicine. 2020;15:2403-2417. doi: 10.2147/ijn.s238287
- Shin SR, Li YC, Jang HL, et al. Graphene-based materials for tissue engineering. Adv Drug Deliv Rev. 2016;105:255-274.
- Cao G, Yan J, Ning X, et al. Antibacterial and antibiofilm properties of graphene and its derivatives. Colloids Surf B Biointerfaces. 2021;200:111588. doi: 10.1016/j.colsurfb.2021.111588
- Silveira SR, Sahm BD, Kreve S, Dos Reis AC. Osseointegration, antimicrobial capacity and cytotoxicity of implant materials coated with graphene compounds: A systematic review. Jpn Dent Sci Rev. 2023;59:303-311. doi: 10.1016/j.jdsr.2023.08.005
- Xu X, Li Y, Wang L, et al. Triple-functional polyetheretherketone surface with enhanced bacteriostasis and anti-inflammatory and osseointegrative properties for implant application. Biomaterials. 2019;212:98-114. doi: 10.1016/j.biomaterials.2019.05.014
- Yu Y, Wang X, Zhu Y, He Y, Xue H, Ding J. Is polydopamine beneficial for cells on the modified surface? Regen Biomater. 2022;9:rbac078.
- Faia-Torres AB, Charnley M, et al. Osteogenic differentiation of human mesenchymal stem cells in the absence of osteogenic supplements: A surface-roughness gradient study. Acta Biomater. 2015;28:64-75. doi: 10.1016/j.actbio.2015.09.028
- Deligianni DD, Katsala ND, Koutsoukos PG, Missirlis YF. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials. 2001;22:87-96. doi: 10.1016/s0142-9612(00)00174-5
- Sunarso Tsuchiya A, Fukuda N, Toita R, Tsuru K, Ishikawa K. Effect of micro-roughening of poly(ether ether ketone) on bone marrow derived stem cell and macrophage responses, and osseointegration. J Biomater Sci Polym Ed. 2018;29:1375-1388. doi: 10.1080/09205063.2018.1461448
- Citeau A, Guicheux J, Vinatier C, et al. In vitro biological effects of titanium rough surface obtained by calcium phosphate grid blasting. Biomaterials. 2005;26:157-165. doi: 10.1016/j.biomaterials.2004.02.033
- Ma C, Nikiforov A, Hegemann D, De Geyter N, Morent R, Ostrikov K. Plasma-controlled surface wettability: Recent advances and future applications. Int Mater Rev. 2023;68:82-119. doi: 10.1080/09506608.2022.2047420
- Aditya T, Mesa-Restrepo A, Civantos A, et al. Ion Bombardment-induced nanoarchitectonics on polyetheretherketone surfaces for enhanced nanoporous bioactive implants. ACS Appl Bio Mater. 2023;6:4922-4934. doi: 10.1021/acsabm.3c00642
- Schröder K, Finke B, Jesswein H, et al. Similarities between plasma amino functionalized PEEK and titanium surfaces concerning enhancement of osteoblast cell adhesion. J Adhes Sci Technol. 2010;24:905-923. doi: 10.1163/016942409x12598231567989
- Chu PK, Qin S, Chan C, Cheung NW, Larson LA. Plasma immersion ion implantation-a fledgling technique for semiconductor processing. Mater Sci Eng R Rep. 1996;17:207-280. doi: 10.1016/s0927-796x(96)00194-5
- Bai L, Song P, Su J. Bioactive elements manipulate bone regeneration. Biomater Transl. 2023;4:248-269. doi: 10.12336/biomatertransl.2023.04.005
- Lu T, Liu X, Qian S, et al. Multilevel surface engineering of nanostructured TiO2 on carbon-fiber-reinforced polyetheretherketone. Biomaterials. 2014;35:5731-5740.
- Lu T, Li J, Qian S, Cao H, Ning C, Liu X. Enhanced osteogenic and selective antibacterial activities on micro-/nano-structured carbon fiber reinforced polyetheretherketone. J Mater Chem B. 2016;4:2944-2953.
- Lu T, Qian S, Meng F, Ning C, Liu X. Enhanced osteogenic activity of poly ether ether ketone using calcium plasma immersion ion implantation. Colloids Surf B Biointerfaces. 2016;142:192-198. doi: 10.1016/j.colsurfb.2016.02.056
- Li J, Qian S, Ning C, Liu X. rBMSC and bacterial responses to isoelastic carbon fiber-reinforced poly(ether-ether-ketone) modified by zirconium implantation. J Mater Chem B. 2016;4:96-104.
- Zhang Y, Wang X, Li Y, et al. Cell osteogenic bioactivity mediated precisely by varying scaled micro-pits on ordered micro/nano hierarchical structures of titanium. Regen Biomater. 2022;9:rbac046. doi: 10.1093/rb/rbac046
- Zheng X, Chen L, Tan J, et al. Effect of micro/nano-sheet array structures on the osteo-immunomodulation of macrophages. Regen Biomater. 2022;9:rbac075. doi: 10.1093/rb/rbac075
- Chayanun S, Chanamuangkon T, Boonsuth B, Boccaccini AR, Lohwongwatana B. Enhancing PEEK surface bioactivity: Investigating the effects of combining sulfonation with sub-millimeter laser machining. Mater Today Bio. 2023;22:100754. doi: 10.1016/j.mtbio.2023.100754
- Gu Z, Fan S, Kundu SC, Yao X, Zhang Y. Fiber diameters and parallel patterns: Proliferation and osteogenesis of stem cells. Regen Biomater. 2023;10:rbad001. doi: 10.1093/rb/rbad001
- Yao X, Wang X, Ding J. Exploration of possible cell chirality using material techniques of surface patterning. Acta Biomater. 2021;126:92-108. doi: 10.1016/j.actbio.2021.02.032
- Yao X, Liu R, Liang X, Ding J. Critical areas of proliferation of single cells on micropatterned surfaces and corresponding cell type dependence. ACS Appl Mater Interfaces. 2019;11:15366-15380. doi: 10.1021/acsami.9b03780
- Wang X, Li S, Yan C, Liu P, Ding J. Fabrication of RGD micro/ nanopattern and corresponding study of stem cell differentiation. Nano Lett. 2015;15:1457-1467. doi: 10.1021/nl5049862
- Yao X, Peng R, Ding J. Cell-material interactions revealed via material techniques of surface patterning. Adv Mater. 2013;25:5257-5286. doi: 10.1002/adma.201301762
- Tang J, Peng R, Ding J. The regulation of stem cell differentiation by cell-cell contact on micropatterned material surfaces. Biomaterials. 2010;31:2470-2476. doi: 10.1016/j.biomaterials.2009.12.006
- Mo S, Tang K, Liao Q, et al. Tuning the arrangement of lamellar nanostructures: Achieving the dual function of physically killing bacteria and promoting osteogenesis. Mater Horiz. 2023;10:881-888.
- Dong Z, Han W, Jiang P, Hao L, Fu X. Regulation of mitochondrial network architecture and function in mesenchymal stem cells by micropatterned surfaces. Regen Biomater. 2024;11:rbae052. doi: 10.1093/rb/rbae052
- Li Z, Cao B, Wang X, Ye K, Li S, Ding J. Effects of RGD nanospacing on chondrogenic differentiation of mesenchymal stem cells. J Mater Chem B. 2015;3:5197-5209.
- Peng R, Yao X, Cao B, Tang J, Ding J. The effect of culture conditions on the adipogenic and osteogenic inductions of mesenchymal stem cells on micropatterned surfaces. Biomaterials. 2012;33:6008-6019. doi: 10.1016/j.biomaterials.2012.05.010
- He J, Liu Q, Zheng S, et al. Enlargement, reduction, and even reversal of relative migration speeds of endothelial and smooth muscle cells on biomaterials simply by adjusting RGD nanospacing. ACS Appl Mater Interfaces. 2021;13:42344-42356. doi: 10.1021/acsami.1c08559
- He J, Shen R, Liu Q, et al. RGD nanoarrays with nanospacing gradient selectively induce orientation and directed migration of endothelial and smooth muscle cells. ACS Appl Mater Interfaces. 2022;14:37436-37446. doi: 10.1021/acsami.2c10006
- Liu X, Liu R, Cao B, et al. Subcellular cell geometry on micropillars regulates stem cell differentiation. Biomaterials. 2016;111:27-39. doi: 10.1016/j.biomaterials.2016.09.023
- Liu Q, Zheng S, Ye K, et al. Cell migration regulated by RGD nanospacing and enhanced under moderate cell adhesion on biomaterials. Biomaterials. 2020;263:120327. doi: 10.1016/j.biomaterials.2020.120327
- Zheng S, Liu Q, He J, et al. Critical adhesion areas of cells on micro-nanopatterns. Nano Res. 2022;15:1623-1635. doi: 10.1007/s12274-021-3711-6
- Yao X, Ding J. Effects of microstripe geometry on guided cell migration. ACS Appl Mater Interfaces. 2020;12:27971-27983. doi: 10.1021/acsami.0c05024
- Cao B, Peng R, Li Z, Ding J. Effects of spreading areas and aspect ratios of single cells on dedifferentiation of chondrocytes. Biomaterials. 2014;35:6871-6881. doi: 10.1016/j.biomaterials.2014.04.107
- Yao X, Hu Y, Cao B, Peng R, Ding J. Effects of surface molecular chirality on adhesion and differentiation of stem cells. Biomaterials. 2013;34:9001-9009. doi: 10.1016/j.biomaterials.2013.08.013
- Peng R, Yao X, Ding J. Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion. Biomaterials. 2011;32:8048-8057. doi: 10.1016/j.biomaterials.2011.07.035
- Evans NT, Torstrick FB, Lee CS, et al. High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants. Acta Biomater. 2015;13:159-167. doi: 10.1016/j.actbio.2014.11.030
- Boschetto F, Marin E, Ohgitani E, et al. Surface functionalization of PEEK with silicon nitride. Biomed Mater. 2020;16:015015. doi: 10.1088/1748-605X/abb6b1
- Chen P, Aso T, Sasaki R, et al. Adhesion and differentiation behaviors of mesenchymal stem cells on titanium with micrometer and nanometer-scale grid patterns produced by femtosecond laser irradiation. J Biomed Mater Res A. 2018;106:2735-2743. doi: 10.1002/jbm.a.36503
- Luo F, Li D, Huang Y, et al. Efficient osteogenic activity of PEEK surfaces achieved by femtosecond laser-hydroxylation. ACS Appl Mater Interfaces. 2023;15:37232-37246. doi: 10.1021/acsami.3c06430
- Cai G, Wang H, Jung YK, et al. Hierarchically porous surface of PEEK/ nMCS composite created by femtosecond laser and incorporation of resveratrol exhibiting antibacterial performances and osteogenic activity in vitro. Compos B Eng. 2020;186:107802.
- Xie D, Xu C, Ye C, et al. Fabrication of submicro-nano structures on polyetheretherketone surface by femtosecond laser for exciting cellular responses of MC3T3-E1 cells/gingival epithelial cells. Int J Nanomedicine. 2021;16:3201-3216. doi: 10.2147/IJN.S303411
- Ji Y, Zhang H, Ru J, et al. Creating micro-submicro structure and grafting hydroxyl group on PEEK by femtosecond laser and hydroxylation to synergistically activate cellular response. Mater Des. 2021;199:109413.
- Zhang S, Feng Z, Hu Y, et al. Endowing polyetheretherketone implants with osseointegration properties: In situ construction of patterned nanorod arrays. Small. 2022;18:e2105589. doi: 10.1002/smll.202105589
- Huang RYM, Shao P, Burns CM, Feng X. Sulfonation of poly(ether ether ketone)(PEEK): Kinetic study and characterization. J Appl Polym Sci. 2001;82:2651-2660.
- Ma R, Wang J, Li C, et al. Effects of different sulfonation times and post-treatment methods on the characterization and cytocompatibility of sulfonated PEEK. J Biomater Appl. 2020;35:342-352. doi: 10.1177/0885328220935008
- Ding R, Chen T, Xu Q, et al. Mixed modification of the surface microstructure and chemical state of polyetheretherketone to improve its antimicrobial activity, hydrophilicity, cell adhesion, and bone integration. ACS Biomater Sci Eng. 2020;6:842-851. doi: 10.1021/acsbiomaterials.9b01148
- Cheng QW, Yuan B, Zhu XD, Zhang K, Zhang XD. Surface elemental compositions and in vitro bioactivities of the PEEK materials with various sulfonation and alkali treatments. Gaodeng Xuexiao Huaxue Xuebao. 2019;40:1757-1765.
- Wan T, Jiao Z, Guo M, et al. Gaseous sulfur trioxide induced controllable sulfonation promoting biomineralization and osseointegration of polyetheretherketone implants. Bioact Mater. 2020;5:1004-1017.
- Ma Z, Li L, Shi X, et al. Enhanced osteogenic activities of polyetheretherketone surface modified by poly(sodium p-styrene sulfonate) via ultraviolet-induced polymerization. J Appl Polym Sci. 2020;137:49157.
- Liu L, Zheng Y, Zhang Q, Yu L, Hu Z, Liu Y. Surface phosphonation treatment shows dose-dependent enhancement of the bioactivity of polyetheretherketone. RSC Adv. 2019;9:30076-30086.
- Zhang B, Leng J, Ouyang Z, et al. Superhydrophilic and topography-regulatable surface grafting on PEEK to improve cellular affinity. Biomater Adv. 2023;146:213310. doi: 10.1016/j.bioadv.2023.213310
- Wang Z, Tang Y, Wang P, et al. Dynamical integration of antimicrobial, anti-inflammatory, and pro-osteogenic activities on polyetheretherketone via a porous N-halamine polymeric coating. Adv Funct Mater. 2023;33:2307286.
- Zheng Y, Liu L, Xiong C, Zhang L. Enhancement of bioactivity on modified polyetheretherketone surfaces with –COOH, –OH and – PO4H2 functional groups. Mater Lett. 2018;213:84-87.
- Kassick AJ, Yerneni SS, Gottlieb E, et al. Osteoconductive enhancement of polyether ether ketone: A mild covalent surface modification approach. ACS Appl Bio Mater. 2018;1:1047-1055. doi: 10.1021/acsabm.8b00274
- Chen Z, Chen Y, Wang Y, et al. Polyetheretherketone implants with hierarchical porous structure for boosted osseointegration. Biomater Res. 2023;27:61. doi: 10.1186/s40824-023-00407-5
- Zhao Y, Wong HM, Lui SC, et al. Plasma surface functionalized polyetheretherketone for enhanced osseo-integration at bone-implant interface. ACS Appl Mater Interfaces. 2016;8:3901-3911. doi: 10.1021/acsami.5b10881
- Wang H, Lu T, Meng F, Zhu H, Liu X. Enhanced osteoblast responses to poly ether ether ketone surface modified by water plasma immersion ion implantation. Colloids Surf B Biointerfaces. 2014;117:89-97. doi: 10.1016/j.colsurfb.2014.02.019
- Gan K, Liu H, Jiang L, et al. Bioactivity and antibacterial effect of nitrogen plasma immersion ion implantation on polyetheretherketone. Dent Mater. 2016;32:e263-e274. doi: 10.1016/j.dental.2016.08.215
- Wakelin EA, Yeo GC, McKenzie DR, Bilek MMM, Weiss AS. Plasma ion implantation enabled bio-functionalization of PEEK improves osteoblastic activity. APL Bioeng. 2018;2:026109. doi: 10.1063/1.5010346
- Ouyang L, Chen M, Wang D, et al. Nano textured PEEK surface for enhanced osseointegration. ACS Biomater Sci Eng. 2019;5:1279-1289. doi: 10.1021/acsbiomaterials.8b01425
- Bai X, Zhang X, Zhang R, et al. Immobilizing enoxacin on implant by polyvinyl butyral coating to promote osseointegration in osteoporosis with infection. Mater Des. 2023;227:111749. doi: 10.1016/j.matdes.2023.111749
- Su XJ, Liu S, Huo SC, et al. Polyetheretherketone surface modification by lithium-doped bioglass nanospheres to regulate bone immunity and promote osseointegration. Mater Des. 2024;238:112646. doi: 10.1016/j.matdes.2024.112646
- Sun Z, Ouyang L, Ma X, Qiao Y, Liu X. Controllable and durable release of BMP-2-loaded 3D porous sulfonated polyetheretherketone (PEEK) for osteogenic activity enhancement. Colloids Surf B Biointerfaces. 2018;171:668-674. doi: 10.1016/j.colsurfb.2018.08.012
- Wang C, Wang S, Yang Y, et al. Bioinspired, biocompatible and peptide-decorated silk fibroin coatings for enhanced osteogenesis of bioinert implant. J Biomater Sci Polym Ed. 2018;29:1595-1611. doi: 10.1080/09205063.2018.1477316
- Yuan X, Ouyang L, Luo Y, et al. Multifunctional sulfonated polyetheretherketone coating with beta-defensin-14 for yielding durable and broad-spectrum antibacterial activity and osseointegration. Acta Biomater. 2019;86:323-337. doi: 10.1016/j.actbio.2019.01.016
- Hamann C, Kirschner S, Günther KP, Hofbauer LC. Bone, sweet bone--osteoporotic fractures in diabetes mellitus. Nat Rev Endocrinol. 2012;8:297-305. doi: 10.1038/nrendo.2011.233
- Wang H, Fu X, Shi J, et al. Nutrient element decorated polyetheretherketone implants steer mitochondrial dynamics for boosted diabetic osseointegration. Adv Sci (Weinh). 2021;8:e2101778. doi: 10.1002/advs.202101778
- Wang S, Yang Y, Li Y, et al. Strontium/adiponectin co-decoration modulates the osteogenic activity of nano-morphologic polyetheretherketone implant. Colloids Surf B Biointerfaces. 2019;176:38-46. doi: 10.1016/j.colsurfb.2018.12.056
- Hu Q, Wang Y, Liu S, Liu Q, Zhang H. 3D printed polyetheretherketone bone tissue substitute modified via amoxicillin-laden hydroxyapatite nanocoating. J Mater Sci. 2022;57:18601-18614. doi: 10.1007/s10853-022-07782-9
- Surmenev RA, Surmeneva MA, Ivanova AA. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis--a review. Acta Biomater. 2014;10:557-579. doi: 10.1016/j.actbio.2013.10.036
- Liu X, Ouyang L, Chen L, et al. Hydroxyapatite composited PEEK with 3D porous surface enhances osteoblast differentiation through mediating NO by macrophage. Regen Biomater. 2022;9:rbab076. doi: 10.1093/rb/rbab076
- Huang S, Li J, Qin K, et al. Evaluation of the performance of Ca-deficient hydroxyapatite (CDHA)/MgF2 bilayer coating on biodegradable high-purity magnesium in a femoral condyle defect model in rabbits. Regen Biomater. 2022;9:rbac066. doi: 10.1093/rb/rbac066
- D’Adamo A, Salerno E, Corda G, et al. Experimental measurements and CFD modelling of hydroxyapatite scaffolds in perfusion bioreactors for bone regeneration. Regen Biomater. 2023;10:rbad002. doi: 10.1093/rb/rbad002
- Qiang H, Hou C, Zhang Y, et al. CaP-coated Zn-Mn-Li alloys regulate osseointegration via influencing macrophage polarization in the osteogenic environment. Regen Biomater. 2023;10:rbad051. doi: 10.1093/rb/rbad051
- Yang W, Tong Q, He C, et al. Mechanically propelled ion exchange regulates metal/bioceramic interface characteristics to improve the corrosion resistance of Mg composite for orthopedic applications. Ceram Int. 2024;50:23124-23134.
- He Y, Wang X, Chen L, Ding J. Preparation of hydroxyapatite micropatterns for the study of cell-biomaterial interactions. J Mater Chem B. 2014;2:2220-2227. doi: 10.1039/C4TB00146J
- Wei P, Wang N, Zhang Q, et al. Nano-ZnO-modified hydroxyapatite whiskers with enhanced osteoinductivity for bone defect repair. Regen Biomater. 2024;11:rbae051. doi: 10.1093/rb/rbae051
- Huang H, Yang A, Li J, et al. Preparation of multigradient hydroxyapatite scaffolds and evaluation of their osteoinduction properties. Regen Biomater. 2022;9:rbasc001.
- Shuai C, Yang W, Feng P, Peng S, Pan H. Accelerated degradation of HAP/PLLA bone scaffold by PGA blending facilitates bioactivity and osteoconductivity. Bioact Mater. 2021;6:490-502. doi: 10.1016/j.bioactmat.2020.09.001
- Gallo M, Tadier S, Meille S, Chevalier J. Resorption of calcium phosphate materials: Considerations on the in vitro evaluation. J Eur Ceram Soc. 2018;38:899-914. doi: 10.1016/j.jeurceramsoc.2017.07.004
- Almasi D, Lau WJ, Rasaee S, Abbasi K. Fabrication and in vitro study of 3D novel porous hydroxyapatite/polyether ether ketone surface nanocomposite. J Biomed Mater Res B Appl Biomater. 2022;110:838-847. doi: 10.1002/jbm.b.34964
- Ryu J, Ku SH, Lee H, Park CB. Mussel-inspired polydopamine coating as a universal route to hydroxyapatite crystallization. Adv Funct Mater. 2010;20:2132-2139. doi: 10.1002/adfm.200902347
- Gao Y, Pang Y, Wei S, et al. Amyloid-mediated nanoarchitectonics with biomimetic mineralization of polyetheretherketone for enhanced osseointegration. ACS Appl Mater Interfaces. 2023;15:10426-10440. doi: 10.1021/acsami.2c20711
- Yabutsuka T, Fukushima K, Hiruta T, Takai S, Yao T. Fabrication of bioactive fiber-reinforced PEEK and MXD6 by incorporation of precursor of apatite. J Biomed Mater Res B Appl Biomater. 2018;106:2254-2265. doi: 10.1002/jbm.b.34025
- Masamoto K, Fujibayashi S, Yabutsuka T, et al. In vivo and in vitro bioactivity of a “precursor of apatite” treatment on polyetheretherketone. Acta Biomater. 2019;91:48-59. doi: 10.1016/j.actbio.2019.04.041
- Xue Z, Wang Z, Sun A, et al. Rapid construction of polyetheretherketone (PEEK) biological implants incorporated with brushite (CaHPO4·2H2O) and antibiotics for anti-infection and enhanced osseointegration. Mater Sci Eng C Mater Biol Appl. 2020;111:110782. doi: 10.1016/j.msec.2020.110782
- Geim AK. Graphene: Status and prospects. Science. 2009;324:1530-1534. doi: 10.1126/science.1158877
- Yan JH, Wang CH, Li KW, et al. Enhancement of surface bioactivity on carbon fiber-reinforced polyether ether ketone via graphene modification. Int J Nanomedicine. 2018;13:3425-3440. doi: 10.2147/IJN.S160030
- Wang CH, Guo ZS, Pang F, et al. Effects of graphene modification on the bioactivation of polyethylene-terephthalate-based artificial ligaments. ACS Appl Mater Interfaces. 2015;7:15263-15276. doi: 10.1021/acsami.5b02893
- Kiew SF, Kiew LV, Lee HB, Imae T, Chung LY. Assessing biocompatibility of graphene oxide-based nanocarriers: A review. J Control Release. 2016;226:217-228. doi: 10.1016/j.jconrel.2016.02.015
- Dreyer DR, Todd AD, Bielawski CW. Harnessing the chemistry of graphene oxide. Chem Soc Rev. 2014;43:5288-5301. doi: 10.1039/C4CS00060A
- Luo Y, Shen H, Fang Y, et al. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. ACS Appl Mater Interfaces. 2015;7:6331-6339. doi: 10.1021/acsami.5b00862
- Jia Z, Shi Y, Xiong P, et al. From solution to biointerface: Graphene self-assemblies of varying lateral sizes and surface properties for biofilm control and osteodifferentiation. ACS Appl Mater Interfaces. 2016;8:17151-17165. doi: 10.1021/acsami.6b05198
- Guo C, Lu R, Wang X, Chen S. Antibacterial activity, bio-compatibility and osteogenic differentiation of graphene oxide coating on 3D-network poly-ether-ether-ketone for orthopaedic implants. J Mater Sci Mater Med. 2021;32:135. doi: 10.1007/s10856-021-06614-7
- An N, Yan X, Qiu Q, et al. Human periodontal ligament stem cell sheets activated by graphene oxide quantum dots repair periodontal bone defects by promoting mitochondrial dynamics dependent osteogenic differentiation. J Nanobiotechnol. 2024;22:133. doi: 10.1186/s12951-024-02422-7
- Zhou C, Liu S, Li J, et al. Collagen functionalized with graphene oxide enhanced biomimetic mineralization and in situ bone defect repair. ACS Appl Mater Interfaces. 2018;10:44080-44091. doi: 10.1021/acsami.8b17636
- Chen L, Yang J, Cai Z, et al. Electroactive biomaterials regulate the electrophysiological microenvironment to promote bone and cartilage tissue regeneration. Adv Funct Mater. 2024;34:2314079. doi: 10.1002/adfm.202314079
- Ouyang L, Deng Y, Yang L, et al. Graphene-oxide-decorated microporous polyetheretherketone with superior antibacterial capability and in vitro osteogenesis for orthopedic implant. Macromol Biosci. 2018;18:e1800036. doi: 10.1002/mabi.201800036
- Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318:426-430. doi: 10.1126/science.1147241
- Liu M, Zeng G, Wang K, et al. Recent developments in polydopamine: An emerging soft matter for surface modification and biomedical applications. Nanoscale. 2016;8:16819-16840. doi: 10.1039/C5NR09078D
- Yang F, Lin Y, Shen S, Gu Y, Shuai C, Feng P. Polydopamine chelating strontium on graphene oxide enhances the mechanical and osteogenic induction properties of PLLA/PGA bone scaffold. Int J Bioprint. 2024;10:1829. doi: 10.36922/ijb.1829
- Guo Y, Li B, Xie H, et al. The therapeutic efficacy of different configuration nano-polydopamine drug carrier systems with photothermal synergy against head and neck squamous cell carcinoma. Regen Biomater. 2024;11:rbae073. doi: 10.1093/rb/rbae073
- Kwon G, Kim H, Gupta KC, Kang IK. Enhanced tissue compatibility of polyetheretherketone disks by dopamine-mediated protein immobilization. Macromol Res. 2018;26:128-138. doi: 10.1007/s13233-018-6018-z
- Ahmad T, Byun H, Shin HJ, et al. Polydopamine-assisted one-step modification of nanofiber surfaces with adenosine to tune the osteogenic differentiation of mesenchymal stem cells and the maturation of osteoclasts. Biomater Sci. 2020;8:2825-2839. doi: 10.1039/C9BM01990A
- Zhu Y, Liu D, Wang X, et al. Polydopamine-mediated covalent functionalization of collagen on a titanium alloy to promote biocompatibility with soft tissues. J Mater Chem B. 2019;7:2019-2031. doi: 10.1039/C8TB03379J
- Mao G, Sun Q, Jiang J, et al. Dopamine and epigallocatechin-3-gallate cross-linked coating demonstrates improved osteointegration of polyetheretherketone in rabbits. Mater Des. 2023;226:111607. doi: 10.1016/j.matdes.2023.111607
- Shi R, Zhang J, Li W, Zhang Y, Ma Z, Wu C. An effective surface modification strategy to boost PEEK osteogenesis using porous CaP generated in well-tuned collagen matrix. Appl Surf Sci. 2021;555:149571. doi: 10.1016/j.apsusc.2021.149571
- Meng X, Zhang J, Chen J, et al. KR-12 coating of polyetheretherketone (PEEK) surface via polydopamine improves osteointegration and antibacterial activity in vivo. J Mater Chem B. 2020;8:10190-10204. doi: 10.1039/d0tb01899f
- Xiao T, Fan L, Liu R, et al. Fabrication of dexamethasone-loaded dual-metal-organic frameworks on polyetheretherketone implants with bacteriostasis and angiogenesis properties for promoting bone regeneration. ACS Appl Mater Interfaces. 2021;13:50836-50850. doi: 10.1021/acsami.1c18088
- Ma H, Han H, Zhao X, et al. Engineering multifunctional polyether ether ketone implant: Mechanics-adaptability, biominerialization, immunoregulation, anti-infection, osteointegration, and osteogenesis. Adv Healthc Mater. 2023;12:e2202799. doi: 10.1002/adhm.202202799
- Yang X, Wang Q, Zhang Y, et al. A dual-functional PEEK implant coating for anti-bacterial and accelerated osseointegration. Colloids Surf B Biointerfaces. 2023;224:113196. doi: 10.1016/j.colsurfb.2023.113196
- Zhan X, Yan J, Xiang D, et al. Near-infrared light responsive gold nanoparticles coating endows polyetheretherketone with enhanced osseointegration and antibacterial properties. Mater Today Bio. 2024;25:100982. doi: 10.1016/j.mtbio.2024.100982
- Zhang W, Liu L, Zhou H, et al. Surface bisphosphonation of polyetheretherketone to manipulate immune response for advanced osseointegration. Mater Des. 2023;232:112151. doi: 10.1016/j.matdes.2023.112151
- Zhu Y, Cao Z, Peng Y, Hu L, Guney T, Tang B. Facile surface modification method for synergistically enhancing the biocompatibility and bioactivity of poly(ether ether ketone) that induced osteodifferentiation. ACS Appl Mater Interfaces. 2019;11:27503-27511. doi: 10.1021/acsami.9b03030
- Sun A, Lin X, Xue Z, et al. Facile surface functional polyetheretherketone with antibacterial and immunoregulatory activities for enhanced regeneration toward bacterium-infected bone destruction. Drug Deliv. 2021;28:1649-1663. doi: 10.1080/10717544.2021.1960924
- Sang S, Yang C, Chai H, Yuan X, Liu W, Zhang X. The sulfonated polyetheretherketone with 3D structure modified by two bio-inspired methods shows osteogenic and antibacterial functions. Chem Eng J. 2021;420:130059.
- Gao C, Wang Z, Jiao Z, et al. Enhancing antibacterial capability and osseointegration of polyetheretherketone (PEEK) implants by dual-functional surface modification. Mater Des. 2021;205:109733. doi: 10.1016/j.matdes.2021.109733
- Wan T, Li L, Guo M, et al. Immobilization via polydopamine of dual growth factors on polyetheretherketone: Improvement of cell adhesion, proliferation, and osteo-differentiation. J Mater Sci. 2019;54:11179-11196. doi: 10.1007/s10853-018-03264-z
- Chai H, Sang S, Luo Y, He R, Yuan X, Zhang X. Icariin-loaded sulfonated polyetheretherketone with osteogenesis promotion and osteoclastogenesis inhibition properties via immunomodulation for advanced osseointegration. J Mater Chem B. 2022;10:3531-3540. doi: 10.1039/D1TB02802B
- Wu Y, Huo S, Liu S, Hong Q, Wang Y, Lyu Z. Cu-Sr bilayer bioactive glass nanoparticles/polydopamine functionalized polyetheretherketone enhances osteogenic activity and prevents implant-associated infections through spatiotemporal immunomodulation. Adv Healthc Mater. 2023;12:e2301772. doi: 10.1002/adhm.202301772
- He M, Wang H, Han Q, et al. Glucose-primed PEEK orthopedic implants for antibacterial therapy and safeguarding diabetic osseointegration. Biomaterials. 2023;303:122355. doi: 10.1016/j.biomaterials.2023.122355
- Ouyang L, Qi M, Wang, S, et al. Osteogenesis and antibacterial activity of graphene oxide and dexamethasone coatings on porous polyetheretherketone via polydopamine-assisted chemistry. Coatings. 2018;8:203. doi: 10.3390/coatings8060203
- Zhang J, Gao X, Ma D, et al. Copper ferrite heterojunction coatings empower polyetheretherketone implant with multi-modal bactericidal functions and boosted osteogenicity through synergistic photo/Fenton-therapy. Chem Eng J. 2021;422:130094. doi: 10.1016/j.cej.2021.130094
- Wang S, Duan C, Yang W, et al. Two-dimensional nanocoating-enabled orthopedic implants for bimodal therapeutic applications. Nanoscale. 2020;12:11936-11946. doi: 10.1039/D0NR02327B
- Deng Y, Gao X, Shi XL, et al. Graphene oxide and adiponectin-functionalized sulfonated poly(etheretherketone) with effective osteogenicity and remotely repeatable photodisinfection. Chem Mater. 2020;32:2180-2193. doi: 10.1021/acs.chemmater.0c00290
- Qin S, Lu Z, Gan K, et al. Construction of a BMP-2 gene delivery system for polyetheretherketone bone implant material and its effect on bone formation in vitro. J Biomed Mater Res B Appl Biomater. 2022;110:2075-2088. doi: 10.1002/jbm.b.35062
- He X, Deng Y, Yu Y, Lyu H, Liao L. Drug-loaded/grafted peptide-modified porous PEEK to promote bone tissue repair and eliminate bacteria. Colloids Surf B Biointerfaces. 2019;181:767-777. doi: 10.1016/j.colsurfb.2019.06.038
- Deng LJ, Wu YL, He XH, Xie KN, Xie L, Deng Y. Simvastatin delivery on PEEK for bioactivity and osteogenesis enhancements. J Biomater Sci Polym Ed. 2018;29:2237-2251. doi: 10.1080/09205063.2018.1534668
- Zheng Y, Gao A, Bai J, et al. A programmed surface on polyetheretherketone for sequentially dictating osteoimmunomodulation and bone regeneration to achieve ameliorative osseointegration under osteoporotic conditions. Bioact Mater. 2022;14:364-376. doi: 10.1016/j.bioactmat.2022.01.042
- Chen Y, Chen Y, Han T, et al. Enhanced osteogenic and antibacterial properties of polyetheretherketone by ultraviolet-initiated grafting polymerization of a gelatin methacryloyl/epsilon-poly-L-lysine/laponite hydrogel coating. J Biomed Mater Res A. 2023;111:1808-1821. doi: 10.1002/jbm.a.37589
- An J, Shi X, Zhang J, et al. Dual aldehyde cross-linked hyaluronic acid hydrogels loaded with PRP and NGF biofunctionalized PEEK interfaces to enhance osteogenesis and vascularization. Mater Today Bio. 2024;24:100928. doi: 10.1016/j.mtbio.2023.100928
- Dong W, Ma W, Zhao S, et al. The surface modification of long carbon fiber reinforced polyether ether ketone with bioactive composite hydrogel for effective osteogenicity. Mater Sci Eng C Mater Biol Appl. 2021;130:112451. doi: 10.1016/j.msec.2021.112451
- Shi J, Yu L, Ding J. PEG-based thermosensitive and biodegradable hydrogels. Acta Biomater. 2021;128:42-59. doi: 10.1016/j.actbio.2021.04.009
- Wang Y, Yang X, Chen X, et al. Sustained release of nitric oxide and cascade generation of reactive nitrogen/oxygen species via an injectable hydrogel for tumor synergistic therapy. Adv Funct Mater. 2022;32:2206554. doi: 10.1002/adfm.202270205
- Wang Y, Chen X, Chen Z, et al. Autophagy inhibition mediated via an injectable and NO-releasing hydrogel for amplifying the antitumor efficacy of mild magnetic hyperthermia. Bioact Mater. 2024;39:336-353. doi: 10.1016/j.bioactmat.2024.05.032
- Chen X, Wang H, Shi J, et al. An injectable and active hydrogel induces mutually enhanced mild magnetic hyperthermia and ferroptosis. Biomaterials. 2023;298:122139. doi: 10.1016/j.biomaterials.2023.122139
- Cao D, Chen X, Cao F, et al. An intelligent transdermal formulation of ALA-loaded copolymer thermogel with spontaneous asymmetry by using temperature-induced sol-gel transition and gel-sol (suspension) transition on different sides. Adv Funct Mater. 2021;31:2100349. doi: 10.1002/adfm.202100349
- Cao D, Guo W, Cai C, et al. Unified therapeutic-prophylactic vaccine demonstrated with a postoperative filler gel to prevent tumor recurrence and metastasis. Adv Funct Mater. 2022;32:2206084. doi: 10.1002/adfm.202206084
- Zhuang Y, Yang X, Li Y, et al. Sustained release strategy designed for lixisenatide delivery to synchronously treat diabetes and associated complications. ACS Appl Mater Interfaces. 2019;11:29604-29618. doi: 10.1021/acsami.9b10346
- Chen Y, Li Y, Shen W, et al. Controlled release of liraglutide using thermogelling polymers in treatment of diabetes. Sci Rep. 2016;6:31593. doi: 10.1038/srep31593
- Yang X, Chen X, Wang Y, Xu G, Yu L, Ding, J. Sustained release of lipophilic gemcitabine from an injectable polymeric hydrogel for synergistically enhancing tumor chemoradiotherapy. Chem Eng J. 2020;396:125320. doi: 10.1016/j.cej.2020.125320
- Cao D, Ding J. Recent advances in regenerative biomaterials. Regen Biomater. 2022;9:rbac098. doi: 10.1093/rb/rbac098
- Xu WK, Tang JY, Yuan Z, et al. Accelerated cutaneous wound healing using an injectable teicoplanin-loaded PLGA-PEG-PLGA thermogel dressing. Chin J Polym Sci. 2019;37:548-559. doi: 10.1007/s10118-019-2212-5
- Yu L, Li K, Liu X, et al. In vitro and in vivo evaluation of a once-weekly formulation of an antidiabetic peptide drug exenatide in an injectable thermogel. J Pharm Sci. 2013;102:4140-4149. doi: 10.1002/jps.23735
- Chen J, Cheng X, Yu Z, et al. Sustained delivery of NT-3 and curcumin augments microenvironment modulation effects of decellularized spinal cord matrix hydrogel for spinal cord injury repair. Regen Biomater. 2024;11:rbae039. doi: 10.1093/rb/rbae039
- Wang J, Tang Y, Cao Q, et al. Fabrication and biological evaluation of 3D-printed calcium phosphate ceramic scaffolds with distinct macroporous geometries through digital light processing technology. Regen Biomater. 2022;9:rbac005. doi: 10.1093/rb/rbac005
- Lee SS, Du X, Kim I, Ferguson SJ. Scaffolds for bone-tissue engineering. Matter. 2022;5:2722-2759. doi: 10.1016/j.matt.2022.06.003
- Cao Y, Sun L, Liu Z, et al. 3D printed-electrospun PCL/hydroxyapatite/ MWCNTs scaffolds for the repair of subchondral bone. Regen Biomater. 2023;10:rbac104. doi: 10.1093/rb/rbac104
- McWilliam RH, Chang W, Liu Z, et al. Three-dimensional biofabrication of nanosecond laser micromachined nanofibre meshes for tissue engineered scaffolds. Biomater Transl. 2023;4:104-114. doi: 10.12336/biomatertransl.2023.02.005
- Lu T, Yang L, Li Z, Liu Y, Xu S, Ye C. Immediate implantation of ultrafine fiber slow-release system based on cell electrospinning to induce osteogenesis of mesenchymal stem cells. Regen Biomater. 2024;11:rbad113. doi: 10.1093/rb/rbad113
- Yang, J, Fatima, K, Zhou, X, He, C. Meticulously engineered three-dimensional-printed scaffold with microarchitecture and controlled peptide release for enhanced bone regeneration. Biomater Transl. 2024;5:69-83. doi: 10.12336/biomatertransl.2024.01.007
- Qi J, Wang Y, Chen L, et al. 3D-printed porous functional composite scaffolds with polydopamine decoration for bone regeneration. Regen Biomater. 2023;10:rbad062. doi: 10.1093/rb/rbad062
- Gantenbein S, Colucci E, Käch J, et al. Three-dimensional printing of mycelium hydrogels into living complex materials. Nat Mater. 2023;22:128-134. doi: 10.1038/s41563-022-01429-5
- Guo C, Wu J, Zeng Y, Li H. Construction of 3D bioprinting of HAP/ collagen scaffold in gelation bath for bone tissue engineering. Regen Biomater. 2023;10:rbad067. doi: 10.1093/rb/rbad067
- Hua X, Hou M, Deng L, et al. Irisin-loaded electrospun core-shell nanofibers as calvarial periosteum accelerate vascularized bone regeneration by activating the mitochondrial SIRT3 pathway. Regen Biomater. 2024;11:rbad096. doi: 10.1093/rb/rbad096
- Wang C, Huang W, Zhou Y, et al. 3D printing of bone tissue engineering scaffolds. Bioact Mater. 2020;5:82-91. doi: 10.1016/j.bioactmat.2020.01.004
- Aihemaiti P, Jiang H, Aiyiti W, Wang J, Dong L, Shuai C. Mechanical properties enhancement of 3D-printed HA-PLA composites using ultrasonic vibration assistance. Virtual Phys Prototyp. 2024;19:e2346271. doi: 10.1080/17452759.2024.2346271
- Wu L, Ding J. In vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials. 2004;25:5821-5830. doi: 10.1016/j.biomaterials.2004.01.038
- Wu L, Ding J. Effects of porosity and pore size on in vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. J Biomed Mater Res A. 2005;75:767-777. doi: 10.1002/jbm.a.30487
- Jing D, Wu L, Ding J. Solvent-assisted room-temperature compression molding approach to fabricate porous scaffolds for tissue engineering. Macromol Biosci. 2006;6:747-757.doi: 10.1002/mabi.200600079
- Wu L, Jing D, Ding JA. “Room-temperature” injection molding/ particulate leaching approach for fabrication of biodegradable three-dimensional porous scaffolds. Biomaterials. 2006;27:185-191. doi: 10.1016/j.biomaterials.2005.05.105
- Qu Z, Ding J. Physical modification of the interior surfaces of PLGA porous scaffolds using sugar fibers as template. J Biomater Sci Polym Ed. 2013;24:447-459. doi: 10.1080/09205063.2012.690285
- Gao J, Yu X, Wang X, He Y, Ding J. Biomaterial-related cell microenvironment in tissue engineering and regenerative medicine. Engineering. 2022;13:31-45. doi: 10.1016/j.eng.2021.11.025
- Ding X, Gao J, Yu X, et al. 3D-printed porous scaffolds of hydrogels modified with TGF-β1 binding peptides to promote in vivo cartilage regeneration and animal gait restoration. ACS Appl Mater Interfaces. 2022;14:15982-15995. doi: 10.1021/acsami.2c00761
- Liang X, Qi Y, Pan Z, et al. Design and preparation of quasi-spherical salt particles as water-soluble porogens to fabricate hydrophobic porous scaffolds for tissue engineering and tissue regeneration. Mater Chem Front. 2018;2:1539-1553. doi: 10.1039/C8QM00152A
- Shuai C, Peng B, Feng P, Yu L, Lai R, Min A. In situ synthesis of hydroxyapatite nanorods on graphene oxide nanosheets and their reinforcement in biopolymer scaffold. J Adv Res. 2022;35:13-24. doi: 10.1016/j.jare.2021.03.009
- Feng P, Wu P, Gao C, et al. A multimaterial scaffold with tunable properties: Toward bone tissue repair. Adv Sci (Weinh). 2018;5:1700817. doi: 10.1002/advs.201700817
- Yu J, Zhang Y, Guo J, Shu X, Lu Q, Chen Q. Sand casting-inspired surface modification of 3D-printed porous polyetheretherketone scaffolds for enhancing osteogenesis. Compos Part A Appl Sci Manuf. 2024;179:108033. doi: 10.1016/j.compositesa.2024.108033
- Liu Z, Zhang M, Wang Z, et al. 3D-printed porous PEEK scaffold combined with CSMA/POSS bioactive surface: A strategy for enhancing osseointegration of PEEK implants. Compos B Eng. 2022;230:109512. doi: 10.1016/j.compositesb.2021.109512
- Wei X, Zhou W, Tang Z, et al. Magnesium surface-activated 3D printed porous PEEK scaffolds for in vivo osseointegration by promoting angiogenesis and osteogenesis. Bioact Mater. 2023;20:16-28. doi: 10.1016/j.bioactmat.2022.05.011