·
REVIEW
·

Research progress on the role and mechanism of magnesium-containing materials in bone repair

Yuanchao Zhu1# Junyu Su1# Tiantian Qi2,3# Geng Zhang2,3 Peng Liu3 Haotian Qin2,3 Qi Yang4 Sen Yao5 Yien Zheng6 Jian Weng2,3* Hui Zeng7* Fei Yu2,3*
Show Less
1 School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, Guangdong Province, China
2 Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
3 National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
4 Department of Ultrasonography, Peking University Shenzhen hospital, Shenzhen, Guangdong Province, China
5 Department of Orthopedics, Shenzhen Yantian District People’s Hospital, Shenzhen, Guangdong Province, China
6 Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
7 Department of Orthopedics, Shenzhen Second People’s Hospital, Shenzhen, Guangdong Province, China
BMT 2025 , 6(2), 114–126; https://doi.org/10.12336/bmt.24.00038
Submitted: 4 July 2024 | Revised: 7 September 2024 | Accepted: 8 October 2024 | Published: 25 June 2025
Copyright © 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Bones can fulfill functions in movement, attachment, and protection of internal organs. Bone diseases caused by ageing, trauma, infection, and other reasons may seriously affect the daily life of patients. Magnesium ions are closely associated with the maintenance of bone health. Integrating magnesium ions into delivery systems and hydrogels can improve their application, thus directly acting on the osteoblast cell lineage and influencing the proliferation and differentiation of relevant cells. The slow release of magnesium ions allows for their effects on the target site for a long time, reducing the clearance of magnesium ions in the body, which significantly contributes to bone repair. Magnesium-based bioalloy scaffolds have received widespread attention for their favourable biocompatibility, degradability, and bone-forming properties and play an important role in bone regeneration and repair. This article presents a review on the role and mechanism of magnesium-containing materials in bone repair and regeneration. By discussing the current challenges and future directions for magnesium-containing biomaterials, new insights are provided into the development of these materials in the field of orthopaedics. In conclusion, magnesium-containing biomaterials have great application value in orthopaedics.

Keywords
Bone repair
Delivery system
Magnesium ions
Magnesium-based bioalloy scaffolds
Magnesium-loaded hydrogels
Funding
This work was supported by grants from National Natural Science Foundation of China (Nos. 82102568, 82172432); Guangdong Basic and Applied Basic Research Foundation (Nos. 2022A1515220111, 2022B1515120046, 2021A1515220037, 2022A1515220165); Shenzhen Key Medical Discipline Construction Fund (No. SZXK023); Shenzhen “San-Ming” Project of Medicine (No. SZSM202211038); Shenzhen Science and Technology Program (No.JCYJ20220818102815033; No.KCXFZ20201221173411031; No.JCYJ20210324110214040; No. JCYJ20210324105806016), The Scientific Research Foundation of PEKING UNIVERSITY SHENZHEN HOSPITAL (No. KYQD2021099) and Shenzhen High-level Hospital Construction Fund.
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

  1. Nauth A, Schemitsch E, Norris B, Nollin Z, Watson JT. Critical-size bone defects: Is there a consensus for diagnosis and treatment? J Orthop Trauma. 2018;32 Suppl 1:S7-S11. doi: 10.1097/BOT.0000000000001115

 

  1. Sanders DW, Bhandari M, Guyatt G, et al. Critical-sized defect in the tibia: Is it critical? Results from the SPRINT trial. J Orthop Trauma. 2014;28:632-635. doi: 10.1097/BOT.0000000000000194

 

  1. Cui J, Shibata Y, Zhu T, Zhou J, Zhang J. Osteocytes in bone aging: Advances, challenges, and future perspectives. Ageing Res Rev. 2022;77:101608 doi: 10.1016/j.arr.2022.101608

 

  1. Hao H, Teng P, Liu C, Liu G. The correlation between osteoporotic vertebral fracture and paravertebral muscle condition and its clinical treatment. Nano Biomed Eng. 2024;16:203-218 doi: 10.1007/s11657-019-0654-6

 

  1. Salari N, Ghasemi H, Mohammadi L. The global prevalence of osteoporosis in the world: A comprehensive systematic review and meta-analysis. J Orthop Surg Res. 2021;16:609 doi: 10.1186/s13018-021-02772-0

 

  1. Li J, Huang Z, Li B, Zhang Z, Liu L. Mobilization of transplanted bone marrow mesenchymal stem cells by erythropoietin facilitates the reconstruction of segmental bone defect. Stem Cells Int. 2019;2019:5750967 doi: 10.1155/2019/5750967

 

  1. El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models. Acta Biomater. 2017;62:1-28 doi: 10.1016/j.actbio.2017.08.030

 

  1. Dreyer CH, Rasmussen M, Pedersen RH, Overgaard S, Ding M. Comparisons of efficacy between autograft and allograft on defect repair in vivo in normal and osteoporotic rats. Biomed Res Int. 2020;2020:9358989 doi: 10.1155/2020/9358989

 

  1. Li J, Wang W, Li M, Liu L. Repair of segmental bone defect using tissue engineered heterogeneous deproteinized bone doped with lithium. Sci Rep. 2021;11:4819 doi: 10.1038/s41598-021-84526-w

 

  1. Li T, Yu Y, Shi H. Magnesium in combinatorial with valproic acid suppressed the proliferation and migration of human bladder cancer cells. Front Oncol. 2020;10:589112.

 

  1. Romani AM. Cellular magnesium homeostasis. Arch Biochem Biophys. 2011;512:1-23.

 

  1. O’Neill E, Awale G, Daneshmandi L, Umerah O, Lo KW. The roles of ions on bone regeneration. Drug Discov Today. 2018;23:879-890 doi: 10.1016/j.drudis.2018.01.049

 

  1. Li X, Yu W, Han L, Chu C, Bai J, Xue F. Degradation behaviors of Mg alloy wires/PLA composite in the consistent and staged dynamic environments. Mater Sci Eng C Mater Biol Appl. 2019;103:109765 doi: 10.1016/j.msec.2019.109765

 

  1. Chen Y, Ye SH, Sato H. Hybrid scaffolds of Mg alloy mesh reinforced polymer/extracellular matrix composite for critical-sized calvarial defect reconstruction. J Tissue Eng Regen Med. 2018;12:1374-1388 doi: 10.1002/term.2668

 

  1. Fu J, Su Y, Qin YX, Zheng Y, Wang Y, Zhu D. Evolution of metallic cardiovascular stent materials: A comparative study among stainless steel, magnesium and zinc. Biomaterials. 2020;230:119641 doi: 10.1016/j.biomaterials.2019.119641

 

  1. Park JW, Kim YJ, Jang JH, Song H. Osteoblast response to magnesium ion-incorporated nanoporous titanium oxide surfaces. Clin Oral Implants Res. 2010;21:1278-1287 doi: 10.1111/j.1600-0501.2010.01944.x

 

  1. Ma J, Zhao N, Betts L, Zhu D. Bio-adaption between magnesium alloy stent and the blood vessel: A review. J Mater Sci Technol. 2016;32:815-826 doi: 10.1016/j.jmst.2015.12.018

 

  1. Aboutalebianaraki N, Neal CJ, Seal S, Razavi M. Biodegradable Mg-Sc-Sr alloy improves osteogenesis and angiogenesis to accelerate bone defect restoration. J Funct Biomater. 2022;13:261 doi: 10.3390/jfb13040261

 

  1. Vormann J. Magnesium: Nutrition and metabolism. Mol Aspects Med. 2003;24:27-37.

 

  1. Pelczyńska M, Moszak M, Bogdański P. The role of magnesium in the pathogenesis of metabolic disorders. Nutrients. 2022;14:1714 doi: 10.3390/nu14091714

 

  1. Wacker WE, Parisi AF. Magnesium metabolism. N Engl J Med. 1968;278:658-663.

 

  1. Lameris AL, Monnens LA, Bindels RJ, Hoenderop JG. Drug-induced alterations in Mg2+ homoeostasis. Clin Sci (Lond). 2012;123:1-14 doi: 10.1042/cs20120045

 

  1. Rondanelli M, Faliva MA, Tartara A. An update on magnesium and bone health. Biometals. 2021;34:715-736 doi: 10.1007/s10534-021-00305-0

 

  1. Erem S, Atfi A, Razzaque MS. Anabolic effects of vitamin D and magnesium in aging bone. J Steroid Biochem Mol Biol. 2019;193:105400 doi: 10.1016/j.jsbmb.2019.105400

 

  1. Rude RK, Gruber HE, Wei LY, Frausto A, Mills BG. Magnesium deficiency: Effect on bone and mineral metabolism in the mouse. Calcif Tissue Int. 2003;2:32-41 doi: 10.1007/s00223-001-1091-1

 

  1. Rude RK, Singer FR, Gruber HE, et al. Skeletal and hormonal effects of magnesium deficiency. J Am Coll Nutr. 2009;28:131-141.

 

  1. Xue X, Hu Y, Wang S, Chen X, Jiang Y, Su J. Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering. Bioact Mater. 2022;12:327-339.

 

  1. Hung CC, Chaya A, Liu K, Verdelis K, Sfeir C. The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway. Acta Biomater. 2019;98:246-255 doi: 10.1016/j.actbio.2019.06.001

 

  1. Díaz-Tocados JM, Herencia C, Martínez-Moreno JM, et al. Magnesium chloride promotes osteogenesis through Notch signaling activation and expansion of mesenchymal stem cells. Sci Rep. 2017;7:7839 doi: 10.1038/s41598-017-08379-y

 

  1. Cai Z, Liu X, Hu M, et al. In situ enzymatic reaction generates magnesium-based mineralized microspheres with superior bioactivity for enhanced bone regeneration. Adv Healthc Mater. 2023;12:e2300727 doi: 10.1002/adhm.202300727

 

  1. Shan Z, Xie X, Wu X, Zhuang S, Zhang C. Development of degradable magnesium-based metal implants and their function in promoting bone metabolism (a review). J Orthop Translat. 2022;36:184-193 doi: 10.1016/j.jot.2022.09.013

 

  1. Nie X, Sun X, Wang C, Yang J. Effect of magnesium ions/Type I collagen promote the biological behavior of osteoblasts and its mechanism. Regen Biomater. 2020;7:53-61 doi: 10.1093/rb/rbz033

 

  1. Chang J, Yu D, Ji J, Wang N, Yu S, Yu B. The association between the concentration of serum magnesium and postmenopausal osteoporosis. Front Med (Lausanne). 2020;7:381 doi: 10.3389/fmed.2020.00381

 

  1. Castiglioni S, Cazzaniga A, Albisetti W, Maier JA. Magnesium and osteoporosis: Current state of knowledge and future research directions. Nutrients. 2013;5:3022-3033 doi: 10.3390/nu5083022

 

  1. Leidi M, Dellera F, Mariotti M, et al. Nitric oxide mediates low magnesium inhibition of osteoblast-like cell proliferation. J Nutr Biochem. 2012;23:1224-1229 doi: 10.1016/j.jnutbio.2011.06.016

 

  1. Rude RK, Gruber HE. Magnesium deficiency and osteoporosis: Animal and human observations. J Nutr Biochem. 2004;15:710-716 doi: 10.1016/j.jnutbio.2004.08.001

 

  1. Obata A, Ogasawara T, Kasuga T. Combinatorial effects of inorganic ions on adhesion and proliferation of osteoblast-like cells. J Biomed Mater Res A. 2019;107:1042-1051 doi: 10.1002/jbm.a.36623

 

  1. Liu W, Guo S, Tang Z, et al. Magnesium promotes bone formation and angiogenesis by enhancing MC3T3-E1 secretion of PDGF-BB. Biochem Biophys Res Commun. 2020;528:664-670 doi: 10.1016/j.bbrc.2020.05.113

 

  1. Qin H, Weng J, Zhou B, et al. Magnesium ions promote in vitro rat bone marrow stromal cell angiogenesis through Notch signaling. Biol Trace Elem Res. 2023;201:2823-2842 doi: 10.1007/s12011-022-03364-7

 

  1. Gao P, Fan B, Yu X, et al. Biofunctional magnesium coated Ti6Al4V scaffold enhances osteogenesis and angiogenesis in vitro and in vivo for orthopedic application. Bioact Mater. 2020;5:680-693 doi: 10.1016/j.bioactmat.2020.04.019

 

  1. Sadowska JM, Ginebra MP. Inflammation and biomaterials: Role of the immune response in bone regeneration by inorganic scaffolds. J Mater Chem B. 2020;8:9404-9427 doi: 10.1039/d0tb01379j

 

  1. Bessa-Gonçalves M, Silva AM, Brás JP, et al. Fibrinogen and magnesium combination biomaterials modulate macrophage phenotype, NF-kB signaling and crosstalk with mesenchymal stem/stromal cells. Acta Biomater. 2020;114:471-484 doi: 10.1016/j.actbio.2020.07.028

 

  1. Liao Z, Fu L, Li P, et al. Incorporation of magnesium ions into an aptamer-functionalized ecm bioactive scaffold for articular cartilage regeneration. ACS Appl Mater Interfaces. 2023;15:22944-22958 doi: 10.1021/acsami.3c02317

 

  1. Stephanopoulos N, Ortony JH, Stupp SI. Self-assembly for the synthesis of functional biomaterials. Acta Mater. 2013;61:912-930 doi: 10.1016/j.actamat.2012.10.046

 

  1. Li X, Li X, Yang J, et al. Living and injectable porous hydrogel microsphere with paracrine activity for cartilage regeneration. Small. 2023;19:e2207211 doi: 10.1002/smll.202207211

 

  1. Zhang H, Wu S, Chen W, Hu Y, Geng Z, Su J. Bone/cartilage targeted hydrogel: Strategies and applications. Bioact Mater. 2023;23:156-169 doi: 10.1016/j.bioactmat.2022.10.028

 

  1. Chen Y, Sheng W, Lin J, et al. Magnesium oxide nanoparticle coordinated phosphate-functionalized chitosan injectable hydrogel for osteogenesis and angiogenesis in bone regeneration. ACS Appl Mater Interfaces. 2022;14:7592-7608 doi: 10.1021/acsami.1c21260.s001

 

  1. Zhang X, Huang P, Jiang G, et al. A novel magnesium ion-incorporating dual-crosslinked hydrogel to improve bone scaffold-mediated osteogenesis and angiogenesis. Mater Sci Eng C Mater Biol Appl. 2021;121:111868 doi: 10.1016/j.bioadv.2025.214371

 

  1. Tan X, Wu J, Wang R, et al. PgC(3)Mg metal-organic cages functionalized hydrogels with enhanced bioactive and ROS scavenging capabilities for accelerated bone regeneration. J Mater Chem B. 2022;10:5375-5387 doi: 10.1039/d2tb00907b

 

  1. Xu Y, Xu C, He L, et al. Stratified-structural hydrogel incorporated with magnesium-ion-modified black phosphorus nanosheets for promoting neuro-vascularized bone regeneration. Bioact Mater. 2022;16:271-284 doi: 10.1016/j.bioactmat.2022.02.024

 

  1. Xiong A, He Y, Gao L, et al. The fabrication of a highly efficient hydrogel based on a functionalized double network loaded with magnesium ion and BMP2 for bone defect synergistic treatment. Mater Sci Eng C Mater Biol Appl. 2021;128:112347 doi: 10.1016/j.msec.2021.112347

 

  1. Li Z, Lin H, Shi S, et al. Controlled and sequential delivery of stromal derived factor-1 α (SDF-1α) and magnesium ions from bifunctional hydrogel for bone regeneration. Polymers (Basel). 2022;14:2872 doi: 10.3390/polym14142872

 

  1. Pan H, Gao H, Li Q, et al. Engineered macroporous hydrogel scaffolds via pickering emulsions stabilized by MgO nanoparticles promote bone regeneration. J Mater Chem B. 2020;8:6100-6114 doi: 10.1039/d0tb00901f

 

  1. Zhao Z, Li G, Ruan H, et al. Capturing magnesium ions via microfluidic hydrogel microspheres for promoting cancellous bone regeneration. ACS Nano. 2021;15:13041-13054 doi: 10.1021/acsnano.1c02147.s001

 

  1. Luneva O, Olekhnovich R, Uspenskaya M. Bilayer hydrogels for wound dressing and tissue engineering. Polymers (Basel). 2022;14:3135. doi. org/10.3390/polym14153135

 

  1. Huang P, Wang X, Liang X, et al. Nano-, micro-, and macroscale drug delivery systems for cancer immunotherapy. Acta Biomater. 2019;85:1-26.

 

  1. Guo Y, Li Z, Guo B, Wang B, Tu Y. Targeting-specific nanoprobes in the second near-infrared window for biomedical applications. Nano Biomed Eng. 2024;16:135-151 doi: 10.26599/nbe.2024.9290061

 

  1. Chang B, Ahuja N, Ma C, Liu X. Injectable scaffolds: Preparation and application in dental and craniofacial regeneration. Mater Sci Eng R Rep. 2017;111:1-26.

 

  1. Tan S, Wang Y, Du Y, Xiao Y, Zhang S. Injectable bone cement with magnesium-containing microspheres enhances osteogenesis via anti-inflammatory immunoregulation. Bioact Mater. 2021;6:3411-3423 doi: 10.1016/j.bioactmat.2021.03.006

 

  1. Yuan Z, Wei P, Huang Y, et al. Injectable PLGA microspheres with tunable magnesium ion release for promoting bone regeneration. Acta Biomater. 2019;85:294-309. doi: 10.1016/j.actbio.2018.12.017

 

  1. Yuan Z, Wan Z, Wei P, et al. Dual-controlled release of icariin/Mg(2+) from biodegradable microspheres and their synergistic upregulation effect on bone regeneration. Adv Healthc Mater. 2020;9:e2000211 doi: 10.1002/adhm.202000211

 

  1. Lin Z, Wu J, Qiao W, et al. Precisely controlled delivery of magnesium ions thru sponge-like monodisperse PLGA/nano-MgO-alginate core-shell microsphere device to enable in-situ bone regeneration. Biomaterials. 2018;174:1-16 doi: 10.1016/j.biomaterials.2018.05.011

 

  1. Lin Z, Shen D, Zhou W, et al. Regulation of extracellular bioactive cations in bone tissue microenvironment induces favorable osteoimmune conditions to accelerate in situ bone regeneration. Bioact Mater. 2021;6:2315-2330 doi: 10.1016/j.bioactmat.2021.01.018

 

  1. Mao L, Wu W, Wang M, et al. Targeted treatment for osteoarthritis: Drugs and delivery system. Drug Deliv. 2021;28:1861-1876.

 

  1. Liu Y, Jia Z, Akhter MP, et al. Bone-targeting liposome formulation of Salvianic acid A accelerates the healing of delayed fracture Union in Mice. Nanomedicine. 2018;14:2271-2282 doi: 10.1016/j.nano.2018.07.011

 

  1. Wang Y, Newman MR, Ackun-Farmmer M, et al. Fracture-targeted delivery of β-catenin agonists via peptide-functionalized nanoparticles augments fracture healing. ACS Nano. 2017;11:9445-9458 doi: 10.1021/acsnano.0c01871

 

  1. Witte F. Reprint of: The history of biodegradable magnesium implants: A review. Acta Biomater. 2015;23:Suppl, S28-S40 doi: 10.1016/j.actbio.2015.07.017

 

  1. Tian L, Tang N, Ngai T, et al. Hybrid fracture fixation systems developed for orthopaedic applications: A general review. J Orthop Translat. 2019;16:1-13.

 

  1. Xu L, Pan F, Yu G, Yang L, Zhang E, Yang K. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials. 2009;30:1512-1523 doi: 10.1016/j.biomaterials.2008.12.001

 

  1. Zhang X, Chen Q, Mao X. Magnesium enhances osteogenesis of BMSCs by tuning osteoimmunomodulation. Biomed Res Int. 2019;2019:7908205.

 

  1. Yao L, Chen H, Wu Q, Xie K. Hydrogen-rich saline alleviates inflammation and apoptosis in myocardial I/R injury via PINK-mediated autophagy. Int J Mol Med. 2019;44:1048-1062 doi: 10.3892/ijmm.2019.4264

 

  1. Liu Y, Wang DL, Huang YC, Wang TB, Zeng H. Hydrogen inhibits the osteoclastogenesis of mouse bone marrow mononuclear cells. Mater Sci Eng C Mater Biol Appl. 2020;110:110640 doi: 10.3892/etm.2023.12135

 

  1. Sun K, Fu R, Liu XW, et al. Osteogenesis and angiogenesis of a bulk metallic glass for biomedical implants. Bioact Mater. 2022;8:253-266.

 

  1. Zhao S, Xie K, Guo Y, et al. Fabrication and biological activity of 3D-printed polycaprolactone/magnesium porous scaffolds for critical size bone defect repair. ACS Biomater Sci Eng. 2020;6:5120-5131 doi: 10.1021/acsbiomaterials.9b01911.s001

 

  1. Zhang D, Cheng S, Tan J, et al. Black Mn-containing layered double hydroxide coated magnesium alloy for osteosarcoma therapy, bacteria killing, and bone regeneration. Bioact Mater. 2022;17:394-405 doi: 10.1016/j.bioactmat.2022.01.032

 

  1. Perumal G, Ramasamy B, Nandkumar AM, Dhanasekaran S, Ramasamy S, Doble M. Bilayer nanostructure coated AZ31 magnesium alloy implants: In vivo reconstruction of critical-sized rabbit femoral segmental bone defect. Nanomedicine. 2020;29:102232 doi: 10.1016/j.nano.2020.102232

 

  1. Sommer NG, Hirzberger D, Paar L, et al. Implant degradation of low-alloyed Mg-Zn-Ca in osteoporotic, old and juvenile rats. Acta Biomater. 2022;147:427-438 doi: 10.1016/j.actbio.2022.05.041

 

  1. Zhu Y, Jia G, Yang Y, et al. Biomimetic porous magnesium alloy scaffolds promote the repair of osteoporotic bone defects in rats through activating the Wnt/β-catenin signaling pathway. ACS Biomater Sci Eng. 2023;9:3435-3444 doi: 10.34133/bmr.0090

 

  1. Chaya A, Yoshizawa S, Verdelis K, et al. In vivo study of magnesium plate and screw degradation and bone fracture healing. Acta Biomater. 2015;18:262-269 doi: 10.1016/j.actbio.2015.02.010

 

  1. Herber V, Labmayr V, Sommer NG, et al. Can hardware removal be avoided using bioresorbable Mg-Zn-Ca screws after medial malleolar fracture fixation? Mid-term results of a first-in-human study. Injury. 2022;53:1283-1288 doi: 10.1016/j.injury.2021.10.025

 

  1. Ding K, Yang W, Zhu J, et al. Titanium alloy cannulated screws and biodegradable magnesium alloy bionic cannulated screws for treatment of femoral neck fractures: A finite element analysis. J Orthop Surg Res. 2021;16:511 doi: 10.1186/s13018-021-02665-2

 

  1. Fu X, Wang GX, Wang CG, Li ZJ. Comparison between bioabsorbable magnesium and titanium compression screws for hallux valgus treated with distal metatarsal osteotomies: A meta-analysis. Jt Dis Relat Surg. 2023;34:289-297 doi: 10.52312/jdrs.2023.1026

 

  1. Holweg P, Herber V, Ornig M, et al. A lean bioabsorbable magnesium-zinc-calcium alloy ZX00 used for operative treatment of medial malleolus fractures: Early clinical results of a prospective non-randomized first in man study. Bone Joint Res. 2020;9:477-483 doi: 10.1302/2046-3758.98.bjr-2020-0017.r2

 

  1. Klauser H. Internal fixation of three-dimensional distal metatarsal I osteotomies in the treatment of hallux valgus deformities using biodegradable magnesium screws in comparison to titanium screws. Foot Ankle Surg. 2019;25:398-405 doi: 10.1016/j.fas.2018.02.005

 

  1. Acar B, Kose O, Unal M, Turan A, Kati YA, Guler F. Comparison of magnesium versus titanium screw fixation for biplane chevron medial malleolar osteotomy in the treatment of osteochondral lesions of the talus. Eur J Orthop Surg Traumatol. 2020;30:163-173 doi: 10.1007/s00590-019-02524-1

 

  1. Li Y, Wang Y, Shen Z, et al. Biodegradable magnesium alloy vascular stent structure: Design, optimisation and evaluation. Acta Biomater. 2022;142:402-412.

 

  1. Cheng S, Zhang D, Li M, et al. Osteogenesis, angiogenesis and immune response of Mg-Al layered double hydroxide coating on pure Mg. Bioact Mater. 2021;6:91-105 doi: 10.1016/j.bioactmat.2020.07.014

 

  1. Li CY, Gao L, Fan XL, Zeng RC, Chen DC, Zhi KQ. In vitro degradation and cytocompatibility of a low temperature in-situ grown self-healing Mg-Al LDH coating on MAO-coated magnesium alloy AZ31. Bioact Mater. 2020;5:364-376 doi: 10.1016/j.bioactmat.2020.02.008

 

  1. Sarian MN, Iqbal N, Sotoudehbagha P, et al. Potential bioactive coating system for high-performance absorbable magnesium bone implants. Bioact Mater. 2022;12:42-63 doi: 10.1016/j.bioactmat.2021.10.034

 

  1. Li LY, Cui LY, Zeng RC, et al. Advances in functionalized polymer coatings on biodegradable magnesium alloys - a review. Acta Biomater. 2018;79:23-36.

 

  1. Park SS, Farwa U, Park I, Moon BG, Im SB, Lee BT. In-vivo bone remodeling potential of Sr-d-Ca-P /PLLA-HAp coated biodegradable ZK60 alloy bone plate. Mater Today Bio. 2023;18:100533 doi: 10.1016/j.mtbio.2022.100533

 

  1. Watanabe H, Xu W, Uno H, et al. Fluoride-treated rare earth-free magnesium alloy ZK30: An inert and bioresorbable material for bone fracture treatment devices. J Biomed Mater Res A. 2024;112:963-972 doi: 10.1002/jbm.a.37673

 

  1. Liu B, Liu J, Wang C, et al. High temperature oxidation treated 3D printed anatomical WE43 alloy scaffolds for repairing periarticular bone defects: In vitro and in vivo studies. Bioact Mater. 2024;32:177-189 doi: 10.1016/j.bioactmat.2023.09.016

 

  1. Tan L, Wang Q, Lin X, et al. Loss of mechanical properties in vivo and bone-implant interface strength of AZ31B magnesium alloy screws with Si-containing coating. Acta Biomater. 2014;10:2333-2340 doi: 10.1016/j.actbio.2013.12.020

 

  1. Kong X, Wang L, Li G, et al. Mg-based bone implants show promising osteoinductivity and controllable degradation: A long-term study in a goat femoral condyle fracture model. Mater Sci Eng C Mater Biol Appl. 2018;86:42-47 doi: 10.1016/j.msec.2017.12.014
Conflict of interest
The authors declare no competing interests.
Share
Back to top