Functionalization and rehabilitation applications of sodium alginate-based hydrogels
Sodium alginate (SA)-based hydrogels, derived from SA, are a class of polymer hydrogels that have garnered significant attention due to their excellent biocompatibility, eco-friendly production processes, and the abundance and cost-effectiveness of their raw materials. These hydrogels hold vast potential for applications across multiple fields, such as biomedical engineering, flexible sensors, food science, and environmental management. To enhance and diversify their functional capabilities, the functionalization of SA-based hydrogels has become a focal point of research. This study provides a comprehensive review of the field, starting with a systematic summary of the functional preparation methods of SA-based hydrogels developed in recent years. These methods encompass physical and chemical modification techniques, which are crucial for tailoring the properties of the hydrogels to specific applications. Physical modification is typically achieved by mixing with nanomaterials, natural materials, and polymer materials through physical interaction forces, whereas chemical modification is mainly obtained through oxidation, sulfonation, and graft polymerization. The main applications of SA-based hydrogels are also reviewed, including those applied in flexible detection, tissue engineering, food, and water treatment, offering a detailed comparative analysis of their performance in these areas. Finally, the study looks ahead to future research and development prospects of SA-based hydrogels, aiming to drive further advancements in their functional development and expand their application scope. By thoroughly analyzing current research and future directions, this paper seeks to stimulate continued innovation and practical applications of SA-based hydrogels.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
- Taylor DL, In Het Panhuis M. Self-healing hydrogels. Adv Mater. 2016;28(41):9060-9093. doi: 10.1002/adma.201601613
- Li X, Gong JP. Design principles for strong and tough hydrogels. Nat Rev Mater. 2024;9(6):380-398. doi: 10.1038/s41578-024-00672-3
- Ji D, Park JM, Oh MS, et al. Superstrong, superstiff, and conductive alginate hydrogels. Nat Commun. 2022;13(1):3019. doi: 10.1038/s41467-022-30691-z
- Abdul Khalil HPS, Lai TK, Tye YY, et al. A review of extractions of seaweed hydrocolloids: Properties and applications. Express Polym Lett. 2018;12(4):296-317. doi: 10.3144/expresspolymlett.2018.27
- Liu GW, Pickett MJ, Kuosmanen JLP, et al. Drinkable in situ-forming tough hydrogels for gastrointestinal therapeutics. Nat Mater. 2024;23:1292-1999. doi: 10.1038/s41563-024-01811-5
- Luo R, Liu J, Cheng Q, Shionoya M, Gao C, Wang R. Oral microsphere formulation of M2 macrophage-mimetic Janus nanomotor for targeted therapy of ulcerative colitis. Sci Adv. 2024;10(26):eado6798. doi: 10.1126/sciadv.ado6798
- Zhao M, Kang M, Wang J, et al. Stem cell‐derived nanovesicles embedded in dual‐layered hydrogel for programmed ROS regulation and comprehensive tissue regeneration in burn wound healing. Adv Mater. 2024;36(32):2401369. doi: 10.1002/adma.202401369
- Guo R, Li X, Zhou Y, et al. Semi-liquid metal-based highly permeable and adhesive electronic skin inspired by spider web. Sci Bull (Beijing). 2024;69(17):2723-2734. doi: 10.1016/j.scib.2024.06.032
- Wang M, Zhang X, Liu B, et al. Immunotherapeutic hydrogel with photothermal induced immunogenic cell death and STING Activation for post‐surgical treatment. Adv Funct Mater. 2023;33(29):2300199. doi: 10.1002/adfm.202300199
- Yan J, Zhou T, Peng J, Wang H, Jiang L, Cheng Q. Sustainable liquid metal-induced conductive nacre. Sci Bull. 2024;69(7):913-921. doi: 10.1016/j.scib.2024.01.033
- Jiang XY, Li L, Yan JN, et al. Characterization of hydrogel beads constructed from gelatinized lotus rhizome starch and sodium alginate by calcium cross-linking. Food Hydrocoll. 2024;154:110102. doi: 10.1016/j.foodhyd.2024.110102
- Hui Z, Zhang Z, Wang Y, et al. Gradiently foaming ultrasoft hydrogel with stop holes for highly deformable, crack‐resistant and sensitive conformal human‐machine interfaces. Adv Mater. 2024;36(23):2314163. doi: 10.1002/adma.202314163
- Lei XX, Hu JJ, Zou CY, et al. Multifunctional two-component in-situ hydrogel for esophageal submucosal dissection for mucosa uplift, postoperative wound closure and rapid healing. Bioact Mater. 2023;27:461-473. doi: 10.1016/j.bioactmat.2023.04.015
- Liang L, Hou T, Ouyang Q, et al. Antimicrobial sodium alginate dressing immobilized with polydopamine-silver composite nanospheres. Compos Part B Eng. 2020;188:107877. doi: 10.1016/j.compositesb.2020.107877
- Fan X, Huang J, Zhang W, et al. A multifunctional, tough, stretchable, and transparent curcumin hydrogel with potent antimicrobial, antioxidative, anti-inflammatory, and angiogenesis capabilities for diabetic wound healing. ACS Appl Mater. 2024;16(8):9749-9767. doi: 10.1021/acsami.3c16837
- Raj V, Raorane CJ, Shastri D, Kim SC, Lee S. Engineering a self-healing grafted chitosan-sodium alginate based hydrogel with potential keratinocyte cell migration property and inhibitory effect against fluconazole resistance Candida albicans biofilm. Int J Biol Macromol. 2024;261:129774. doi: 10.1016/j.ijbiomac.2024.129774
- Solano AG, Dupuy J, Therriault H, et al. An alginate-based macroporous hydrogel matrix to trap cancer cells. Carbohydr Polym. 2021;266:118115. doi: 10.1016/j.carbpol.2021.118115
- Sun J, Tan H. Alginate-based biomaterials for regenerative medicine applications. Mater (Basel). 2013;6(4):1285-1309. doi: 10.3390/ma6041285
- Wei Q, Zhou J, An Y, Li M, Zhang J, Yang S. Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review. Int J Biol Macromol. 2023;232:123450. doi: 10.1016/j.ijbiomac.2023.123450
- Lee DU, Kayumov M, Park J, et al. Antibiofilm and antithrombotic hydrogel coating based on superhydrophilic zwitterionic carboxymethyl chitosan for blood-contacting devices. Bioact Mater. 2024;34:112-124. doi: 10.1016/j.bioactmat.2023.12.009
- Song R, Wang X, Johnson M, et al. Enhanced strength for double network hydrogel adhesive through cohesion‐adhesion balance. Adv Funct Mater. 2024;34(23):2313322. doi: 10.1002/adfm.202313322
- Zhang G, Wang X, Meng G, et al. Enzyme-mineralized PVASA hydrogels with combined toughness and strength for bone tissue engineering. ACS Appl Mater. 2023;16(1):178-189. doi: 10.1021/acsami.3c14006
- Zhang B, Cai X, Li J, et al. Biocompatible and stable quasi-solid-state zinc-ion batteries for real-time responsive wireless wearable electronics. Energ Environ Sci. 2024;17(11):3878-3887. doi: 10.1039/d4ee01212g
- Zhuo F, Zhou J, Liu Y, et al. Kirigami‐inspired 3D‐printable MXene organohydrogels for soft electronics. Adv Funct Mater. 2023;33(52):2308487. doi: 10.1002/adfm.202308487
- Wei L, Wang X, Fu J, Yin J, Hu J. A physically cross-linked double network polysaccharides/Ca2+ hydrogel scaffold for skeletal muscle tissue engineering. Colloid Surface A. 2023;668:131410. doi: 10.1016/j.colsurfa.2023.131410
- Peng G, Hu J, Guo J, et al. Injectable exosome-loaded quaternized chitosan/ oxidized sodium alginate hydrogel with self-healing, bioadhesive, and antibacterial properties for treating combined radiation-wound injury. Chem Eng J. 2024;494:152933. doi: 10.1016/j.cej.2024.152933
- Yang X, Huang C, Wang H, et al. Multifunctional nanoparticle-loaded injectable alginate hydrogels with deep tumor penetration for enhanced chemo-immunotherapy of cancer. ACS Nano. 2024;18(28):18604-18621. doi: 10.1021/acsnano.4c04766
- Jiang S, Jing H, Zhuang Y, et al. BMSCs-laden mechanically reinforced bioactive sodium alginate composite hydrogel microspheres for minimally invasive bone repair. Carbohydr Polym. 2024;332:121933. doi: 10.1016/j.carbpol.2024.121933
- Wu M, Liu H, Li D, et al. Smart‐responsive multifunctional therapeutic system for improved regenerative microenvironment and accelerated bone regeneration via mild photothermal therapy. Adv Sci. 2023;11(2):2304641. doi: 10.1002/advs.202304641
- Yu J, Yun J, Zang S, et al. Hydrogel fiber fabric combining rapid water transport, thermal localization, and large-scale production for ultra-high salt-resistant solar desalination. Nano Energy. 2023;117:108847. doi: 10.1016/j.nanoen.2023.108847.
- Hadi A, Nawab A, Alam F, Naqvi S. Development of sodium alginate-aloe vera hydrogel films enriched with organic fibers: Study of the physical, mechanical, and barrier properties for food-packaging applications. Sustain Food Technol. 2023;1(6):863-873. doi: 10.1039/d3fb00122a
- Huang Z, Li C, Ying W, et al. A hydrogel-based moist-electric generator with superior energy output and environmental adaptability. Nano Energy. 2024;126:109673. doi: 10.1016/j.nanoen.2024.109673
- Zhang Y, Li S, Gao Z, et al. Highly conductive and tough polyacrylamide/sodium alginate hydrogel with uniformly distributed polypyrrole nanospheres for wearable strain sensors. Carbohydr Polym. 2023;315:120953. doi: 10.1016/j.carbpol.2023.120953
- Ge J, Fang C, Tan H, et al. Endogenous zinc‐ion‐triggered in situ gelation enables zn capture to reprogram benign hyperplastic prostate microenvironment and shrink prostate. Adv Mater. 2023;36(11):2307796. doi: 10.1002/adma.202307796
- Maihemuti A, Zhang H, Lin X, et al. 3D-printed fish gelatin scaffolds for cartilage tissue engineering. Bioact Mater. 2023;26:77-87. doi: 10.1016/j.bioactmat.2023.02.007
- Shen W, Pei P, Zhang C, et al. A polymeric hydrogel to eliminate programmed death-ligand 1 for enhanced tumor radio-immunotherapy. ACS Nano. 2023;17(23):23998-24011. doi: 10.1021/acsnano.3c08875
- Ren C, Zhong D, Qi Y, et al. Bioinspired pH-responsive microalgal hydrogels for oral insulin delivery with both hypoglycemic and insulin sensitizing effects. ACS Nano. 2023;17(14):14161-14175. doi: 10.1021/acsnano.3c04897
- Ma J, Li S, Li X, Guo K, Wang H, Yin J. Facile fabrication of liquid metal enabled conductive zwitterionic hydrogel for robust electrochemical sensing in complex serum. Chem Eng J. 2024;492:152433. doi: 10.1016/j.cej.2024.152433.
- Jin F, Liao S, Li W, et al. Amphiphilic sodium alginate-polylysine hydrogel with high antibacterial efficiency in a wide pH range. Carbohydr Polym. 2023;299:120195.doi: 10.1016/j.carbpol.2022.120195
- Lu J, Song J, Zhang P, et al. Biomineralized polydopamine nanoparticle-based sodium alginate hydrogels for delivery of anti-serine/threonine protein kinase B-rapidly accelerated fibrosarcoma siRNA for metastatic melanoma therapy. ACS Nano. 2023;17(18):18318-18331. doi: 10.1021/acsnano.3c05563
- Qi Z, Ren R, Hu J, et al. Flexible supercapacitor with wide electrochemical stable window based on hydrogel electrolyte. Small. 2024;20(30):e2400369. doi: 10.1002/smll.202400369
- Choi G, An SH, Choi JW, et al. Injectable alginate-based in situ self-healable transparent hydrogel as a vitreous substitute with a tamponading function. Biomaterials. 2024;305:122459. doi: 10.1016/j.biomaterials.2023.122459
- Liu C, Mao Y, Jiang L, et al. Large strain, tissue-like and self-healing conductive double-network hydrogel for underwater information transmission. Chem Eng J. 2024;482:148863. doi: 10.1016/j.cej.2024.148863
- Zhang J, Yan K, Huang J, et al. Mechanically robust, flexible, fast responding temperature sensor and high‐resolution array with ionically conductive double cross‐linked hydrogel. Adv Funct Mater. 2024;34(21):2314433. doi: 10.1002/adfm.202314433
- Hu X, He J, Qiao L, et al. Multifunctional dual network hydrogel loaded with novel tea polyphenol magnesium nanoparticles accelerates wound repair of MRSA infected diabetes. Adv Funct Mater. 2024;34(22):2312140. doi: 10.1002/adfm.202312140
- Zhang M, Feng Q, Zhang G, et al. Calcium‐capturing hydrogel with self‐reinforced multi‐dynamic networks for effective periodontal bone regeneration in three‐dimension. Adv Funct Mater. 2025;35(12):2415185. doi: 10.1002/adfm.202415185
- Li H, Xia Y, Guo R, et al. Direct-ink-writable nanocellulose ternary hydrogels via one-pot gelation with alginate and calcium montmorillonite. Carbohydr Polym. 2024;344:122494. doi: 10.1016/j.carbpol.2024.122494
- Mahmood A, Sharif A, Muhammad F, et al. Development and in vitro evaluation of (β-cyclodextrin-g-methacrylic acid)/Na+-montmorillonite nanocomposite hydrogels for controlled delivery of lovastatin. Int J Nanomed. 2019;14:5397-5413. doi: 10.2147/ijn.S209662
- Li W, Tao LQ, Kang MC, et al. Tunable mechanical, self-healing hydrogels driven by sodium alginate and modified carbon nanotubes for health monitoring. Carbohydr Polym. 2022;295:119854. doi: 10.1016/j.carbpol.2022.119854
- Zhang R, Wu C, Yang W, et al. Design of delignified wood-based high-performance composite hydrogel electrolyte with double crosslinking of sodium alginate and PAM for flexible supercapacitors. Ind Crop Prod. 2024;210:118187. doi: 10.1016/j.indcrop.2024.118187
- Seifi S, Shamloo A, Barzoki AK, et al. Engineering biomimetic scaffolds for bone regeneration: Chitosan/alginate/polyvinyl alcohol-based double-network hydrogels with carbon nanomaterials. Carbohydr Polym. 2024;339:122232. doi: 10.1016/j.carbpol.2024.122232
- Catoira MC, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. J Mater Sci Mater M. 2019;30(10):115. doi: 10.1007/s10856-019-6318-7
- Zhang X, Liu Y, Wang Z, et al. pH-responsive and self-adaptive injectable sodium alginate/carboxymethyl chitosan hydrogel accelerates infected wound healing by bacteriostasis and immunomodulation. Carbohydr Polym. 2025;354:123322. doi: 10.1016/j.carbpol.2025.123322
- Qin BQ, Wu SZ, Nie R, et al. SDF-1α/BMP-12 loaded biphasic sustained-release SIS hydrogel/SA microspheres composite for tendon regeneration. Biomaterials. 2025;320:123246. doi: 10.1016/j.biomaterials.2025.123246
- Zhang D, Hu Z, Hao R, et al. Fabrication and hemostasis evaluation of a carboxymethyl chitosan/sodium alginate/Resina draconis composite sponge. Int J Biol Macromol. 2024;274:133265. doi: 10.1016/j.ijbiomac.2024.133265
- Zhang Y, Guo D, Shen X, Tang Z, Lin B. Recoverable and degradable carboxymethyl chitosan polyelectrolyte hydrogel film for ultra stable encapsulation of curcumin. Int J Biol Macromol. 2024;268:131616. doi: 10.1016/j.ijbiomac.2024.131616
- Xu J, Song W, Ren L, et al. Reinforced hydrogel building via formation of alginate-chitosan double network with pH and salt-responsiveness and electric conductivity for soft actuators. Int J Biol Macromol. 2024;263:130282. doi: 10.1016/j.ijbiomac.2024.130282
- Ding S, Jin X, Guo J, et al. A biomimetic asymmetric structured intelligent wound dressing with dual-modality humidity-pressure sensing for non-invasive and real-time wound healing monitoring. Adv Fiber Mater. 2024;7:156-171. doi: 10.1007/s42765-024-00473-x.
- Wei T, Zhao R, Fang L, et al. Encoded magnetization for programmable soft miniature machines by covalent assembly of modularly coupled microgels. Adv Funct Mater. 2023;34(16):2311908. doi: 10.1002/adfm.202311908
- Lou Y, Wang J, Peng Y, et al. Double network hydrogel confined MXene/Liquid metal by dynamic hydrogen bond for high-performance wearable sensors. Chem Eng J. 2024;500:156884. doi: 10.1016/j.cej.2024.156884
- Jiang Y, Guo S, Jiao J, Li L. A biphasic hydrogel with self-healing properties and a continuous layer structure for potential application in osteochondral defect repair. Polymers. 2023;15(12):2744. doi: 10.3390/polym15122744.
- Öztürk E, Stauber T, Levinson C, Cavalli E, Arlov Ø, Zenobi-Wong M. Tyrosinase-crosslinked, tissue adhesive and biomimetic alginate sulfate hydrogels for cartilage repair. Biomed Mater. 2020;15(4):045019. doi: 10.1088/1748-605X/ab8318
- Qiao L, Liang Y, Chen J, et al. Antibacterial conductive self-healing hydrogel wound dressing with dual dynamic bonds promotes infected wound healing. Bioact Mater. 2023;30:129-141. doi: 10.1016/j.bioactmat.2023.07.015
- Yang JS, Xie YJ, He W. Research progress on chemical modification of alginate: A review. Carbohydr Polym. 2011;84(1):33-39. doi: 10.1016/j.carbpol.2010.11.048
- Geng H, Zheng X, Zhang Y, et al. Microenvironment‐responsive hydrogels with detachable skin adhesion and mild‐temperature photothermal property for chronic wound healing. Adv Funct Mater. 2023;33(51):2305154. doi: 10.1002/adfm.202305154
- Zhang J, Zhang S, Liu C, et al. Photopolymerized multifunctional sodium alginate-based hydrogel for antibacterial and coagulation dressings. Int J Biol Macromol. 2024;260:129428. doi: 10.1016/j.ijbiomac.2024.129428
- El-Sayed NS, Hashem AH, Khattab TA, Kamel S. New antibacterial hydrogels based on sodium alginate. Int J Biol Macromol. 2023;248:125872. doi: 10.1016/j.ijbiomac.2023.125872
- Chen T, Qian Q, Makvandi P, et al. Engineered high-strength biohydrogel as a multifunctional platform to deliver nucleic acid for ameliorating intervertebral disc degeneration. Bioact Mater. 2023;25:107-121. doi: 10.1016/j.bioactmat.2023.01.010
- Li M, Tian J, Yu K, et al. A ROS-responsive hydrogel incorporated with dental follicle stem cell-derived small extracellular vesicles promotes dental pulp repair by ameliorating oxidative stress. Bioact Mater. 2024;36:524-540. doi: 10.1016/j.bioactmat.2024.06.036
- Li Y, Tian Z, Gao XZ, et al. All‐weather self‐powered intelligent traffic monitoring system based on a conjunction of self‐healable piezoresistive sensors and triboelectric nanogenerators. Adv Funct Mater. 2023;33(52):2308845. doi: 10.1002/adfm.202308845
- Zhang MD, Huang X, Li Z, et al. White-light-induced synthesis of injectable alginate-based composite hydrogels for rapid hemostasis. Mil Med Res. 2023;10(1):47. doi: 10.1186/s40779-023-00483-7
- Yan X, Zhao R, Lin H, Bao X, Zhao Z, Song S. Dual-network conductive hydrogel with rapid self-healing ability and great fatigue resistance as strain sensor for human motion monitoring. Eur Polym J. 2023;201:112570. doi: 10.1016/j.eurpolymj.2023.112570
- Zhang X, Chen S, Ding Z, Chen M. Highly sensitive and high strength hydrogel sensors with interpenetrating network structure for strain-stimulus detection. Sensor Actuat A Phys. 2023;357:114388. doi: 10.1016/j.sna.2023.114388
- Jiang L, Dong X, Chen L, et al. A composite hydrogel membrane with shape and water retention for corneal tissue engineering. Heliyon. 2023;9(7):e17950. doi: 10.1016/j.heliyon.2023.e17950
- Gao LT, Chen YM, Aziz Y, et al. Tough, self-healing and injectable dynamic nanocomposite hydrogel based on gelatin and sodium alginate. Carbohydr Polym. 2024;330:121812. doi: 10.1016/j.carbpol.2024.121812
- Liu S, Bastola AK, Li L. A 3D printable and mechanically robust hydrogel based on alginate and graphene oxide. ACS Appl Mater Interfaces. 2017;9(47):41473-41481. doi: 10.1021/acsami.7b13534
- İsmail O, Gökçe Kocabay Ö. Absorption and adsorption studies of polyacrylamide/sodium alginate hydrogels. Colloid Polym Sci. 2021;299(5):783-796. doi: 10.1007/s00396-020-04796-0
- Reakasame S, Boccaccini AR. Oxidized alginate-based hydrogels for tissue engineering applications: A review. Biomacromolecules. 2017;19(1):3-21. doi: 10.1021/acs.biomac.7b01331
- Zhao X, Xue W, Ding, W, et al. A novel injectable sodium alginate/ chitosan/sulfated bacterial cellulose hydrogel as biohybrid artificial pancreas for real-time glycaemic regulation. Carbohydr Polym. 2025;354:123323. doi: 10.1016/j.carbpol.2025.123323
- Malaeb W, Bahmad HF, Abou-Kheir W, Mhanna R. The sulfation of biomimetic glycosaminoglycan substrates controls binding of growth factors and subsequent neural and glial cell growth. Biomater Sci. 2019;7(10):4283-4298. doi: 10.1039/c9bm00964g
- Pettinelli N, Sabando C, Rodríguez-Llamazares S, et al. Sodium alginate-g-polyacrylamide hydrogel for water retention and plant growth promotion in water-deficient soils. Ind Crop Prod. 2024;222:119759. doi: 10.1016/j.indcrop.2024.119759
- Yu L, Chen A, Tang R, Zhao F, Li J, Wei L. Multiple hydrogen bonding induced by semi-interpenetrating polymer network binder to enhance the electrochemical performance of sodium-ion batteries electrodes. Chem Eng J. 2024;502:158006. doi: 10.1016/j.cej.2024.158006
- López-Díaz A, Vázquez AS, Vázquez E. Hydrogels in soft robotics: Past, present, and future. ACS Nano. 2024;18(32):20817-20826. doi: 10.1021/acsnano.3c12200
- Feng C, Xu B, Chen L, Qiu Z, Guo J. Cellulose hydrogels with high response sensitivity and mechanical adaptability for flexible strain sensor and triboelectric nanogenerator. Eur Polym J. 2024;214:113173. doi: 10.1016/j.eurpolymj.2024.113173
- Wang W, Yao D, Wang H, et al. A breathable, stretchable, and self‐calibrated multimodal electronic skin based on hydrogel microstructures for wireless wearables. Adv Funct Mater. 2024;34(32):2316339. doi: 10.1002/adfm.202316339
- Tong R, Ma Z, Gu P, et al. Stretchable and sensitive sodium alginate ionic hydrogel fibers for flexible strain sensors. Int J Biol Macromol. 2023;246:125683. doi: 10.1016/j.ijbiomac.2023.125683
- Zhang M, Ren J, Li R, Zhang W, Li Y, Yang W. Multifunctional sodium lignosulfonate/xanthan gum/sodium alginate/polyacrylamide ionic hydrogels composite as a high-performance wearable strain sensor. Int J Biol Macromol. 2024;261:129718. doi: 10.1016/j.ijbiomac.2024.129718
- Tang L, Wu P, Zhuang H, et al. Nitric oxide releasing polyvinyl alcohol and sodium alginate hydrogels as antibacterial and conductive strain sensors. Int J Biol Macromol. 2023;241:124564. doi: 10.1016/j.ijbiomac.2023.124564
- Xue H, Wang D, Jin M, et al. Hydrogel electrodes with conductive and substrate-adhesive layers for noninvasive long-term EEG acquisition. Microsyst Nanoeng. 2023;9(1):79. doi: 10.1038/s41378-023-00524-0
- Zhang D, Sun H, Huang M, et al. Construction of “island-bridge” microstructured conductive coating for enhanced impedance response of organohydrogel strain sensor. Chem Eng J. 2024;496:153752. doi: 10.1016/j.cej.2024.153752
- Lan X, Ma Z, Dimitrov A, et al. Double crosslinked hyaluronic acid and collagen as a potential bioink for cartilage tissue engineering. Int J Biol Macromol. 2024;273:132819. doi: 10.1016/j.ijbiomac.2024.132819
- Moon SH, Park TY, Cha HJ, Yang YJ. Photo-/thermo-responsive bioink for improved printability in extrusion-based bioprinting. Mater Today Bio. 2024;25:100973. doi: 10.1016/j.mtbio.2024.100973
- Boumegnane A, Douhi S, Batine A, et al. Rheological properties and inkjet printability of a green silver-based conductive ink for wearable flexible textile antennas. Sensors (Basel). 2024;24(9):2938. doi: 10.3390/s24092938
- Tóth GS, Backman O, Siivola T, et al. Employing photocurable biopolymers to engineer photosynthetic 3D-printed living materials for production of chemicals. Green Chem. 2024;26(7):4032-4042. doi: 10.1039/d3gc04264b
- Norouzi F, Bagheri F, Hashemi-Najafabadi S. Alendronate releasing silk fibroin 3D bioprinted scaffolds for application in bone tissue engineering: Effects of alginate concentration on printability, mechanical properties and stability. Results Eng. 2024;22:102186. doi: 10.1016/j.rineng.2024.102186
- Li M, Wang Y, Wei Q, Zhang J, Chen X, An Y. A high-stretching, rapid-self-healing, and printable composite hydrogel based on poly (vinyl alcohol), nanocellulose, and sodium alginate. Gels. 2024;10(4):258. doi: 10.3390/gels10040258
- Hui Y, Yao Y, Qian Q, et al. Three-dimensional printing of soft hydrogel electronics. Nat Electron. 2022;5(12):893-903. doi: 10.1038/s41928-022-00887-8
- Wang X, Liu X, Bi P, et al. Electrochemically enabled embedded three-dimensional printing of freestanding gallium wire-like structures. ACS Appl Mater. 2020;12(48):53966-53972. doi: 10.1021/acsami.0c16438
- Xue T, Wei H, Li F, et al. MicroRNA‐Modified DNA hexahedron‐induced hepatocyte‐like cells integrating 3D printed scaffold for acute liver failure therapy. Adv Funct Mater. 2024;34(38):2470222. doi: 10.1002/adfm.202402339
- Yuan Y, Zhang Z, Mo F, et al. A biomaterial-based therapy for lower limb ischemia using Sr/Si bioactive hydrogel that inhibits skeletal muscle necrosis and enhances angiogenesis. Bioact Mater. 2023;26:264-278. doi: 10.1016/j.bioactmat.2023.02.027
- Wang L, Fan L, Filppula AM, et al. Dual physiological responsive structural color hydrogel particles for wound repair. Bioact Mater. 2025;46:494-502. doi: 10.1016/j.bioactmat.2025.01.002
- Sadeghianmaryan A, Ahmadian N, Wheatley S, et al. Advancements in 3D-printable polysaccharides, proteins, and synthetic polymers for wound dressing and skin scaffolding - a review. Int J Biol Macromol. 2024;266:131207. doi: 10.1016/j.ijbiomac.2024.131207
- Aitchison AH, Allen NB, Shaffrey IR, et al. Fabrication of a novel 3D extrusion bioink containing processed human articular cartilage matrix for cartilage tissue engineering. Bioengineering. 2024;11(4):329. doi: 10.3390/bioengineering11040329
- Synofzik J, Heene S, Jonczyk R, Blume C. Ink-structing the future of vascular tissue engineering: A review of the physiological bioink design. Bio Des Manuf. 2024;7(2):181-205. doi: 10.1007/s42242-024-00270-w
- Jiao T, Lian Q, Lian W, et al. Properties of collagen/sodium alginate hydrogels for bioprinting of skin models. J Bionic Eng. 2022;20(1):105-118. doi: 10.1007/s42235-022-00251-8
- Wong KY, Nie Z, Wong MS, Wang Y, Liu J. Metal-drug coordination nanoparticles and hydrogels for enhanced delivery. Adv Mater. 2024;36(26):e2404053.doi: 10.1002/adma.202404053
- Xiang H, Wang F, Zhang Q, et al. Endogenous stem cell repair strategy via electromechanical interaction for stress injury. Chem Eng J. 2025;507:160575. doi: 10.1016/j.cej.2025.160575
- Long X, Wang J, Wang H, et al. Injectable 2D‐MoS2‐integrated bioadhesive hydrogel as photothermal‐derived and drug‐delivery implant for colorectal cancer therapy. Adv Healthc Mater. 2025:2404842. doi: 10.1002/adhm.202404842
- Hu X, Zhang Z, Wu H, et al. Progress in the application of 3D-printed sodium alginate-based hydrogel scaffolds in bone tissue repair. Mat Sci Eeg C Mater. 2023;152:213501. doi: 10.1016/j.bioadv.2023.213501
- Camarero‐Espinosa S, Beeren I, Liu H, et al. 3D niche ‐ inspired scaffolds as a stem cell delivery system for the regeneration of the osteochondral interface. Adv Mater. 2024;36(34):2310258. doi: 10.1002/adma.202310258
- Huang J, Li A, Liang R, et al. Future perspectives: Advances in bone/ cartilage organoid technology and clinical potential. Biomater Transl. 2024;5(4):425-443. doi: 10.12336/biomatertransl.2024.04.007
- Liu D, Wang X, Gao C, et al. Biodegradable piezoelectric ‐ conductive integrated hydrogel scaffold for repair of osteochondral defects. Adv Mater. 2024;36(45):2409400. doi: 10.1002/adma.202409400
- Hia EM, Suh IW, Jang SR, Park CH. Magnetically responsive micro-clustered calcium phosphate-reinforced cell-laden microbead sodium alginate hydrogel for accelerated osteogenic tissue regeneration. Carbohydr Polym. 2024;346:122666. doi: 10.1016/j.carbpol.2024.122666
- Qi X, Li Z, Shen L, et al. Highly efficient dye decontamination via microbial salecan polysaccharide-based gels. Carbohydr Polym. 2019;219:1-11. doi: 10.1016/j.carbpol.2019.05.021
- Lim JYC, Goh SS, Liow SS, Xue K, Loh XJ. Molecular gel sorbent materials for environmental remediation and wastewater treatment. Mater Chem A. 2019;7(32):18759-18791. doi: 10.1039/c9ta05782j
- Carrión MG, Corripio MAR, Contreras JVH, Marrón MR, Olán GM, Cázares ASH. Optimization and characterization of taro starch, nisin, and sodium alginate-based biodegradable films: Antimicrobial effect in chicken meat. Poult Sci. 2023;102:103100. doi: 10.1016/j.psj.2023.103100.
- Luo C, Guo A, Zhao Y, Sun X. A high strength, low friction, and biocompatible hydrogel from PVA, chitosan and sodium alginate for articular cartilage. Carbohydr Polym. 2022;286:119268. doi: 10.1016/j.carbpol.2022.119268
- Yue H, Shang Z, Xu P, Feng D, Li X. Preparation of EDTA modified chitooligosaccharide/sodium alginate/Ca2+ physical double network hydrogel by using of high-salinity oilfield produced water for adsorption of Zn2+, Ni2+ and Mn2+. Sep Purif Technol. 2022;280:119767. doi: 10.1016/j.seppur.2021.119767
- Berg J, Seiffert S. Composite hydrogels based on calcium alginate and polyethyleneimine for wastewater treatment. J Polym Sci. 2023;61(18):2203-2222. doi: 10.1002/pol.20230215
- Dalei G, Das SK, Mohapatra SS, Das S. In situ crosslinked Schiff base biohydrogels containing Carica papaya peel extract: Application in the packaging of fresh berries. Sustain Food Technol. 2023;1(6):906-920. doi: 10.1039/d3fb00096f
- An N, Zhou W. Sodium alginate/ager colourimetric film on porous substrate layer: Potential in intelligent food packaging. Food Chem. 2024;445:138790. doi: 10.1016/j.foodchem.2024.138790
- Yu K, Yang L, Zhang S, Zhang N. Strong, tough, high-release, and antibacterial nanocellulose hydrogel for refrigerated chicken preservation. Int J Biol Macromol. 2024;264:130727. doi: 10.1016/j.ijbiomac.2024.130727
- Yu K, Yang L, Zhang S, et al. Soy hull nanocellulose enhances the stretchability, transparency and ionic conductance of sodium alginate hydrogels and application in beef preservation. Food Hydrocoll. 2024;152:109938. doi: 10.1016/j.foodhyd.2024.109938.
- Duan W, Shao B, Wang Z, et al. Silicon nanowire/ionic hydrogel-based hybrid moist-electric generators with enhanced voltage output and operational stability. Energ Environ Sci. 2024;17(11):3788-3796. doi: 10.1039/d4ee00171k
- Sun J, Ni F, Gu J, et al. Entangled mesh hydrogels with macroporous topologies via cryogelation for rapid atmospheric water harvesting. Adv Mater. 2024;36(27):2314175. doi: 10.1002/adma.202314175