Advances in selenium research for bone and joint-related diseases: from pathophysiological mechanisms to therapeutic implications of selenium-based biomaterials
Selenium is an essential trace mineral crucial for human health. The selenium-selenoprotein axis exerts biological effects that are associated with bone and joint health. The metabolism of selenium in vivo involves multiple physiological mechanisms and organs working synergistically to maintain selenium homeostasis. Studies underscore the roles of selenium in diverse physiological processes, including antioxidant defense, anti-inflammatory responses, immune regulation, osteogenesis, and thyroid hormone metabolism. Conditions such as Kashin–Beck disease, rheumatoid arthritis (RA), osteoarthritis (OA), and osteoporosis have been linked to selenium deficiency. Adequate selenium supplementation has been shown to prevent and treat bone and joint-related diseases. While numerous natural and synthetic selenium compounds have been explored for their therapeutic potential in bone and joint-related diseases, their narrow therapeutic windows pose challenges. In recent years, selenium-based biomaterials have been extensively studied and applied in biomedical research. These biomaterials exhibit reduced toxicity and enhanced bioavailability compared to inorganic and organic selenium, making them promising strategies for targeted selenium delivery. Selenium-based biomaterials provide a more efficient alternative for the treatment of bone defects, osteoporosis, osteosarcoma, OA, RA, and other related diseases. This review highlights the pathophysiological functions of selenium in maintaining bone and joint homeostasis and summarizes the current progress in utilizing selenium-based biomaterials for treating bone and joint-related diseases.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
- Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: Molecular pathways and physiological roles. Physiol Rev. 2014;94(3):739-777. doi: 10.1152/physrev.00039.2013
- Rederstorff M, Krol A, Lescure A. Understanding the importance of selenium and selenoproteins in muscle function. Cell Mol Life Sci. 2005;63(1):52-59. doi: 10.1007/s00018-005-5313-y
- Roman M, Jitaru P, Barbante C. Selenium biochemistry and its role for human health. Metallomics. 2014;6(1):25-54. doi: 10.1039/c3mt00185g
- Papp LV, Lu J, Holmgren A, et al. From selenium to selenoproteins: Synthesis, Identity, and their role in human health. Antioxid Redox Signal. 2007;9(7):775-806. doi: 10.1089/ars.2007.1528
- Lu J, Holmgren A. Selenoproteins. J Biol Chem. 2009;284(2):723-727. doi: 10.1074/jbc.R800045200
- Arthur JR, McKenzie RC, Beckett GJ. Selenium in the immune system. J Nutr. 2003;133(5):1457S-1459S. doi: 10.1093/jn/133.5.1457S
- Chen N, Yao P, Zhang W, et al. Selenium nanoparticles: Enhanced nutrition and beyond. Crit Rev Food Sci Nutr. 2022;63(33):12360-12371. doi: 10.1080/10408398.2022.2101093
- Mertens K, Lowes DA, Webster NR, et al. Low zinc and selenium concentrations in sepsis are associated with oxidative damage and inflammation. Br J Anaesth. 2015;114(6):990-999. doi: 10.1093/bja/aev073
- Schomburg L. Selenium, selenoproteins and the thyroid gland: Interactions in health and disease. Nat Rev Endocrinol. 2011;8(3):160-171. doi: 10.1038/nrendo.2011.174
- Hawkes WC, Kelley DS, Taylor PC. The effects of dietary selenium on the immune system in healthy men. Biol Trace Elem Res. 2001;81(3):189-213. doi: 10.1385/BTER:81:3:189
- Wood SM, Beckham C, Yosioka A, et al. β-Carotene and selenium supplementation enhances immune response in aged humans. Integr Med. 2000;2(2-3):85-92. doi: 10.1016/S1096-2190(00)00009-3
- Neve J. Selenium as a risk factor for cardiovascular diseases. J Cardiovasc Risk. 1996;3:42-7.
- Hatfield DL, Tsuji PA, Carlson BA, et al. Selenium and selenocysteine: Roles in cancer, health, and development. Trends Biochem Sci. 2014;39(3):112-120. doi: 10.1016/j.tibs.2013.12.007
- Willett W, Steven Morris J, Pressel S, et al. Prediagnostic serum selenium and risk of cancer. Lancet. 1983;322(8342):130-134. doi: 10.1016/s0140-6736(83)90116-2
- Navarro-Alarcón M, López-G de la Serrana H, Pérez-Valero V, et al. Selenium concentrations in serum of individuals with liver diseases (cirrhosis or hepatitis): Relationship with some nutritional and biochemical markers. Sci Total Environ. 2002;291(1-3):135-141. doi: 10.1016/s0048-9697(01)01088-9
- Wang N, Xie M, Lei G, et al. A cross-sectional study of association between plasma selenium levels and the prevalence of osteoarthritis: Data from the Xiangya osteoarthritis study. J Nutr Health Aging. 2022;26(2):197-202. doi: 10.1007/s12603-022-1739-2
- Kang X, Liu Y, Gong Y, et al. The status of selenium and zinc in the urine of children from endemic areas of Kashin-Beck disease over three consecutive years. Front Nutr. 2022;9:862639. doi: 10.3389/fnut.2022.862639
- Kang D, Lee J, Wu C, et al. The role of selenium metabolism and selenoproteins in cartilage homeostasis and arthropathies. Exp Mol Med. 2020;52(8):1198-1208. doi: 10.1038/s12276-020-0408-y
- Zhang Z, Zhang J, Xiao J. Selenoproteins and selenium status in bone physiology and pathology. Biochim Biophys Acta Gen Subj. 2014;1840(11):3246-3256. doi: 10.1016/j.bbagen.2014.08.001
- Fatima S, Alfrayh R, Alrashed M, et al. Selenium nanoparticles by moderating oxidative stress promote differentiation of mesenchymal stem cells to osteoblasts. Int J Nanomed. 2021;16:331-343. doi: 10.2147/IJN.S285233
- Shi XW, Guo X, Ren FL, et al. The effect of short tandem repeat loci and low selenium levels on endemic osteoarthritis in China. J Bone Joint Surg Am. 2010;92(1):72-80. doi: 10.2106/JBJS.H.00502
- Moreno-Reyes R, Egrise D, Neve J, et al. Selenium deficiency-induced growth retardation is associated with an impaired bone metabolism and osteopenia. J Bone Miner Res. 2001;16(8):1556-1563. doi: 10.1359/jbmr.2001.16.8.1556
- Ren FL, Guo X, Zhang RJ, et al. Effects of selenium and iodine deficiency on bone, cartilage growth plate and chondrocyte differentiation in two generations of rats. Osteoarthritis Cartilage. 2007;15(10):1171-1177. doi: 10.1016/j.joca.2007.03.013
- Lei Y, Zhang Q, Kuang G, et al. Functional biomaterials for osteoarthritis treatment: From research to application. Smart Med. 2022;1(1):e20220014. doi: 10.1002/SMMD.20220014
- Choi JW, Kim YC. Asian facial recontouring surgery. Plast Aesthet Res. 2023;10:59. doi: 10.20517/2347-9264.2023.30
- Autelitano L, Meazzini MC. Alveolar cleft reconstruction with vomerine bone: Two surgical procedures in one step: A case series. Plast Aesthet Res. 2023;10:16.doi: 10.20517/2347-9264.2022.57
- Xu Y, Saiding Q, Zhou X, et al. Electrospun fiber‐based immune engineering in regenerative medicine. Smart Med. 2024;3:e20230034. doi: 10.1002/SMMD.20230034
- Hosnedlova B, Kepinska M, Skalickova S, et al. Nano-selenium and its nanomedicine applications: A critical review. Int J Nanomed. 2018;13:2107-2128. doi: 10.2147/IJN.S157541
- Chen T, Wong YS, Zheng W, et al. Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Colloids Surf B Biointerfaces. 2008;67(1):26-31. doi: 10.1016/j.colsurfb.2008.07.010
- Khurana A, Tekula S, Saifi MA, et al. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother. 2019;111:802-812. doi: 10.1016/j.biopha.2018.12.146
- Gao F, Yuan Q, Gao L, et al. Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles. Biomaterials. 2014;35(31):8854-8866. doi: 10.1016/j.biomaterials.2014.07.004
- Wang Y, Lv P, Ma Z, et al. Enhanced healing of rat calvarial critical size defect with selenium-doped lamellar biocomposites. Biol Trace Elem Res. 2013;155(1):72-81. doi: 10.1007/s12011-013-9763-z
- Poleboina S, Sheth VG, Sharma N, Sihota P, Kumar N, Tikoo K. Selenium nanoparticles stimulate osteoblast differentiation via BMP-2/ MAPKs/β-catenin pathway in diabetic osteoporosis. Nanomedicine (Lond). 2022;17(9):607-625. doi: 10.2217/nnm-2021-0401
- Hu W, Yao X, Li Y, et al. Injectable hydrogel with selenium nanoparticles delivery for sustained glutathione peroxidase activation and enhanced osteoarthritis therapeutics. Mater Today Bio. 2023;23:100864. doi: 10.1016/j.mtbio.2023.100864
- Chen Z, Lu Y, Dun X, et al. Research progress of selenium-enriched foods. Nutrients. 2023;15(19):4189. doi: 10.3390/nu15194189
- Tinggi U. Essentiality and toxicity of selenium and its status in Australia: A review. Toxicol Lett. 2003;137(1-2):103-110. doi: 10.1016/s0378-4274(02)00384-3
- Dinh QT, Cui Z, Huang J, et al. Selenium distribution in the Chinese environment and its relationship with human health: A review. Environ Int. 2018;112:294-309. doi: 10.1016/j.envint.2017.12.035
- Kipp AP, Strohm D, Brigelius-Flohé R, et al. Revised reference values for selenium intake. J Trace Elem Med Biol. 2015;32:195-199. doi: 10.1016/j.jtemb.2015.07.005
- Mehdi Y, Hornick JL, Istasse L, et al. Selenium in the environment, metabolism and involvement in body functions. Molecules. 2013;18(3):3292-3311. doi: 10.3390/molecules18033292
- Kobayashi Y, Ogra Y, Ishiwata K, et al. Selenosugars are key and urinary metabolites for selenium excretion within the required to low-toxic range. Proc Natl Acad Sci U S A. 2002;99(25):15932-15936.
- Sunde RA, Raines AM. Selenium regulation of the selenoprotein and nonselenoprotein transcriptomes in rodents. Adv Nutr. 2011;2(2):138-150. doi: 10.3945/an.110.000240
- Mistry HD, Broughton Pipkin F, Redman CWG, et al. Selenium in reproductive health. Am J Obstet Gynecol. 2012;206(1):21-30. doi: 10.1016/j.ajog.2011.07.034
- Schrauzer GN. Selenomethionine: A review of its nutritional significance, metabolism and toxicity. J Nutr. 2000;130(7):1653-1656. doi: 10.1093/jn/130.7.1653
- Navarro-Alarcon M, Cabrera-Vique C. Selenium in food and the human body: A review. Sci Total Environ. 2008;400(1-3):115-141. doi: 10.1016/j.scitotenv.2008.06.024
- Yuan J, Palioura S, Salazar JC, et al. RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea. Proc Natl Acad Sci. 2006;103(50):18923-18927. doi: 10.1073/pnas.0609703104
- Berry MJ, Banu L, Harney JW, et al. Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons. EMBO J. 1993;12(8):3315-3322. doi: 10.1002/j.1460-2075.1993.tb06001.x
- Berry MJ, Banu L, Chen Y, et al. Recognition of UGA as a selenocysteine codon in Type I deiodinase requires sequences in the 3′ untranslated region. Nature. 1991;353(6341):273-276. doi: 10.1038/353273a0
- Huang Z, Rose AH, Hoffmann PR. The role of selenium in inflammation and immunity: From molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2012;16(7):705-743. doi: 10.1089/ars.2011.4145
- Leiter O, Zhuo Z, Rust R, et al. Selenium mediates exercise-induced adult neurogenesis and reverses learning deficits induced by hippocampal injury and aging. Cell Metab. 2022;34(3):408-423.e8. doi: 10.1016/j.cmet.2022.01.005
- Kryukov GV, Castellano S, Novoselov SV, et al. Characterization of mammalian selenoproteomes. Science. 2003;300(5624):1439-1443. doi: 10.1126/science.1083516
- Gromer S, Eubel JK, Lee BL, et al. Human selenoproteins at a glance. Cell Mol Life Sci. 2005;62(21):2414-2437. doi: 10.1007/s00018-005-5143-y
- Reeves MA, Hoffmann PR. The human selenoproteome: Recent insights into functions and regulation. Cell Mol Life Sci. 2009;66(15):2457-2478. doi: 10.1007/s00018-009-0032-4
- Brigelius-Flohé R, Flohé L. Regulatory phenomena in the glutathione peroxidase superfamily. Antioxid Redox Signal. 2020;33(7):498-516. doi: 10.1089/ars.2019.7905
- Esworthy RS, Yang L, Frankel PH, et al. Epithelium-specific glutathione peroxidase, gpx2, is involved in the prevention of intestinal inflammation in selenium-deficient mice. J Nutr. 2005;135(4):740-745.
- Olson GE, Whitin JC, Hill KE, et al. Extracellular glutathione peroxidase (Gpx3) binds specifically to basement membranes of mouse renal cortex tubule cells. Am J Physiol Renal Physiol. 2010;298(5):F1244-F1253. doi: 10.1152/ajprenal.00662.2009
- Köhrle J. The deiodinase family: Selenoenzymes regulating thyroid hormone availability and action. Cell Mol Life Sci. 2000;57(13):1853-1863. doi: 10.1007/PL00000667
- Bianco AC, Salvatore D, Gereben BZ, et al. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev. 2002;23(1):38-89. doi: 10.1210/edrv.23.1.0455
- Cheng AWM, Bolognesi M, Kraus VB. DIO2 modifies inflammatory responses in chondrocytes. Osteoarthritis Cartilage. 2012;20(5):440-445. doi: 10.1016/j.joca.2012.02.006
- Kuiper GGJM, Kester MHA, Peeters RP, et al. Biochemical mechanisms of thyroid hormone deiodination. Thyroid. 2005;15(8):787-798. doi: 10.1089/thy.2005.15.787
- Mustacich D, Powis G. Thioredoxin reductase. Biochem J. 2000;346(1):1-8.
- Zhong L, Holmgren A. Essential role of selenium in the catalytic activities of mammalian thioredoxin reductase revealed by characterization of recombinant enzymes with selenocysteine mutations. J Biol Chem. 2000;275(24):18121-18128. doi: 10.1074/jbc.M000690200
- Schomburg L. Selenoprotein P - Selenium transport protein, enzyme and biomarker of selenium status. Free Radic Biol Med. 2022;191:150-163. doi: 10.1016/j.freeradbiomed.2022.08.022
- Taylor D, Dalton C, Hall A, et al. Recent developments in selenium research. Br J Biomed Sci. 2016;66(2):107-116; quiz 129. doi: 10.1080/09674845.2009.11730256
- Pitts MW, Hoffmann PR. Endoplasmic reticulum-resident selenoproteins as regulators of calcium signaling and homeostasis. Cell Calcium. 2018;70:76-86. doi: 10.1016/j.ceca.2017.05.001
- Jiang C, Zu C, Lu D, et al. Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays ) under salinity stress. Sci Rep. 2017;7(1):42039. doi: 10.1038/srep42039
- Sakr TM, Korany M, Katti KV. Selenium nanomaterials in biomedicine-an overview of new opportunities in nanomedicine of selenium. J Drug Delivery Sci Technol. 2018;46:223-233. doi: 10.1016/j.jddst.2018.05.023
- Hariharan S, Dharmaraj S. Selenium and selenoproteins: It’s role in regulation of inflammation. Inflammopharmacology. 2020;28(3):667-695. doi: 10.1007/s10787-020-00690-x
- Wang WZ, Guo X, Duan C, et al. Comparative analysis of gene expression profiles between the normal human cartilage and the one with endemic osteoarthritis. Osteoarthritis Cartilage. 2009;17(1):83-90. doi: 10.1016/j.joca.2008.05.008
- West KA, Sianna Castillo S, Dennis PA. Activation of the PI3K/ Akt pathway and chemotherapeutic resistance. Drug Resist Updat. 2002;5(6):234-248. doi: 10.1016/s1368-7646(02)00120-6
- Du XA, Wang HM, Dai XX, et al. Role of selenoprotein S (SEPS1) -105G>a polymorphisms and PI3K/Akt signaling pathway in Kashin-Beck disease. Osteoarthritis Cartilage. 2015;23(2):210-216.
- Xu ZS, Wang XY, Xiao DM, et al. Hydrogen sulfide protects MC3T3-E1 osteoblastic cells against H2O2-induced oxidative damage-implications for the treatment of osteoporosis. Free Radic Biol Med. 2011;50(10):1314-1323. doi: 10.1016/j.freeradbiomed.2011.02.016
- Mody N. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med. 2001;31(4):509-519. doi: 10.1016/s0891-5849(01)00610-4
- Almeida M, Ambrogini E, Han L, et al. Increased lipid oxidation causes oxidative stress, increased peroxisome proliferator-activated receptor-γ expression, and diminished pro-osteogenic wnt signaling in the skeleton. J Biol Chem. 2009;284(40):27438-27448. doi: 10.1074/jbc.M109.023572
- Kang D, Lee J, Jung J, et al. Selenophosphate synthetase 1 deficiency exacerbates osteoarthritis by dysregulating redox homeostasis. Nat Commun. 2022;13(1):799. doi: 10.1038/s41467-022-28385-7
- Zhou Q, Chen W, Gu C, et al. Selenium-modified bone cement promotes osteoporotic bone defect repair in ovariectomized rats by restoring GPx1-mediated mitochondrial antioxidant functions. Regener Biomater. 2023;10:rbad011. doi: 10.1093/rb/rbad011
- Rose J, Söder S, Skhirtladze C, et al. DNA damage, discoordinated gene expression and cellular senescence in osteoarthritic chondrocytes. Osteoarthritis Cartilage. 2012;20(9):1020-1028. doi: 10.1016/j.joca.2012.05.009
- Baliga MS, Wang H, Zhuo P, et al. Selenium and GPx-1 overexpression protect mammalian cells against UV-induced DNA damage. Biol Trace Elem Res. 2007;115(3):227-241. doi: 10.1007/BF02685998
- De Rosa V, Erkekoğlu P, Forestier A, et al. Low doses of selenium specifically stimulate the repair of oxidative DNA damage in LNCaP prostate cancer cells. Free Radical Res. 2012;46(2):105-116. doi: 10.3109/10715762.2011.647009
- Seo YR, Sweeney C, Smith ML. Selenomethionine induction of DNA repair response in human fibroblasts. Oncogene. 2002;21(23):3663-3669. doi: 10.1038/sj.onc.1205468
- Fung H, Demple B. A vital role for ape1/ref1 protein in repairing spontaneous DNA damage in human cells. Mol Cell. 2005;17(3):463-470. doi: 10.1016/j.molcel.2004.12.029
- Xanthoudakis S, Miao GG, Curran T. The redox and DNA-repair activities of Ref-1 are encoded by nonoverlapping domains. Proc Natl Acad Sci U S A. 1994;91(1):23-27. doi: 10.1073/pnas.91.1.23
- Qu J, Liu GH, Huang B, et al. Nitric oxide controls nuclear export of APE1/Ref-1 through S-nitrosation of Cysteines 93 and 310. Nucleic Acids Res. 2007;35(8):2522-2532. doi: 10.1093/nar/gkl1163
- Tell G, Quadrifoglio F, Tiribelli C, et al. The many functions of APE1/Ref-1: Not only a DNA repair enzyme. Antioxid Redox Signal. 2009;11(3):601-619. doi: 10.1089/ars.2008.2194
- Fischer JL, Mihelc EM, Pollok KE, et al. Chemotherapeutic selectivity conferred by selenium: A role for p53-dependent DNA repair. Mol Cancer Ther. 2007;6(1):355-361. doi: 10.1158/1535-7163.MCT-06-0472
- Bera S, Rosa V. D, Rachidi W, Diamond AM. Does a role for selenium in DNA damage repair explain apparent controversies in its use in chemoprevention? Mutagenesis. 2013;28(2):127-134. doi: 10.1093/mutage/ges064
- Cheng AWM, Stabler TV, Bolognesi M, et al. Selenomethionine inhibits IL-1β inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2) expression in primary human chondrocytes. Osteoarthritis Cartilage. 2011;19(1):118-125. doi: 10.1016/j.joca.2010.10.019
- Prabhu KS, Zamamiri-Davis F, Stewart JB, et al. Selenium deficiency increases the expression of inducible nitric oxide synthase in RAW 264.7 macrophages: Role of nuclear factor-κB in up-regulation. Biochem J. 2002;366(1):203-209. doi: 10.1042/BJ20020256
- Zhu K, Yang C, Dai H, et al. Crocin inhibits titanium particle-induced inflammation and promotes osteogenesis by regulating macrophage polarization. Int Immunopharmacol. 2019;76:105865. doi: 10.1016/j.intimp.2019.105865
- Shapouri‐Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425-6440. doi: 10.1002/jcp.26429
- Di Benedetto P, Ruscitti P, Vadasz Z, et al. Macrophages with regulatory functions, a possible new therapeutic perspective in autoimmune diseases. Autoimmun Rev. 2019;18(10):102369. doi: 10.1016/j.autrev.2019.102369
- Ding C, Yang C, Cheng T, et al. Macrophage-biomimetic porous Se@SiO2 nanocomposites for dual modal immunotherapy against inflammatory osteolysis. J Nanobiotechnology. 2021;19(1):382. doi: 10.1186/s12951-021-01128-4
- Lei J, Wang C, Feng X, et al. Sulfur-regulated defect engineering for enhanced ultrasonic piezocatalytic therapy of bacteria-infected bone defects. Chem Eng J. 2022;435:134624. doi: 10.1016/j.cej.2022.134624
- Trampuz A, Zimmerli W. Diagnosis and treatment of infections associated with fracture-fixation devices. Injury. 2006;37(2):S59-S66. doi: 10.1016/j.injury.2006.04.010
- Kolmas J, Groszyk E, Kwiatkowska-Różycka D. Substituted hydroxyapatites with antibacterial properties. BioMed Res Int. 2014;2014:1-15. doi: 10.1155/2014/178123
- Huang T, Holden JA, Heath DE, et al. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale. 2019;11(31):14937-14951. doi: 10.1039/C9NR04424H
- Huang N, Chen X, Zhu X, et al. Ruthenium complexes/polypeptide self-assembled nanoparticles for identification of bacterial infection and targeted antibacterial research. Biomaterials. 2017;141:296-313. doi: 10.1016/j.biomaterials.2017.07.005
- Vaquette C, Bock N, Tran PA. Layered antimicrobial selenium nanoparticle-calcium phosphate coating on 3D printed scaffolds enhanced bone formation in critical size defects. ACS Appl Mater Interfaces. 2020;12(50):55638-55648. doi: 10.1021/acsami.0c17017
- Steinbrenner H, Al-Quraishy S, Dkhil MA, et al. Dietary selenium in adjuvant therapy of viral and bacterial infections. Adv Nutr. 2015;6(1):73-82. doi: 10.3945/an.114.007575
- Fan Y, Li J, Ren X, et al. Preparation, characterization, bacteriostatic efficacy, and mechanism of zinc/selenium-loaded sodium humate. Appl Microbiol Biotechnol. 2023;107(24):7417-7425. doi: 10.1007/s00253-023-12803-x
- Tran PA, O’Brien-Simpson N, Palmer JA, et al. Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: In vitro and in vivo Int J Nanomed. 2019;14:4613-4624. doi: 10.2147/IJN.S197737
- Lei C, Lei J, Zhang X, et al. Heterostructured piezocatalytic nanoparticles with enhanced ultrasound response for efficient repair of infectious bone defects. Acta Biomater. 2023;172:343-354. doi: 10.1016/j.actbio.2023.10.006
- Wu R, Zhang R, Xiong Y, et al. The study on polymorphisms of Sep15 and TrxR2 and the expression of AP-1 signaling pathway in Kashin- Beck disease. Bone. 2019;120:239-245. doi: 10.1016/j.bone.2018.03.026
- Downey CM, Horton CR, Carlson BA, et al. Osteo-chondroprogenitor-specific deletion of the selenocysteine tRNA gene, Trsp, leads to chondronecrosis and abnormal skeletal development: A putative model for Kashin-Beck disease. PLoS Genet. 2009;5(8):e1000616. doi: 10.1371/journal.pgen.1000616
- Yan J, Fei Y, Han Y, et al. Selenoprotein O deficiencies suppress chondrogenic differentiation of ATDC5 cells. Cell Biol Int. 2016;40(10):1033-1040. doi: 10.1002/cbin.10644
- Orth MW. The regulation of growth plate cartilage turnover. J Anim Sci. 1999;77(Suppl 21):183-189. doi: 10.2527/1999.77suppl_2183x
- Lai LP, Mitchell J. Indian hedgehog: Its roles and regulation in endochondral bone development. J Cell Biochem. 2005;96(6):1163-1173. doi: 10.1002/jcb.20635
- Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337-342. doi: 10.1038/nature01658
- Tanaka S, Nakamura K, Takahasi N, et al. Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immunol Rev. 2005;208:30-49. doi: 10.1111/j.0105-2896.2005.00327.x
- Kim H, Lee K, Kim JM, et al. Selenoprotein W ensures physiological bone remodeling by preventing hyperactivity of osteoclasts. Nat Commun. 2021;12(1):2258. doi: 10.1038/s41467-021-22565-7
- Cao JJ, Gregoire BR, Zeng H. Selenium deficiency decreases antioxidative capacity and is detrimental to bone microarchitecture in mice. J Nutr. 2012;142(8):1526-1531. doi: 10.3945/jn.111.157040
- Tan HW, Mo HY, Lau ATY, et al. Selenium species: Current status and potentials in cancer prevention and therapy. Int J Mol Sci. 2018;20(1):75. doi: 10.3390/ijms20010075
- Qi X, Ng KTP, Lian QZ, et al. Clinical significance and therapeutic value of glutathione peroxidase 3 (GPx3) in hepatocellular carcinoma. Oncotarget. 2014;5(22):11103-11120. doi: 10.18632/oncotarget.2549
- An BC, Jung NK, Park CY, et al. Epigenetic and glucocorticoid receptor-mediated regulation of glutathione peroxidase 3 in lung cancer cells. Mol Cells. 2016;39(8):631-638. doi: 10.14348/molcells.2016.0164
- Ahmad A, An BC, Choi YD, et al. GPx3-mediated redox signaling arrests the cell cycle and acts as a tumor suppressor in lung cancer cell lines. PLoS One. 2018;13(9):e0204170. doi: 10.1371/journal.pone.0204170
- Okubo T, Saito T, Mitomi H, et al. p53 mutations may be involved in malignant transformation of giant cell tumor of bone through interaction with GPX1. Virchows Arch. 2013;463(1):67-77. doi: 10.1007/s00428-013-1435-z
- Dávila-Vega JP, Gastelum-Hernández AC, Serrano-Sandoval SN, et al. Metabolism and anticancer mechanisms of selocompounds: Comprehensive review. Biol Trace Elem Res. 2022;201(8):3626-3644.
- Khadka A, Li J, Li Y, et al. Evaluation of hybrid porous biomimetic nano-hydroxyapatite/polyamide 6 and bone marrow-derived stem cell construct in repair of calvarial critical size defect. J Craniofac Surg. 2011;22(5):1852-1858. doi: 10.1097/SCS.0b013e31822e8274
- Hu W, Liang JW, Liao S, et al. Melatonin attenuates radiation-induced cortical bone-derived stem cells injury and enhances bone repair in postradiation femoral defect model. Mil Med Res. 2021;8(1):61. doi: 10.1186/s40779-021-00355-y
- Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: An update. Injury. 2005;36(3):S20-S27. doi: 10.1016/j.injury.2005.07.029
- Ahlmann E, Patzakis M, Roidis N, et al. Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am. 2002;84(5):716-720. doi: 10.2106/00004623-200205000-00003
- Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am. 2002;84(3):454-464. doi: 10.2106/00004623-200203000-00020
- Notodihardjo FZ, Kakudo N, Kushida S, et al. Bone regeneration with BMP-2 and hydroxyapatite in critical-size calvarial defects in rats. J Craniomaxillofac Surg. 2012;40(3):287-291. doi: 10.1016/j.jcms.2011.04.008
- Heng BC, Bai Y, Li X, et al. Electroactive biomaterials for facilitating bone defect repair under pathological conditions. Adv Sci (Weinh). 2022;10(2):e2204502. doi: 10.1002/advs.202204502
- Kaur M, Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater Sci Eng C Mater Biol Appl. 2019;102:844-862.
- Manthe J, Cheng KY, Bijukumar D, et al. Hip implant modular junction: The role of CoCrMo alloy microstructure on fretting-corrosion. J Mech Behav Biomed Mater. 2022;134:105402. doi: 10.1016/j.jmbbm.2022.105402
- Pourzal R, Lundberg HJ, Hall DJ, et al. What factors drive taper corrosion? J Arthroplasty. 2018;33:2707-2711. doi: 10.1016/j.arth.2018.03.055
- Zeng Y, Feng W. Metal allergy in patients with total hip replacement: A review. J Int Med Res. 2013;41(2):247-252. doi: 10.1177/0300060513476583
- Hoeg A, Gogakos A, Murphy E, et al. Bone turnover and bone mineral density are independently related to selenium status in healthy euthyroid postmenopausal women. J Clin Endocrinol Metab. 2012;97(11):4061-4070. doi: 10.1210/jc.2012-2121
- Zhang J, Munger RG, West NA, et al. Antioxidant intake and risk of osteoporotic hip fracture in utah: An effect modified by smoking status. Am J Epidemiol. 2006;163(1):9-17. doi: 10.1093/aje/kwj005
- Rao S, Lin Y, Lin R, et al. Traditional Chinese medicine active ingredients-based selenium nanoparticles regulate antioxidant selenoproteins for spinal cord injury treatment. J Nanobiotechnol. 2022;20(1):9-17. doi: 10.1186/s12951-022-01490-x
- Farris AL, Lambrechts D, Zhou Y, et al. 3D-printed oxygen-releasing scaffolds improve bone regeneration in mice. Biomaterials. 2022;280:121318. doi: 10.1016/j.biomaterials.2021.121318
- Huang L, Zhang S, Bian M, et al. Injectable, anti-collapse, adhesive, plastic and bioactive bone graft substitute promotes bone regeneration by moderating oxidative stress in osteoporotic bone defect. Acta Biomater. 2024;180:82-103. doi: 10.1016/j.actbio.2024.04.016
- Wei X, Zhang Z, Wang L, et al. Enhancing osteoblast proliferation and bone regeneration by poly (amino acid)/selenium-doped hydroxyapatite. Biomed Mater. 2024;19(3): 035025.
- Chen D, Liang Z, Su Z, et al. Selenium-doped mesoporous bioactive glass regulates macrophage metabolism and polarization by scavenging ROS and promotes bone regeneration in vivo. ACS Appl Mater Interfaces. 2023;15(29):34378-34396. doi: 10.1021/acsami.3c03446
- Tang Z, Li J, Fu L, et al. Janus silk fibroin/polycaprolactone-based scaffold with directionally aligned fibers and porous structure for bone regeneration. Int J Biol Macromol. 2024;262:129927.
- Pan J, Prabakaran S, Rajan M. In-vivo assessment of minerals substituted hydroxyapatite/poly sorbitol sebacate glutamate (PSSG) composite coating on titanium metal implant for orthopedic implantation. Biomed Pharmacother. 2019;119:109404.
- Xu Y, Shen Z, Zhou Y, et al. Osteogenic and anti-inflammatory effects of SLA titanium substrates doped with chitosan-stabilized selenium nanoparticles via a covalent coupling strategy. Colloids Surf B. 2023;224:109404. doi: 10.1016/j.biopha.2019.109404
- Xiong Z, Lin H, Li H, et al. Chiral selenium nanotherapeutics regulates selenoproteins to attenuate glucocorticoid‐induced osteoporosis. Adv Funct Mater. 2023;33(17):2212970. doi: 10.1002/adfm.202212970
- Vekariya KK, Kaur J, Tikoo K. Alleviating anastrozole induced bone toxicity by selenium nanoparticles in SD rats. Toxicol Appl Pharmacol. 2013;268(2):212-220. doi: 10.1016/j.taap.2013.01.028
- Hu X, Ke C, Zhong J, et al. Nano selenium-doped TiO2 nanotube arrays on orthopedic implants for suppressing osteosarcoma growth. Front Bioeng Biotechnol. 2023;11:1252816. doi: 10.3389/fbioe.2023.1252816
- Bian Y, Zhao K, Hu T, et al. A se nanoparticle/MgFe‐LDH composite nanosheet as a multifunctional platform for osteosarcoma eradication, antibacterial and bone reconstruction. Adv Sci (Weinh). 2024;11:e2403791. doi: 10.1002/advs.202403791
- Xu Y, Xu C, Song H, et al. Biomimetic bone-periosteum scaffold for spatiotemporal regulated innervated bone regeneration and therapy of osteosarcoma. J Nanobiotechnol. 2024;22(1):250. doi: 10.1186/s12951-024-02430-7
- Khan S, Ullah MW, Siddique R, et al. Catechins-modified selenium-doped hydroxyapatite nanomaterials for improved osteosarcoma therapy through generation of reactive oxygen species. Front Oncol. 2019;9:499. doi: 10.3389/fonc.2019.00499
- Yu H, Song Z, Yu J, et al. Supramolecular self-assembly of EGCG-selenomethionine nanodrug for treating osteoarthritis. Bioact Mater. 2024;32:164-176. doi: 10.1016/j.bioactmat.2023.09.020
- Li Y, Zhu S, Luo J, et al. The protective effect of selenium nanoparticles in osteoarthritis: In vitro and in vivo Drug Des Dev Ther. 2023;17:1515-1529. doi: 10.2147/DDDT.S407122
- Zhu S, Luo C, Feng W, et al. Selenium-deposited tripterine phytosomes ameliorate the antiarthritic efficacy of the phytomedicine via a synergistic sensitization. Int J Pharm. 2020;578:119104. doi: 10.1016/j.ijpharm.2020.119104
- Liu J, Liu J, Liu S, et al. Cascade targeting selenium nanoparticles-loaded hydrogel microspheres for multifaceted antioxidant defense in osteoarthritis. Biomaterials. 2025;318:424. doi: 10.3390/nano13030424
- Wang S, Liu Y, Sun Q, et al. Triple cross-linked dynamic responsive hydrogel loaded with selenium nanoparticles for modulating the inflammatory microenvironment via PI3K/Akt/NF-κB and MAPK signaling pathways. Adv Sci (Weinh). 2023;10(31):e2303167. doi: 10.1002/advs.202303167
- Ren SX, Zhan B, Lin Y, et al. Selenium nanoparticles dispersed in phytochemical exert anti-inflammatory activity by modulating catalase, GPx1, and COX-2 gene expression in a rheumatoid arthritis rat model. Med Sci Monit. 2019;25:991-1000. doi: 10.12659/MSM.912545
- Shinde V, Desai K. Selenium-methionine-folic acid nanoparticles (SeMetFa NPs) and its in vivo efficacy against rheumatoid arthritis. Biol Trace Elem Res. 2024;202(5):2184-2198. doi: 10.1007/s12011-023-03840-8
- Susarla S, Chilkoor G, Kalimuthu JR, et al. Corrosion resistance of sulfur-selenium alloy coatings. Adv Mater. 2021;33(51):e2104467. doi: 10.1002/adma.202104467
- Tan Z, Deng L, Jiang Z, et al. Selenium nanoparticles attenuate cobalt nanoparticle-induced skeletal muscle injury: A study based on myoblasts and zebrafish. Toxics. 2024;12(2):130. doi: 10.3390/toxics12020130
- He Z, Sun C, Ma Y, et al. Rejuvenating aged bone repair through multihierarchy reactive oxygen species‐regulated hydrogel. Adv Mater. 2023;36(9):e2306552. doi: 10.1002/adma.202306552
- Tambasco de Oliveira P, Nanci A. Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells. Biomaterials. 2004;25(3):403-413. doi: 10.1016/s0142-9612(03)00539-8
- Perla V, Webster TJ. Better osteoblast adhesion on nanoparticulate selenium-a promising orthopedic implant material. J Biomed Mater Res A. 2005;75(2):356-364. doi: 10.1002/jbm.a.30423
- Ebert R, Ulmer M, Zeck S, et al. Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro. Stem Cells. 2009;24(5):1226-1235. doi: 10.1634/stemcells.2005-0117
- Wang J, Zhang Y, Tang Q, et al. Application of antioxidant compounds in bone defect repair. Antioxidants (Basel). 2024;13(7):789. doi: 10.3390/antiox13070789
- Xu R, You Y, Zheng W, et al. Selenoprotein‐regulated hydrogel for ultrasound‐controlled microenvironment remodeling to promote bone defect repair. Adv Funct Mater. 2024;34(12):2313122.
- Wang Y, Wang J, Hao H, et al. In vitro and in vivo mechanism of bone tumor inhibition by selenium-doped bone mineral nanoparticles. ACS Nano. 2016;10(11):9927-9937. doi: 10.1021/acsnano.6b03835
- Zhou ZF, Sun TW, Qin YH, et al. Selenium-doped hydroxyapatite nanoparticles for potential application in bone tumor therapy. Biomater Sci. 2019;7(12):5044-5053. doi: 10.1016/j.jinorgbio.2020.111334
- Pang KL, Chin KY. Emerging anticancer potentials of selenium on osteosarcoma. Int J Mol Sci. 2019;20(21):5318. doi: 10.3390/ijms20215318
- Peng S, Zhang G, Wang D. Association of selenium intake with bone mineral density and osteoporosis: The national health and nutrition examination survey. Front Endocrinol (Lausanne). 2023;14:1251838. doi: 10.3389/fendo.2023.1251838
- Hendrickx G, Boudin E, Van Hul W. A look behind the scenes: The risk and pathogenesis of primary osteoporosis. Nat Rev Rheumatol. 2015;11(8):462-474. doi: 10.1038/nrrheum.2015.48
- Wang H, Ba Y, Xing Q, et al. Diabetes mellitus and the risk of fractures at specific sites: A meta-analysis. BMJ Open. 2019;9(1):e024067. doi: 10.1136/bmjopen-2018-024067
- Tanios M, Brickman B, Cage E, et al. Diabetes and impaired fracture healing: A narrative review of recent literature. Curr Osteoporos Rep. 2022;20(5):229-239. doi: 10.1007/s11914-022-00740-z
- Breast International Group (BIG) 1-98 Collaborative Group, Thürlimann B, Keshaviah A, et al. A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. N Engl J Med. 2005;353(26):2747-2757. doi: 10.1056/NEJMoa052258
- Gianferante DM, Mirabello L, Savage SA. Germline and somatic genetics of osteosarcoma - connecting aetiology, biology and therapy. Nat Rev Endocrinol. 2017;13(8):480-491. doi: 10.1038/nrendo.2017.16
- Kansara M, Teng MW, Smyth MJ, et al. Translational biology of osteosarcoma. Nat Rev Cancer. 2014;14(11):722-735. doi: 10.1038/nrc3838
- Bielack SS, Kempf-Bielack B, Delling G, et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: An analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol. 2002;20(3):776-790. doi: 10.1200/JCO.2002.20.3.776
- Luetke A, Meyers PA, Lewis I, et al. Osteosarcoma treatment - where do we stand? A state of the art review. Cancer Treat Rev. 2014;40(4):523-532. doi: 10.1016/j.ctrv.2013.11.006
- Isakoff MS, Bielack SS, Meltzer P, et al. Osteosarcoma: Current treatment and a collaborative pathway to success. J Clin Oncol. 2015;33(27):3029-3035. doi: 10.1200/JCO.2014.59.4895
- Grimer RJ. Surgical options for children with osteosarcoma. Lancet Oncol. 2005;6(2):85-92. doi: 10.1016/S1470-2045(05)01734-1
- Xu C, Xia Y, Zhuang P, et al. FePSe3‐nanosheets‐integrated cryogenic‐3D‐printed multifunctional calcium phosphate scaffolds for synergistic therapy of osteosarcoma. Small. 2023;19(38):e2303636. doi: 10.1002/smll.202303636
- Tran PA, Sarin L, Hurt RH, Webster TJ. Differential effects of nanoselenium doping on healthy and cancerous osteoblasts in coculture on titanium. Int J Nanomed. 2010;5:351-358. doi: 10.2147/ijn.s7289
- Deng X, Tan Y. A national cross-sectional analysis of selenium intake and risk of osteoarthritis: NHANES 2003-2016. Front Public Health. 2023;10:1047605. doi: 10.3389/fpubh.2022.1047605
- Glyn-Jones S, Palmer AJ, Agricola R, et al. Osteoarthritis. Lancet. 2015;386(9991):376-387. doi: 10.1016/S0140-6736(14)60802-3
- Iaconisi G. N, Lunetti P, Gallo N, et al. Hyaluronic acid: A powerful biomolecule with wide-ranging applications-a comprehensive review. Int J Mol Sci. 2023;24(12):10296. doi: 10.3390/ijms241210296
- Cai Z, Zhang H, Wei Y, et al. Shear-thinning hyaluronan-based fluid hydrogels to modulate viscoelastic properties of osteoarthritis synovial fluids. Biomater Sci. 2019;7(8):3143-3157. doi: 10.1039/c9bm00298g
- Yao Y, Chen Z, Zhang H, et al. Selenium-GPX4 axis protects follicular helper T cells from ferroptosis. Nat Immunol. 2021;22(9):1127-1139. doi: 10.1038/s41590-021-00996-0
- Liu Y, Ma L, Zhou H, et al. Polypeptide nano-Se targeting inflammation and theranostic rheumatoid arthritis by anti-angiogenic and NO activating AMPKα signaling pathway. J Mater Chem B. 2018;6(21):3497-3514. doi: 10.1039/c8tb00080h
- Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016;388(10055):2023-2038. doi: 10.1038/nrdp.2018.1
- Khan ZA, Tripathi R, Mishra B. Methotrexate: A detailed review on drug delivery and clinical aspects. Expert Opin Drug Deliv. 2012;9(2):151-169. doi: 10.1517/17425247.2012.642362
- Lee SM, Kim HJ, Ha YJ, et al. Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano. 2013;7(1):50-57. doi: 10.1021/nn301215q
- Rubinstein I, Weinberg GL. Nanomedicines for chronic non-infectious arthritis: The clinician’s perspective. Nanomedicine. 2012;8:S77-S82. doi: 10.1016/j.nano.2012.05.004
- Arif A, Bhatti A, John P. Therapeutic potential of Foeniculum vulgare derived selenium nanoparticles in arthritic Balb/c mice. Int J Nanomed. 2019;14:8561-8572. doi: 10.2147/IJN.S226674
- Lee J, Byun H, Madhurakkat Perikamana SK, et al. Current advances in immunomodulatory biomaterials for bone regeneration. Adv Healthc Mater. 2018;8(4):e1801106. doi: 10.1002/adhm.201801106
- Stace ET, Dakin SG, Mouthuy PA, et al. Translating regenerative biomaterials into clinical practice. J Cell Physiol. 2015;231(1):36-49. doi: 10.1002/jcp.25071
- Dec P, Modrzejewski A, Pawlik A. Existing and novel biomaterials for bone tissue engineering. Int J Mol Sci. 2022;24(1):529. doi: 10.3390/ijms24010529
- Kumar S, Nehra M, Kedia D, et al. Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects. Mater Sci Eng C Mater Biol Appl. 2020;106:110154. doi: 10.1016/j.msec.2019.110154