Advancements in physical therapy for osteoporosis treatment
Osteoporosis (OP) is a ubiquitous metabolic bone disease characterized by reduced bone mass and the deterioration of bone microarchitecture. One of its most serious complications, fractures, can induce substantial functional disabilities in patients and are associated with chronic health issues, thereby imposing both medical and economic burdens. At present, the predominant therapeutic approaches for OP include pharmacotherapy and physical therapy (PT). While pharmacotherapy has proven effective, it is not without its drawbacks, such as prolonged treatment durations and adverse effects due to medication. PT, also referred to as physiotherapy, stands out as the most cost-effective alternative treatment for OP. PT involves the application of natural or artificial physical agents, such as sound, light, cold, heat, electricity, and mechanical forces (including motion and pressure), to non-invasively and non-pharmacologically treat local or systemic dysfunctions or pathologies. Its objective is to restore the body’s inherent physiological functions. PT offers a diverse array of treatment options for patients with OP who are unsuitable for surgery or for whom surgical intervention is not viable. This review investigates the feasibility of identifying appropriate PT methods tailored to the needs of individuals with OP, with the intent of providing a scientific foundation for improved clinical practice.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
- Foger-Samwald U, Dovjak P, Azizi-Semrad U, Kerschan-Schindl K, Pietschmann P. Osteoporosis: Pathophysiology and therapeutic options. EXCLI J. 2020;19:1017-1037. doi: 10.17179/excli2020-2591
- Whisner CM, Castillo LF. Prebiotics, bone and mineral metabolism. Calcif Tissue Int. 2018;102(4):443-479. doi: 10.1007/s00223-017-0339-3
- Salari N, Ghasemi H, Mohammadi L, et al. The global prevalence of osteoporosis in the world: A comprehensive systematic review and meta-analysis. J Orthop Surg Res. 2021;16:609. doi: 10.1186/s13018-021-02772-0
- Chandran M, Brind’Amour K, Fujiwara S, et al. Prevalence of osteoporosis and incidence of related fractures in developed economies in the Asia Pacific region: A systematic review. Osteoporos Int. 2023;34(6): 1037-1053. doi: 10.1007/s00198-022-06657-8
- Wade S, Strader C, Fitzpatrick L, Anthony M, O’Malley C. Estimating prevalence of osteoporosis: Examples from industrialized countries. Arch Osteoporos. 2014;9:182. doi: 10.1007/s11657-014-0182-3
- Guzon-Illescas O, Perez Fernandez E, Crespí Villarias N, et al. Mortality after osteoporotic hip fracture: Incidence, trends, and associated factors. J Orthop Surg Res. 2019;14:203. doi: 10.1186/s13018-019-1226-6
- Leboime A, Confavreux CB, Mehsen N, Paccou J, David C, Roux C. Osteoporosis and mortality. Joint Bone Spine. 2010;77 Suppl 2: S107-S112. doi: 10.1016/S1297-319X(10)70004-X
- Tarrant SM, Balogh ZJ. The global burden of surgical management of osteoporotic fractures. World J Surg. 2020;44(4):1009-1019. doi: 10.1007/s00268-019-05237-y
- Cauley JA. Public health impact of osteoporosis. J Gerontol Ser Biomed Sci Med Sci. 2013;68(10):1243-1251. doi: 10.1093/gerona/glt093
- Han Y, You X, Xing W, Zhang Z, Zou W. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 2018;6:16. doi: 10.1038/s41413-018-0019-6
- Hakeda Y, Kumegawa M. Osteoclasts in bone metabolism. Kaibogaku Zasshi. 1991;66(4):215-225.
- Vaananen HK, Hentunen T, Lakkakorpi P, Parvinen EK, Sundqvist K, Tuukkanen J. Mechanism of osteoclast mediated bone resorption. Ann Chir Gynaecol. 1988;77(5-6):193-196.
- Zhivodernikov IV, Kirichenko TV, Markina YV, Postnov AY, Markin AM. Molecular and cellular mechanisms of osteoporosis. Int J Mol Sci. 2023;24(21):15772.doi: 10.3390/ijms242115772
- Liu J, Xu D, Liu L, et al. Regular sling core stabilization training improves bone density based on calcium and vitamin D supplementation. BMC Musculoskelet Disord. 2023;24(1):815. doi: 10.1186/s12891-023-06896-8
- Yang F, Su Y, Liang J, et al. Casticin suppresses RANK-Linduced osteoclastogenesis and prevents ovariectomyinduced bone loss by regulating the AKT/ERK and NF-kappaB signaling pathways. Int J Mol Med. 2023;51(5):43. doi: 10.3892/ijmm.2023.5246
- Zaric BL, Macvanin MT, Isenovic ER. Free radicals: Relationship to human diseases and potential therapeutic applications. Int J Biochem Cell Biol. 2023;154:106346. doi: 10.1016/j.biocel.2022.106346
- Zhao F, Guo L, Wang X, Zhang Y. Correlation of oxidative stress-related biomarkers with postmenopausal osteoporosis: A systematic review and meta-analysis. Arch Osteoporos. 2021;16(1):4. doi: 10.1007/s11657-020-00854-w
- Wauquier F, Leotoing L, Coxam V, Guicheux J, Wittrant Y. Oxidative stress in bone remodelling and disease. Trends Mol Med. 2009;15(10):468-477. doi: 10.1016/j.molmed.2009.08.004
- Chen Y, Tang W, Li H, Lv J, Chang L, Chen S. Composite dietary antioxidant index negatively correlates with osteoporosis among middle-aged and older US populations. Am J Transl Res. 2023;15(2):1300-1308.
- Bai XC, Lu D, Bai J, et al. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-κB. Biochem Biophys Res Commun. 2004;314(1):197-207. doi: 10.1016/j.bbrc.2003.12.073
- Chen K, Qiu P, Yuan Y, et al. Pseurotin A inhibits osteoclastogenesis and prevents ovariectomized-induced bone loss by suppressing reactive oxygen species. Theranostics. 2019;9(6):1634-1650. doi: 10.7150/thno.30206
- Zou ML, Chen ZH, Teng YY, et al. The smad dependent TGF-beta and BMP signaling pathway in bone remodeling and therapies. Front Mol Biosci. 2021;8:593310. doi: 10.3389/fmolb.2021.593310
- Geissler S, Textor M, Kuhnisch J, et al. Functional comparison of chronological and in vitro aging: Differential role of the cytoskeleton and mitochondria in mesenchymal stromal cells. PLoS One. 2012;7(12):e52700. doi: 10.1371/journal.pone.0052700
- Yang Y, Sun Y, Mao WW, Zhang H, Ni B, Jiang L. Oxidative stress induces downregulation of TP53INP2 and suppresses osteogenic differentiation of BMSCs during osteoporosis through the autophagy degradation pathway. Free Radic Biol Med. 2021;166:226-237. doi: 10.1016/j.freeradbiomed.2021.02.025
- Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: A review. Stem Cells Dev. 2015;24(10):1150-1163. doi: 10.1089/scd.2014.0484
- Tao H, Ge G, Liang X, et al. ROS signaling cascades: Dual regulations for osteoclast and osteoblast. Acta Biochim Biophys Sin (Shanghai). 2020;52(10):1055-1062. doi: 10.1093/abbs/gmaa098
- Agidigbi TS, Kim C. Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ROS-mediated osteoclast diseases. Int J Mol Sci. 2019;20(14):3576. doi: 10.3390/ijms20143576
- Bai XC, Lu D, Liu AL, et al. Reactive oxygen species stimulates receptor activator of NF-kappaB ligand expression in osteoblast. J Biol Chem. 2005;280(17):17497-17506. doi: 10.1074/jbc.M409332200
- Gong W, Liu M, Zhang Q, et al. Orcinol glucoside improves senile osteoporosis through attenuating oxidative stress and autophagy of osteoclast via activating Nrf2/Keap1 and mTOR signaling pathway. Oxid Med Cell Longev. 2022;2022:5410377. doi: 10.1155/2022/5410377
- Jagger CJ, Lean JM, Davies JT, Chambers TJ. Tumor necrosis factor-alpha mediates osteopenia caused by depletion of antioxidants. Endocrinology. 2005;146(1):113-118. doi: 10.1210/en.2004-1058
- Ozgocmen S, Kaya H, Fadillioglu E, Aydogan R, Yilmaz Z. Role of antioxidant systems, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis. Mol Cell Biochem. 2007;295(1-2):45-52. doi: 10.1007/s11010-006-9270-z
- Bolamperti S, Villa I, Rubinacci A. Bone remodeling: An operational process ensuring survival and bone mechanical competence. Bone Res. 2022;10(1):48. doi: 10.1038/s41413-022-00219-8
- Lu L, Tian L. Postmenopausal osteoporosis coexisting with sarcopenia: The role and mechanisms of estrogen. J Endocrinol. 2023;259(1):e230116. doi: 10.1530/JOE-23-0116
- Almeida M, Iyer S, Martin-Millan M, et al. Estrogen receptor-alpha signaling in osteoblast progenitors stimulates cortical bone accrual. J Clin Invest. 2013;123(1):394-404. doi: 10.1172/JCI65910
- Manolagas SC. Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21(2):115-137. doi: 10.1210/edrv.21.2.0395
- Manolagas SC. From estrogen-centric to aging and oxidative stress: A revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010;31(3):266-300. doi: 10.1210/er.2009-0024
- Riggs BL, Khosla S, Melton LJ 3rd. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev. 2002;23(3):279-302. doi: 10.1210/edrv.23.3.0465
- Manolagas SC, O’Brien CA, Almeida M. The role of estrogen and androgen receptors in bone health and disease. Nat Rev Endocrinol. 2013;9(12):699-712. doi: 10.1038/nrendo.2013.179
- Hayashi M, Nakashima T, Yoshimura N, Okamoto K, Tanaka S, Takayanagi H. Autoregulation of osteocyte Sema3A orchestrates estrogen action and counteracts bone aging. Cell Metab. 2019;29(3):627- 637.e5. doi: 10.1016/j.cmet.2018.12.021
- Wu D, Cline-Smith A, Shashkova E, Perla A, Katyal A, Aurora R. T-Cell mediated inflammation in postmenopausal osteoporosis. Front Immunol. 2021;12:687551. doi: 10.3389/fimmu.2021.687551
- Jackson E, Lara-Castillo N, Akhter MP, et al. Osteocyte Wnt/beta-catenin pathway activation upon mechanical loading is altered in ovariectomized mice. Bone Rep. 2021;15:101129. doi: 10.1016/j.bonr.2021.101129
- Vrachnis N, Zygouris D, Vrachnis D, et al. Effects of hormone therapy and flavonoids capable on reversal of menopausal immune senescence. Nutrients. 2021;13(7):2363. doi: 10.3390/nu13072363
- Lean JM, Davies JT, Fuller K, et al. A crucial role for thiol antioxidants in estrogen-deficiency bone loss. J Clin Invest. 2003;112(6):915-923. doi: 10.1172/JCI18859
- Grassi F, Tell G, Robbie-Ryan M, et al. Oxidative stress causes bone loss in estrogen-deficient mice through enhanced bone marrow dendritic cell activation. Proc Natl Acad Sci U S A. 2007;104(38):15087-15092. doi: 10.1073/pnas.0703610104
- Tournadre A, Vial G, Capel F, Soubrier M, Boirie Y. Sarcopenia. Joint Bone Spine. 2019;86(3):309-314. doi: 10.1016/j.jbspin.2018.08.001
- Santilli V, Bernetti A, Mangone M, Paoloni M. Clinical definition of sarcopenia. Clin Cases Miner Bone Metab. 2014;11(3):177-180.
- Kirk B, Zanker J, Duque G. Osteosarcopenia: Epidemiology, diagnosis, and treatment-facts and numbers. J Cachexia Sarcopenia Muscle. 2020;11(3):609-618. doi: 10.1002/jcsm.12567
- Nachury MV, Mick DU. Establishing and regulating the composition of cilia for signal transduction. Nat Rev Mol Cell Biol. 2019;20(7):389-405. doi: 10.1038/s41580-019-0116-4
- Yang YJ, Kim DJ. An overview of the molecular mechanisms contributing to musculoskeletal disorders in chronic liver disease: Osteoporosis, sarcopenia, and osteoporotic sarcopenia. Int J Mol Sci. 2021;22(5):2604.doi: 10.3390/ijms22052604
- Hamrick MW. The skeletal muscle secretome: An emerging player in muscle-bone crosstalk. Bonekey Rep. 2012;1:60. doi: 10.1038/bonekey.2012.60
- Elkasrawy M, Immel D, Wen X, Liu X, Liang LF, Hamrick MW. Immunolocalization of myostatin (GDF-8) following musculoskeletal injury and the effects of exogenous myostatin on muscle and bone healing. J Histochem Cytochem. 2012;60(1):22-30. doi: 10.1369/0022155411425389
- Weitzmann MN. Bone and the immune system. Toxicol Pathol. 2017;45(7):911-924. doi: 10.1177/0192623317735316
- Arron JR, Choi Y. Bone versus immune system. Nature. 2000;408(6812):535-536. doi: 10.1038/35046196
- Zhang W, Dang K, Huai Y, Qian A. Osteoimmunology: The regulatory roles of T lymphocytes in osteoporosis. Front Endocrinol (Lausanne). 2020;11:465. doi: 10.3389/fendo.2020.00465
- Li S, Liu Q, Wu D, et al. PKC-delta deficiency in B cells displays osteopenia accompanied with upregulation of RANKL expression and osteoclast-osteoblast uncoupling. Cell Death Dis. 2020;11(9):762. doi: 10.1038/s41419-020-02947-3
- Li Y, Toraldo G, Li A, et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood. 2007;109(9):3839-3848. doi: 10.1182/blood-2006-07-037994
- Wang YN, Liu S, Jia T, et al. T cell protein tyrosine phosphatase in osteoimmunology. Front Immunol. 2021;12:620333. doi: 10.3389/fimmu.2021.620333
- Harmer D, Falank C, Reagan MR. Interleukin-6 interweaves the bone marrow microenvironment, bone loss, and multiple myeloma. Front Endocrinol (Lausanne). 2018;9:788. doi: 10.3389/fendo.2018.00788
- Ivanova S, Vasileva L, Ivanova S, Peikova L, Obreshkova D. Osteoporosis: Therapeutic options. Folia Med (Plovdiv). 2015;57(3-4):181-190. doi: 10.1515/folmed-2015-0037
- Rozenberg S, Al-Daghri N, Aubertin-Leheudre M, et al. Is there a role for menopausal hormone therapy in the management of postmenopausal osteoporosis? Osteoporos Int. 2020;31(12):2271-2286. doi: 10.1007/s00198-020-05497-8
- Uhlemann C, Lange U. Physiotherapy strategies in osteoporosis-- recommendations for daily practice. Z Rheumatol. 2006;65(5):407-410, 412-416. doi: 10.1007/s00393-006-0084-x
- Takayama T, Suzuki N, Ikeda K, et al. Low-intensity pulsed ultrasound stimulates osteogenic differentiation in ROS 17/2.8 cells. Life Sci. 2007;80(10):965-971. doi: 10.1016/j.lfs.2006.11.037
- Lim D, Ko CY, Seo DH, et al. Low-intensity ultrasound stimulation prevents osteoporotic bone loss in young adult ovariectomized mice. J Orthop Res. 2011;29(1):116-125. doi: 10.1002/jor.21191
- Sun S, Sun L, Kang Y, Tang L, Qin YX, Ta D. Therapeutic effects of low-intensity pulsed ultrasound on osteoporosis in ovariectomized rats: Intensity-dependent study. Ultrasound Med Biol. 2020;46(1):108-121. doi: 10.1016/j.ultrasmedbio.2019.08.025
- Inoue S, Hatakeyama J, Aoki H, et al. Effects of ultrasound, radial extracorporeal shock waves, and electrical stimulation on rat bone defect healing. Ann N Y Acad Sci. 2021;1497(1):3-14. doi: 10.1111/nyas.14581
- Angle SR, Sena K, Sumner DR, Virdi AS. Osteogenic differentiation of rat bone marrow stromal cells by various intensities of low-intensity pulsed ultrasound. Ultrasonics. 2011;51(3):281-288. doi: 10.1016/j.ultras.2010.09.004
- Hadjiargyrou M, McLeod K, Ryaby JP, Rubin C. Enhancement of fracture healing by low intensity ultrasound. Clin Orthop Relat Res. 1998;355 Suppl: S216-S229. doi: 10.1097/00003086-199810001-00022
- Tian C, Liu H, Zhao C, Zhang C, Wang W. A numerical study on mechanical effects of low-intensity pulsed ultrasound on trabecular bone and osteoblasts. J Biomech Eng. 2023;145(5):051010. doi: 10.1115/1.4056658
- Zamarioli A, Butezloff MM, Ximenez JPB, Volpon JB. Low-intensity pulsed ultrasound partially reversed the deleterious effects of a severe spinal cord injury-induced bone loss and osteoporotic fracture healing in paraplegic rats. Spinal Cord. 2023;61(2):145-153. doi: 10.1038/s41393-022-00863-1
- Xiao G, Jiang D, Ge C, et al. Cooperative interactions between activating transcription factor 4 and Runx2/Cbfa1 stimulate osteoblast-specific osteocalcin gene expression. J Biol Chem. 2005;280(35):30689-30696. doi: 10.1074/jbc.M500750200
- Liu W, Toyosawa S, Furuichi T, et al. Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. J Cell Biol. 2001;155(1):157-166. doi: 10.1083/jcb.200105052
- Wu S, Kawahara Y, Manabe T, et al. Low-intensity pulsed ultrasound accelerates osteoblast differentiation and promotes bone formation in an osteoporosis rat model. Pathobiology. 2009;76(3):99-107. doi: 10.1159/000209387
- Zura R, Mehta S, Della Rocca GJ, Jones J, Steen RG. A cohort study of 4,190 patients treated with low-intensity pulsed ultrasound (LIPUS): Findings in the elderly versus all patients. BMC Musculoskelet Disord. 2015;16:45. doi: 10.1186/s12891-015-0498-1
- Leung KS, Lee WS, Cheung WH, Qin L. Lack of efficacy of low-intensity pulsed ultrasound on prevention of postmenopausal bone loss evaluated at the distal radius in older Chinese women. Clin Orthop Relat Res. 2004;(427):234-240. doi: 10.1097/01.blo.0000137557.59228.4d
- Warden SJ, Bennell KL, Forwood MR, McMeeken JM, Wark JD. Skeletal effects of low-intensity pulsed ultrasound on the ovariectomized rodent. Ultrasound Med Biol. 2001;27(7):989-998. doi: 10.1016/s0301-5629(01)00376-3
- Scalize PH, de Sousa LG, Regalo SC, et al. Low-level laser therapy improves bone formation: Stereology findings for osteoporosis in rat model. Lasers Med Sci. 2015;30(5):1599-1607. doi: 10.1007/s10103-015-1773-y
- Stein A, Benayahu D, Maltz L, Oron U. Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg. 2005;23(2):161-166. doi: 10.1089/pho.2005.23.161
- Tim CR, Pinto KN, Rossi BR, et al. Low-level laser therapy enhances the expression of osteogenic factors during bone repair in rats. Lasers Med Sci. 2014;29(1):147-156. doi: 10.1007/s10103-013-1302-9
- Sella VR, do Bomfim FR, Machado PC, da Silva Morsoleto MJ, Chohfi M, Plapler H. Effect of low-level laser therapy on bone repair: A randomized controlled experimental study. Lasers Med Sci. 2015;30(3):1061-1068. doi: 10.1007/s10103-015-1710-0
- Xu M, Deng T, Mo F, et al. Low-intensity pulsed laser irradiation affects RANKL and OPG mRNA expression in rat calvarial cells. Photomed Laser Surg. 2009;27(2):309-315. doi: 10.1089/pho.2008.2283
- Pinheiro AL, Gerbi ME. Photoengineering of bone repair processes. Photomed Laser Surg. 2006;24(2):169-178. doi: 10.1089/pho.2006.24.169
- Kanenari M, Zhao J, Abiko Y. Enhancement of microtubule-associated protein-1 Alpha gene expression in osteoblasts by low level laser irradiation. Laser Ther. 2011;20(1):47-51. doi: 10.5978/islsm.20.47
- Zhu CT, Li T, Zhang P, Zou M, Guo Q, Qu XW. Beneficial effects of low-level laser irradiation on senile osteoporosis in rats. Eur Rev Med Pharmacol Sci. 2017;21(22):5230-5238. doi: 10.26355/eurrev_201711_13846
- Peat FJ, Colbath AC, Bentsen LM, Goodrich LR, King MR. In vitro effects of high-intensity laser photobiomodulation on equine bone marrow-derived mesenchymal stem cell viability and cytokine expression. Photomed Laser Surg. 2018;36(2):83-91. doi: 10.1089/pho.2017.4344
- Eroglu B, Genova E, Zhang Q, et al. Photobiomodulation has rejuvenating effects on aged bone marrow mesenchymal stem cells. Sci Rep. 2021;11(1):13067. doi: 10.1038/s41598-021-92584-3
- Amaroli A, Sabbieti MG, Marchetti L, et al. The effects of 808- nm near-infrared laser light irradiation on actin cytoskeleton reorganization in bone marrow mesenchymal stem cells. Cell Tissue Res. 2021;383(3):1003-1016. doi: 10.1007/s00441-020-03306-6
- Yamaura M, Yao M, Yaroslavsky I, Cohen R, Smotrich M, Kochevar IE. Low level light effects on inflammatory cytokine production by rheumatoid arthritis synoviocytes. Lasers Surg Med. 2009;41(4):282-290. doi: 10.1002/lsm.20766
- Pires Oliveira DA, de Oliveira RF, Zangaro RA, Soares CP. Evaluation of low-level laser therapy of osteoblastic cells. Photomed Laser Surg. 2008;26(4):401-404. doi: 10.1089/pho.2007.2101
- Saad A, El Yamany M, Abbas O, Yehia M. Possible role of low level laser therapy on bone turnover in ovariectomized rats. Endocr Regul. 2010;44(4):155-163. doi: 10.4149/endo_2010_04_155
- Nelson FR, Brighton CT, Ryaby J, et al. Use of physical forces in bone healing. J Am Acad Orthop Surg. 2003;11(5):344-354. doi: 10.5435/00124635-200309000-00007
- Lirani-Galvao AP, Bergamaschi CT, Silva OL, Lazaretti-Castro M. Electrical field stimulation improves bone mineral density in ovariectomized rats. Braz J Med Biol Res. 2006;39(11):1501-1505. doi: 10.1590/s0100-879x2006001100014
- Tamaki H, Tomori K, Yotani K, et al. Electrical stimulation of denervated rat skeletal muscle retards trabecular bone loss in early stages of disuse musculoskeletal atrophy. J Musculoskelet Neuronal Interact. 2014;14(2):220-228.
- Parfitt AM. Misconceptions (2): Turnover is always higher in cancellous than in cortical bone. Bone. 2002;30(6):807-809. doi: 10.1016/s8756-3282(02)00735-4
- Scheler M, Irmler M, Lehr S, et al. Cytokine response of primary human myotubes in an in vitro exercise model. Am J Physiol Cell Physiol. 2013;305(8):C877-C886. doi: 10.1152/ajpcell.00043.2013
- Pautke C, Schieker M, Tischer T, et al. Characterization of osteosarcoma cell lines MG-63, Saos-2 and U-2 OS in comparison to human osteoblasts. Anticancer Res. 2004;24(6):3743-3748.
- Bisceglia B, Zirpoli H, Caputo M, Chiadini F, Scaglione A, Tecce MF. Induction of alkaline phosphatase activity by exposure of human cell lines to a low-frequency electric field from apparatuses used in clinical therapies. Bioelectromagnetics. 2011;32(2):113-119. doi: 10.1002/bem.20630
- Caputo M, Zirpoli H, De Rosa MC, et al. Effect of low frequency (LF) electric fields on gene expression of a bone human cell line. Electromagn Biol Med. 2014;33(4):289-295. doi: 10.3109/15368378.2013.822387
- Kern H, Salmons S, Mayr W, Rossini K, Carraro U. Recovery of long-term denervated human muscles induced by electrical stimulation. Muscle Nerve. 2005;31(1):98-101. doi: 10.1002/mus.20149
- Tamaki H, Yotani K, Ogita F, et al. Effect of electrical stimulation-induced muscle force and streptomycin treatment on muscle and trabecular bone mass in early-stage disuse musculoskeletal atrophy. J Musculoskelet Neuronal Interact. 2015;15(3):270-278.
- Guo BS, Cheung KK, Yeung SS, Zhang BT, Yeung EW. Electrical stimulation influences satellite cell proliferation and apoptosis in unloading-induced muscle atrophy in mice. PLoS One. 2012;7(1):e30348. doi: 10.1371/journal.pone.0030348
- Zhang BT, Yeung SS, Liu Y, et al. The effects of low frequency electrical stimulation on satellite cell activity in rat skeletal muscle during hindlimb suspension. BMC Cell Biol. 2010;11:87. doi: 10.1186/1471-2121-11-87
- Willand MP, Holmes M, Bain JR, Fahnestock M, De Bruin H. Electrical muscle stimulation after immediate nerve repair reduces muscle atrophy without affecting reinnervation. Muscle Nerve. 2013;48(2):219-225. doi: 10.1002/mus.23726
- Swift JM, Nilsson MI, Hogan HA, Sumner LR, Bloomfield SA. Simulated resistance training during hindlimb unloading abolishes disuse bone loss and maintains muscle strength. J Bone Miner Res. 2010;25(3):564-574. doi: 10.1359/jbmr.090811
- Allen MR, Hogan HA, Bloomfield SA. Differential bone and muscle recovery following hindlimb unloading in skeletally mature male rats. J Musculoskelet Neuronal Interact. 2006;6(3):217-225.
- Chan AS, Hardee JP, Blank M, et al. Increasing muscle contractility through low-frequency stimulation alters tibial bone geometry and reduces bone strength in mdx and dko dystrophic mice. J Appl Physiol (1985). 2023;135(1):77-87. doi: 10.1152/japplphysiol.00651.2022
- Hronik-Tupaj M, Rice WL, Cronin-Golomb M, Kaplan DL, Georgakoudi I. Osteoblastic differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields. Biomed Eng Online. 2011;10:9. doi: 10.1186/1475-925X-10-9
- Lam H, Qin YX. The effects of frequency-dependent dynamic muscle stimulation on inhibition of trabecular bone loss in a disuse model. Bone. 2008;43(6):1093-1100. doi: 10.1016/j.bone.2008.07.253
- Qin YX, Lam H, Ferreri S, Rubin C. Dynamic skeletal muscle stimulation and its potential in bone adaptation. J Musculoskelet Neuronal Interact. 2010;10(1):12-24.
- Belanger M, Stein RB, Wheeler GD, Gordon T, Leduc B. Electrical stimulation: Can it increase muscle strength and reverse osteopenia in spinal cord injured individuals? Arch Phys Med Rehabil. 2000;81(8):1090-1098. doi: 10.1053/apmr.2000.7170
- Biering-Sorensen F, Bohr HH, Schaadt OP. Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Invest. 1990;20(3):330-335. doi: 10.1111/j.1365-2362.1990.tb01865.x
- Mohr T, Podenphant J, Biering-Sorensen F, Galbo H, Thamsborg G, Kjaer M. Increased bone mineral density after prolonged electrically induced cycle training of paralyzed limbs in spinal cord injured man. Calcif Tissue Int. 1997;61(1):22-25. doi: 10.1007/s002239900286
- Biering-Sorensen F, Hansen B, Lee BS. Non-pharmacological treatment and prevention of bone loss after spinal cord injury: A systematic review. Spinal Cord. 2009;47(7):508-518. doi: 10.1038/sc.2008.177
- Bodamyali T, Kanczler JM, Simon B, Blake DR, Stevens CR. Effect of faradic products on direct current-stimulated calvarial organ culture calcium levels. Biochem Biophys Res Commun. 1999;264(3):657-661. doi: 10.1006/bbrc.1999.1355
- Griffin XL, Costa ML, Parsons N, Smith N. Electromagnetic field stimulation for treating delayed union or non-union of long bone fractures in adults. Cochrane Database Syst Rev. 2011;4:CD008471. doi: 10.1002/14651858.CD008471.pub2
- Laabs WA, May E, Richter KD, et al. Bone healing and dynamic interferential current (DIC) (author’s transl). Langenbecks Arch Chir. 1982;356(3):219-229. doi: 10.1007/BF01261760
- Wang Y, Cui H, Wu Z, et al. Modulation of osteogenesis in MC3T3-E1 cells by different frequency electrical stimulation. PLoS One. 2016;11(5):e0154924. doi: 10.1371/journal.pone.0154924
- Ali A, Arif AW, Bhan C, et al. Managing chronic pain in the elderly: An overview of the recent therapeutic advancements. Cureus. 2018;10(9):e3293. doi: 10.7759/cureus.3293
- Zhu F, Ai BW, Gao JY. Experimental study on anti-inflammatory and analgesic effects of electroacupuncture combined with medium frequency therapy in model rats with lumbar nerve root compression. Zhongguo Zhen Jiu. 2011;31(8):721-726.
- Ward AR, Lucas-Toumbourou S, McCarthy B. A comparison of the analgesic efficacy of medium-frequency alternating current and TENS. Physiotherapy. 2009;95(4):280-288.doi: 10.1016/j.physio.2009.06.005
- Xu H, Feng L, Zeng Z, Xu S. Experimental study on ultrashort wave therapy on the healing of fracture. Hunan Yi Ke Da Xue Xue Bao. 1999;24(2):125-127.
- Wang GJ, Liu J. Clinical randomized controlled trial on ultrashort wave and magnetic therapy for the treatment of early stage distal radius fractures. Zhongguo Gu Shang. 2012;25(7):572-575.
- Ding S, Kingshott P, Thissen H, Pera M, Wang PY. Modulation of human mesenchymal and pluripotent stem cell behavior using biophysical and biochemical cues: A review. Biotechnol Bioeng. 2017;114(2):260-280. doi: 10.1002/bit.26075
- Liao J, Lin Y. Stem cells and cartilage tissue engineering. Curr Stem Cell Res Ther. 2018;13(7):489. doi: 10.2174/1574888X1307180803122513
- Llucia-Valldeperas A, Sanchez B, Soler-Botija C, et al. Electrical stimulation of cardiac adipose tissue-derived progenitor cells modulates cell phenotype and genetic machinery. J Tissue Eng Regen Med. 2015;9(11):E76-E83. doi: 10.1002/term.1710
- Ye D, Chen C, Wang Q, Zhang Q, Li S, Liu H. Short-wave enhances mesenchymal stem cell recruitment in fracture healing by increasing HIF-1 in callus. Stem Cell Res Ther. 2020;11(1):382. doi: 10.1186/s13287-020-01888-0
- Schell H, Duda GN, Peters A, Tsitsilonis S, Johnson KA, Schmidt-Bleek K. The haematoma and its role in bone healing. J Exp Orthop. 2017;4(1):5. doi: 10.1186/s40634-017-0079-3
- Midura RJ, Dillman CJ, Grabiner MD. Low amplitude, high frequency strains imposed by electrically stimulated skeletal muscle retards the development of osteopenia in the tibiae of hindlimb suspended rats. Med Eng Phys. 2005;27(4):285-293. doi: 10.1016/j.medengphy.2004.12.014
- Kostyshyn NM, Gzhegotskyi MR, Kostyshyn LP, Mudry SI. Effects of mechanical stimuli on structure and organization of bone nanocomposites in rats with glucocorticoid-induced osteoporosis. Endocr Regul. 2021;55(1):42-51. doi: 10.2478/enr-2021-0006
- Esfandiari E, Roshankhah S, Mardani M, et al. The effect of high frequency electric field on enhancement of chondrogenesis in human adipose-derived stem cells. Iran J Basic Med Sci. 2014;17(8):571-576.
- Mardani M, Roshankhah S, Hashemibeni B, Salahshoor M, Naghsh E, Esfandiari E. Induction of chondrogenic differentiation of human adipose-derived stem cells by low frequency electric field. Adv Biomed Res. 2016;5:97. doi: 10.4103/2277-9175.183146
- Nuccitelli R, Lui K, Kreis M, Athos B, Nuccitelli P. Nanosecond pulsed electric field stimulation of reactive oxygen species in human pancreatic cancer cells is Ca(2+)-dependent. Biochem Biophys Res Commun. 2013;435(4):580-585. doi: 10.1016/j.bbrc.2013.05.014
- Clark CC, Wang W, Brighton CT. Up-regulation of expression of selected genes in human bone cells with specific capacitively coupled electric fields. J Orthop Res. 2014;32(7):894-903. doi: 10.1002/jor.22595
- Wang Z, Clark CC, Brighton CT. Up-regulation of bone morphogenetic proteins in cultured murine bone cells with use of specific electric fields. J Bone Joint Surg Am. 2006;88(5):1053-1065. doi: 10.2106/JBJS.E.00443
- Henle P, Zimmermann G, Weiss S. Matrix metalloproteinases and failed fracture healing. Bone. 2005;37(6):791-798. doi: 10.1016/j.bone.2005.06.015
- Zhu S, He H, Zhang C, et al. Effects of pulsed electromagnetic fields on postmenopausal osteoporosis. Bioelectromagnetics. 2017;38(6):406-424. doi: 10.1002/bem.22065
- Matsunaga S, Sakou T, Ijiri K. Osteogenesis by pulsing electromagnetic fields (PEMFs): Optimum stimulation setting. In Vivo. 1996;10(3):351-356.
- Wang Q, Zhou J, Wang X, et al. Coupling induction of osteogenesis and type H vessels by pulsed electromagnetic fields in ovariectomy-induced osteoporosis in mice. Bone. 2022;154:116211. doi: 10.1016/j.bone.2021.116211
- Adravanti P, Nicoletti S, Setti S, Ampollini A, de Girolamo L. Effect of pulsed electromagnetic field therapy in patients undergoing total knee arthroplasty: A randomised controlled trial. Int Orthop. 2014;38(2):397-403. doi: 10.1007/s00264-013-2216-7
- Lei T, Liang Z, Li F, et al. Pulsed electromagnetic fields (PEMF) attenuate changes in vertebral bone mass, architecture and strength in ovariectomized mice. Bone. 2018;108:10-19. doi: 10.1016/j.bone.2017.12.008
- Li B, Bi J, Li W, et al. Effects of pulsed electromagnetic fields on histomorphometry and osteocalcin in disuse osteoporosis rats. Technol Health Care. 2017;25(S1):13-20. doi: 10.3233/THC-171301
- Shen WW, Zhao JH. Pulsed electromagnetic fields stimulation affects BMD and local factor production of rats with disuse osteoporosis. Bioelectromagnetics. 2010;31(2):113-119. doi: 10.1002/bem.20535
- Zhou J, Chen S, Guo H, et al. Pulsed electromagnetic field stimulates osteoprotegerin and reduces RANKL expression in ovariectomized rats. Rheumatol Int. 2013;33(5):1135-1141. doi: 10.1007/s00296-012-2499-9
- Song ZH, Xie W, Zhu SY, Pan JJ, Zhou LY, He CQ. Effects of PEMFs on Osx, Ocn, TRAP, and CTSK gene expression in postmenopausal osteoporosis model mice. Int J Clin Exp Pathol. 2018;11(3):1784-1790.
- Issack PS, Helfet DL, Lane JM. Role of Wnt signaling in bone remodeling and repair. HSS J. 2008;4(1):66-70. doi: 10.1007/s11420-007-9072-1
- Kubota T, Michigami T, Ozono K. Wnt signaling in bone. Clin Pediatr Endocrinol. 2010;19(3):49-56. doi: 10.1297/cpe.19.49
- Shao X, Yang Y, Tan Z, et al. Amelioration of bone fragility by pulsed electromagnetic fields in type 2 diabetic KK-Ay mice involving Wnt/beta-catenin signaling. Am J Physiol Endocrinol Metab. 2021;320(5):E951-E966. doi: 10.1152/ajpendo.00655.2020
- Zhou J, He H, Yang L, et al. Effects of pulsed electromagnetic fields on bone mass and Wnt/beta-catenin signaling pathway in ovariectomized rats. Arch Med Res. 2012;43(4):274-282. doi: 10.1016/j.arcmed.2012.06.002
- Bodine PV, Komm BS. Wnt signaling and osteoblastogenesis. Rev Endocr Metab Disord. 2006;7(1-2):33-39. doi: 10.1007/s11154-006-9002-4
- Li J, Zeng Z, Zhao Y, et al. Effects of low-intensity pulsed electromagnetic fields on bone microarchitecture, mechanical strength and bone turnover in type 2 diabetic db/db mice. Sci Rep. 2017;7(1):10834. doi: 10.1038/s41598-017-11090-7
- Cai J, Li W, Sun T, Li X, Luo E, Jing D. Pulsed electromagnetic fields preserve bone architecture and mechanical properties and stimulate porous implant osseointegration by promoting bone anabolism in type 1 diabetic rabbits. Osteoporos Int. 2018;29(5):1177-1191. doi: 10.1007/s00198-018-4392-1
- Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008;473(2):139-146. doi: 10.1016/j.abb.2008.03.018
- Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165-176. doi: 10.1016/s0092-8674(00)81569-x
- Burgess TL, Qian Y, Kaufman S, et al. The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J Cell Biol. 1999;145(3):527-538. doi: 10.1083/jcb.145.3.527
- Chang K, Chang WH, Huang S, Huang S, Shih C. Pulsed electromagnetic fields stimulation affects osteoclast formation by modulation of osteoprotegerin, RANK ligand and macrophage colony-stimulating factor. J Orthop Res. 2005;23(6):1308-1314. doi: 10.1016/j.orthres.2005.03.012.1100230611
- Antonelli M, Donelli D. Hot sand baths (psammotherapy): A systematic review. Complement Ther Med. 2019;42:1-6. doi: 10.1016/j.ctim.2018.10.020
- Jiang L, Xue W, Wang Y. Retraction notice to “Inhibition of miR-31a-5p decreases inflammation by down-regulating IL-25 expression in human dermal fibroblast cells (CC-2511 cells) under hyperthermic stress via Wnt/beta-catenin pathway” [Biomed. Pharmacother. 107 (2018) 24-33]. Biomed Pharmacother. 2021;142:112129. doi: 10.1016/j.biopha.2021.112129
- Zheng B, Fan J, Chen B, et al. Rare-earth doping in nanostructured inorganic materials. Chem Rev. 2022;122(6):5519-5603. doi: 10.1021/acs.chemrev.1c00644
- Yu K, Zhou H, Xu Y, Cao Y, Zheng Y, Liang B. Engineering a triple-functional magnetic gel driving mutually-synergistic mild hyperthermia-starvation therapy for osteosarcoma treatment and augmented bone regeneration. J Nanobiotechnology. 2023;21(1):201. doi: 10.1186/s12951-023-01955-7