·
COMMENTARY
·

Advances in bone defect repair using bio-3D printing technology: Innovations and challenges in mechanically assisted post-bioprinting strategies

Lingbin Che1 Juhan Li1 Dianwen Song1*
Show Less
1 Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
Submitted: 29 March 2025 | Revised: 16 April 2025 | Accepted: 27 April 2025 | Published: 20 May 2025
Copyright © 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Funding
This work was financially supported by the National Natural Science Foundation of China (82202675).
Conflict of interest
The authors declare no competing financial interest.
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

  1. Szczodra A, Houaoui A, Agniel R, et al. Boron substitution in silicate bioactive glass scaffolds to enhance bone differentiation and regeneration. Acta Biomater. 2024;186:489-506. doi: 10.1016/j.actbio.2024.07.053

 

  1. Shi J, Liu Z, Ren X, et al. Bioinspired adhesive polydopamine-metal-organic framework functionalized 3D customized scaffolds with enhanced angiogenesis, immunomodulation, and osteogenesis for orbital bone reconstruction. Int J Biol Macromol. 2025;284:137968. doi: 10.1016/j.ijbiomac.2024.137968

 

  1. Ren X, Wang J, Wu Y, et al. One-pot synthesis of hydroxyapatite hybrid bioinks for digital light processing 3D printing in bone regeneration. J Mater Sci Technol. 2024;188:84-97. doi: 10.1016/j.jmst.2024.01.001

 

  1. Feng B, Zhang M, Qin C, et al. 3D printing of conch-like scaffolds for guiding cell migration and directional bone growth. Bioact Mater. 2023;22:127-140. doi: 10.1016/j.bioactmat.2022.09.014

 

  1. Hu Y, Wang H, Wang D, et al. In situ preparation of nano cone-like structures on 3D printed titanium alloy implants via one-step femtosecond laser manufacturing for better osseointegration, anti-corrosion, and anti-fatigue. J Mater Sci Technol. 2025;206:88-99. doi: 10.1016/j.jmst.2024.03.070

 

  1. Zhou X, Qian Y, Chen L, et al. Flowerbed-inspired biomimetic scaffold with rapid internal tissue infiltration and vascularization capacity for bone repair. ACS Nano. 2023;17(5):5140-5156. doi: 10.1021/acsnano.3c00598

 

  1. Zhou T, Cavalcante RC, Ge C, Franceschi RT, Ma PX. Synthetic helical peptides on nanofibers to activate cell-surface receptors and synergistically enhance critical-sized bone defect regeneration. Bioact Mater. 2025;43:98-113. doi: 10.1016/j.bioactmat.2024.08.017

 

  1. Xu Z, Qi X, Bao M, et al. Biomineralization inspired 3D printed bioactive glass nanocomposite scaffolds orchestrate diabetic bone regeneration by remodeling micromilieu. Bioact Mater. 2023;25:239-255. doi: 10.1016/j.bioactmat.2023.01.024

 

  1. Mirkhalaf M, Men Y, Wang R, No Y, Zreiqat H. Personalized 3D printed bone scaffolds: A review. Acta Biomater. 2023;156:110-124. doi: 10.1016/j.actbio.2022.04.014

 

  1. Yang J, Chen Z, Gao C, et al. A mechanical-assisted post-bioprinting strategy for challenging bone defects repair. Nat Commun. 2024;15(1):3565. doi: 10.1038/s41467-024-48023-8
Share
Back to top