Recent advances in nanomedicine for ocular drug delivery
Vision impairment is a major global health challenge, with its prevalence projected to rise significantly in the coming decades due to an aging population and increasing rates of chronic diseases. Ocular conditions such as age-related macular degeneration, cataracts, refractive errors, glaucoma, and diabetic retinopathy are among the primary causes of vision loss, collectively affecting nearly 200 million individuals worldwide. This growing burden has intensified the demand for ophthalmic therapies that are more effective, safer, and more targeted. Among existing treatment strategies, ocular drug delivery systems provide a non-invasive route for administering medications directly to ocular tissues. However, their clinical effectiveness is often compromised by various anatomical and physiological barriers, including tear turnover, blinking, nasolacrimal drainage, and blood-ocular barriers, which limit drug retention time and significantly reduce bioavailability. In response to these challenges, the application of nanomedicine has emerged as a highly promising strategy to improve ocular drug delivery. This review presents recent advances in drug nanodelivery systems – such as dendrimers, liposomes, nanoemulsion, solid lipid nanoparticles, in situ gel formulations, exosomes, metal-organic frameworks, and nanocrystals – that have demonstrated advantages in enhancing drug solubility, prolonging drug release, improving corneal penetration, and reducing dosing frequency and systemic side effects. In addition, the integration of artificial intelligence (AI) and personalized medicine in the development and optimization of ocular nanomedicine is explored. AI tools such as predictive modeling, machine learning algorithms, and data-driven formulation strategies remain underutilized in ophthalmology, yet they offer tremendous potential to accelerate innovation, individualize treatment, and enhance clinical translation. This review concludes that future research should prioritize not only the advancement of safer and more efficient drug nanodelivery systems but also the incorporation of AI to transform ocular drug delivery into a more precise and patient-centered approach.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
- World Health Organization. Increasing Eye Care Interventions to Address Vision Impairment: Technical Brief. World Health Organization; 2023.
- Marques AP, Ramke J, Cairns J, et al. The economics of vision impairment and its leading causes: A systematic review. EClinicalMedicine. 2022;46:101354. doi: 10.1016/j.eclinm.2022.101354
- Suri R, Beg S, Kohli K. Target strategies for drug delivery bypassing ocular barriers. J Drug Deliv Sci Technol. 2019;55:101389. doi: 10.1016/j.jddst.2019.101389
- Çaprak BE, Shahbazi F, Öztürk N. Smart ocular drug delivery systems: Design principles and recent advances. Hacettepe Univ J Faculty Pharm. 2025;45(2):162-174. doi: 10.52794/hujpharm.1636945
- Vaneev A, Kost O, Chesnokova N, et al. Nanotechnology for topical drug delivery to the anterior segment of the eye. Int J Mol Sci. 2021;22(22):12368. doi: 10.3390/ijms222212368
- Dhyani A, Kumar G. A new vision to eye: Novel ocular drug delivery system. Pharmacophore. 2019;10(1):13-20. doi: 10.51847/68ngqce
- Löscher M, Hurst J, Seiz C, Schnichels S. Topical drug delivery to the posterior segment of the eye. Pharmaceutics. 2022;14(1):134. doi: 10.3390/pharmaceutics14010134
- Lin X, Wu X, Chen X, Wang B, Xu W. Intellective and stimuli-responsive drug delivery systems in eyes. Int J Pharm. 2021;602:120591. doi: 10.1016/j.ijpharm.2021.120591
- Gote V, Sikder S, Sicotte J, Pal D. Ocular drug delivery: Present innovations and future challenges. J Pharmacol Exp Ther. 2019;370(3):602-624. doi: 10.1124/jpet.119.256933
- Mittal P, Saharan A, Verma R, et al. Dendrimers: A new race of pharmaceutical nanocarriers. Biomed Res Int. 2021;2021(2):8844030. doi: 10.1155/2021/8844030
- Wang J, Li B, Huang D, et al. Nano-in-nano dendrimer gel particles for efficient topical delivery of antiglaucoma drugs into the eye. Chem Eng J. 2021;425:130498. doi: 10.1016/j.cej.2021.130498
- Wang J, Qiao X, Li B, Yang H, Qiu L. Dendrimer-based drug delivery systems: History, challenges, and latest developments. J Biol Eng. 2022;16(1):18. doi: 10.1186/s13036-022-00298-5
- Semeraro F, Morescalchi F, Cancarini A, Russo A, Rezzola S, Costagliola C. Diabetic retinopathy, a vascular and inflammatory disease: Therapeutic implications. Diabetes Metab. 2019;45(6):517-527. doi: 10.1016/j.diabet.2019.04.002
- Najafi F, Roghani-Mamaqani H, Salami-Kalajahi M. A review on synthesis and applications of dendrimers. J Iran Chem Soc. 2020;18(3):503-517. doi: 10.1007/s13738-020-02053-3
- Alshammari RA, Aleanizy FS, Aldarwesh A, et al. Retinal delivery of the protein kinase C-β inhibitor ruboxistaurin using non-invasive nanoparticles of polyamidoamine dendrimers. Pharmaceutics. 2022;14(7):1444. doi: 10.3390/pharmaceutics14071444
- Wang J, Li B, Kompella UB, Yang H. Dendrimer and dendrimer gel-derived drug delivery systems: Breaking bottlenecks of topical administration of glaucoma medications. MedComm Biomater Appl. 2023;2(1):e30. doi: 10.1002/mba2.30
- López-Cano JJ, González-Cela-Casamayor MA, Andrés-Guerrero V, Herrero-Vanrell R, Molina-Martínez IT. Liposomes as vehicles for topical ophthalmic drug delivery and ocular surface protection. Expert Opin Drug Deliv. 2021;18(7):819-847. doi: 10.1080/17425247.2021.1872542
- Tasharrofi N, Nourozi M, Marzban A. How liposomes pave the way for ocular drug delivery after topical administration. J Drug Deliv Sci Technol. 2021;67:103045. doi: 10.1016/j.jddst.2021.103045
- Joy JM, Amruth P, Rosemol Jacob M, Dara PK, Renuka V, Anandan R. Liposome mediated encapsulation and role of chitosan on modulating liposomal stability to deliver potential bioactives-a review. Food Hydrocoll Health. 2023;4:100142. doi: 10.1016/j.fhfh.2023.100142
- Lai S, Chen J, Zhou K, et al. Liposomes for effective drug delivery to the ocular posterior chamber. J Nanobiotechnology. 2019;17(1):64. doi: 10.1186/s12951-019-0498-7
- Zych M, Wojnar W, Kaczmarczyk-Sedlak I, Folwarczna J, Kielanowska M. Effect of berberine on glycation, aldose reductase activity, and oxidative stress in the lenses of streptozotocin-induced diabetic rats in vivo-a preliminary study. Int J Mol Sci. 2020;21(12):4278. doi: 10.3390/ijms21124278
- Kim SK, Kang H, Ban JY, Park SI. Anti-apoptotic effect of chrysophanol isolated from Cassia tora seed extract on blue-light-induced A2E-loaded human retinal pigment epithelial cells. Int J Mol Sci. 2023;24(7):6676. doi: 10.3390/ijms24076676
- Sunil DK, Pradhan R, Hejmady S, et al. Emerging innovations in nano-enabledtherapy against age-related macular degeneration: A paradigm shift. Int J Pharm. 2021;600:120499. doi: 10.1016/j.ijpharm.2021.120499
- Choradiya BR, Patil SB. A comprehensive review on nanoemulsion as an ophthalmic drug delivery system. J Mol Liq. 2021;339:116751. doi: 10.1016/j.molliq.2021.116751
- Fernandes AR, Souto EB, Santos TD, Silva AM, Garcia ML, Sanchez- Lopez E. Development and characterization of nanoemulsions for ophthalmic applications: Role of cationic surfactants. Materials (Basel). 2021;14(24):7541. doi: 10.3390/ma14247541
- Pardeshi SR, Jain RS, Rajput RL, et al. Development and optimization of sustained release moxifloxacin hydrochloride loaded nanoemulsion for ophthalmic drug delivery: A 32 factorial design approach. Micro Nanosys. 2021;13(3):292-302. doi: 10.2174/1876402912999200826111031
- Youssef AAA, Thakkar R, Dudhipala N, Joshi PH, Majumdar S, Senapati S. Design of topical moxifloxacin mucoadhesive nanoemulsion for the management of ocular bacterial infections. Pharmaceutics. 2022;14(6):1246. doi: 10.3390/pharmaceutics14061246
- Mehrandish S, Mirzaeei S. Design of novel nanoemulsion formulations for topical ocular delivery of itraconazole: Development, characterization and in vitro bioassay. Adv Pharm Bull. 2021;12(1):93-101. doi: 10.34172/apb.2022.009
- Kassem AA, Salama A, Mohsen AM. Formulation and optimization of cationic nanoemulsions for enhanced ocular delivery of dorzolamide hydrochloride using box-behnken design: In vitro and in vivo assessments. J Drug Deliv Sci Technol. 2021;68:103047.
- Walenga RL, Babiskin AH, Zhang X, Absar M, Zhao L, Lionberger RA. Impact of vehicle physicochemical properties on modeling-based predictions of cyclosporine ophthalmic emulsion bioavailability and tear film breakup time. J Pharm Sci. 2018;108(1):620-629. doi: 10.1016/j.xphs.2018.10.034
- Altamimi MA, Imam SS, Hussain A, Alshehri S, Alnemer UA. Development and evaluations of transdermally delivered luteolin loaded cationic nanoemulsion: In vitro and ex vivo evaluations. Pharmaceutics. 2021;13(8):1218. doi: 10.3390/pharmaceutics13081218
- Jurišić Dukovski B, Juretić M, Bračko D, et al. Functional ibuprofen-loaded cationic nanoemulsion: Development and optimization for dry eye disease treatment. Int J Pharm. 2019;576:118979. doi: 10.1016/j.ijpharm.2019.118979
- Agarwal P, Rupenthal ID, Craig JP. Formulation considerations for the management of dry eye disease. Pharmaceutics. 2021;13(2):207. doi: 10.3390/pharmaceutics13020207
- Shih KC, Chan TC, Lam PY, Jhanji V, Fong PY, Tong L. Role of tear film biomarkers in the diagnosis and management of dry eye disease. Taiwan J Ophthalmol. 2019;9(3):150. doi: 10.4103/tjo.tjo_56_19
- Grobbelaar M, Louw GE, Sampson SL, Van Helden PD, Donald PR, Warren RM. Evolution of rifampicin treatment for tuberculosis. Infect Genet Evol. 2019;74:103937. doi: 10.1016/j.meegid.2019.103937
- Bazán Henostroza MA, Curo Melo KJ, Nishitani Yukuyama M, Löbenberg R, Araci Bou-Chacra N. Cationic rifampicin nanoemulsion for the treatment of ocular tuberculosis. Colloids Surf A Physicochem Eng Asp. 2020;597:124755. doi: 10.1016/j.colsurfa.2020.124755
- Dhiman N, Awasthi R, Kulkarni GT, Sharma B, Kharkwal H. Lipid nanoparticles as carriers for bioactive delivery. Front Chem. 2021;9:580118. doi: 10.3389/fchem.2021.580118
- Jacob S, Shan J, Nair AB, et al. Lipid nanoparticles as a promising drug delivery carrier for topical ocular therapy-an overview on recent advances. Pharmaceutics. 2022;14(3):533. doi: 10.3390/pharmaceutics14030533
- Mu H, Holm R. Solid lipid nanocarriers in drug delivery: Characterization and design. Expert Opin Drug Deliv. 2018;15(8):771-785. doi: 10.1080/17425247.2018.1504018
- Sastri KT, Radha GV, Pidikiti P, Vajjhala P. Solid lipid nanoparticles: Preparation techniques, their characterization, and an update on recent studies. J Appl Pharm Sci. 2020;10(6):126-141. doi: 10.7324/japs.2020.10617
- Khames A, Khaleel MA, El-Badawy MF, El-Nezhawy AOH. Natamycin solid lipid nanoparticles - sustained ocular delivery system of higher corneal penetration against deep fungal keratitis: Preparation and optimization. Int J Nanomedicine. 2019;14:2515-2531. doi: 10.2147/ijn.s190502
- Masoumi A, Soleimani M, Azizkhani M, et al. Clinical features, risk factors, and management of candida keratitis. Ocul Immunol Inflamm. 2023;32(7):1169-1174. doi: 10.1080/09273948.2023.2203752
- Manikandan P, Abdel-Hadi A, Singh YRB, et al. Fungal keratitis: Epidemiology, rapid detection, and antifungal susceptibilities of Fusarium and Aspergillus isolates from corneal scrapings. Biomed Res Int. 2019;2019:6395840. doi: 10.1155/2019/6395840
- Khan S, Sharma A, Jain V. An overview of nanostructured lipid carriers and its application in drug delivery through different routes. Adv Pharm Bull. 2022;13(3):446-460. doi: 10.34172/apb.2023.056
- Lakhani P, Patil A, Wu KW, et al. Optimization, stabilization, and characterization of amphotericin B loaded nanostructured lipid carriers for ocular drug delivery. Int J Pharm. 2019;572:118771. doi: 10.1016/j.ijpharm.2019.118771
- Regueiro U, López-López M, Varela-Fernández R, Sobrino T, Diez- Feijoo E, Lema I. Immunomodulatory effect of human lactoferrin on toll-like receptors 2 expression as therapeutic approach for keratoconus. Int J Mol Sci. 2022;23(20):12350. doi: 10.3390/ijms232012350
- Varela-Fernández R, García-Otero X, Díaz-Tomé V, et al. Lactoferrin-loaded nanostructured lipid carriers (NLCs) as a new formulation for optimized ocular drug delivery. Eur J Pharm Biopharm. 2022;172:144-156. doi: 10.1016/j.ejpb.2022.02.010
- Deka M, Ahmed AB, Chakraborty J. Development, evaluation and characteristics of ophthalmic in situ gel system: A review. Int J Curr Pharm Res. 2019;11(4):47-53. doi: 10.22159/ijcpr.2019v11i4.34949
- Paul S, Majumdar S, Chakraborty M. Revolutionizing ocular drug delivery: Recent advancements in in situ gel technology. Bull Natl Res Cent. 2023;47(1):154. doi: 10.1186/s42269-023-01123-9
- Huang H, Qi X, Chen Y, Wu Z. Thermo-sensitive hydrogels for delivering biotherapeutic molecules: A review. Saudi Pharm J. 2019;27(7):990-999. doi: 10.1016/j.jsps.2019.08.001
- Li Y, Wang M, Wang F, Lu S, Chen X. Recent progress in studies of photocages. Smart Mol. 2023;1(1):e2022003. doi: 10.1002/smo.20220003
- Pandey M, Choudhury H, Binti Abd Aziz A, et al. Potential of stimuli-responsive in situ gel system for sustained ocular drug delivery: Recent progress and contemporary research. Polymers (Basel). 2021;13(8):1340-1340. doi: 10.3390/polym13081340
- Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, Ferrari F. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes. Pharmaceutics. 2020;12(9):859. doi: 10.3390/pharmaceutics12090859
- Majeed A, Khan NA. Ocular in situ gel: An overview. J Drug Deliv Ther. 2019;9(1):337-347. doi: 10.22270/jddt.v9i1.2231
- Wei Y, Li C, Zhu Q, Zhang X, Guan J, Mao S. Comparison of thermosensitive in situ gels and drug-resin complex for ocular drug delivery: In vitro drug release and in vivo tissue distribution. Int J Pharm. 2020;578:119184. doi: 10.1016/j.ijpharm.2020.119184
- Mahboobian MM, Mohammadi M, Mansouri Z. Development of thermosensitive in situ gel nanoemulsions for ocular delivery of acyclovir. J Drug Deliv Sci Technol. 2020;55:101400. doi: 10.1016/j.jddst.2019.101400
- Wang X, Ye X, Zhang Y, Ji F. Flurbiprofen suppresses the inflammation, proliferation, invasion and migration of colorectal cancer cells via COX2. Oncol Lett. 2020;20(5):132. doi: 10.3892/ol.2020.11993
- Prahladbhai Patel A, Patel JK. Mucoadhesive in-situ gel formulation for vaginal delivery of tenofovir disoproxil fumarate. Indian J Pharm Educ Res. 2020;54(4):963-970. doi: 10.5530/ijper.54.4.190
- Yurtdaş-Kırımlıoğlu G. A promising approach to design thermosensitive in situ gel based on solid dispersions of desloratadine with kolliphor® 188 and pluronic® F127. J Therm Anal Calorim. 2021;147(2):1307-1327. doi: 10.1007/s10973-020-10460-0
- Ranch KM, Maulvi FA, Naik MJ, Koli AR, Parikh RK, Shah DO. Optimization of a novel in situ gel for sustained ocular drug delivery using box-behnken design: In vitro, ex vivo, in vivo and human studies. Int J Pharm. 2019;554:264-275. doi: 10.1016/j.ijpharm.2018.11.016
- Wang L, Pan W, Pan H, et al. A novel carbon dots/thermo-sensitive in situ gel for a composite ocular drug delivery system: Characterization, ex-vivo imaging, and in vivo evaluation. Int J Mol Sci. 2021;22(18):9934. doi: 10.3390/ijms22189934
- Wei W, Cao H, Shen D, Sun X, Jia Z, Zhang M. Antioxidant carbon dots nanozyme loaded in thermosensitive in situ hydrogel system for efficient dry eye disease treatment. Int J Nanomedicine. 2024;19:4045-4060. doi: 10.2147/ijn.s456613
- Li S, Tang Y, Zhang X, Dou Y, Shen X. Preparation and characterization of diclofenac sodium β-cyclodextrin inclusion complex eye drops. J Incl Phenom Macrocycl Chem. 2019;94(1-2):85-94. doi: 10.1007/s10847-019-00910-0
- Gorantla S, Waghule T, Rapalli VK, et al. Advanced hydrogels based drug delivery systems for ophthalmic delivery. Recent Pat Drug Deliv Formul. 2020;13(4):291-300. doi: 10.2174/1872211314666200108094851
- Xu H, Liu Y, Jin L, et al. Preparation and characterization of ion-sensitive brimonidine tartrate in situ gel for ocular delivery. Pharmaceuticals (Basel). 2023;16(1):90. doi: 10.3390/ph16010090
- Sun J, Sun X. Preparation of a novel tacrolimus ion sensitive ocular in situ gel and in vivo evaluation of curative effect of immune conjunctivitis. Pharm Dev Technol. 2022;27(4):399-405. doi: 10.1080/10837450.2022.2067870
- Al-Kinani AA, Zidan G, Elsaid N, Seyfoddin A, Alani AWG, Alany RG. Ophthalmic gels: Past, present and future. Adv Drug Deliv Rev. 2017;126:113-126. doi: 10.1016/j.addr.2017.12.017
- Xie M, Wang H, Gao T, et al. The protective effect of luteolin on the depression-related dry eye disorder through sirt1/NF-κB/NLRP3 pathway. Aging (Albany NY). 2023;15(1):261-275. doi: 10.18632/aging.204479
- Omran S, Elnaggar YSR, Abdallah OY. Carrageenan tethered ion sensitive smart nanogel containing oleophytocubosomes for improved ocular luteolin delivery. Int J Pharm. 2023;646:123482. doi: 10.1016/j.ijpharm.2023.123482
- Zan M, Lin L, Xu H, Zhang X. Self-Assembled Lyotropic Liquid Crystals Nanoparticles Systems for Α-Arbutin Protection and Skin Delivery. [Preprint]; 2024. doi: 10.2139/ssrn.4955466
- Ma Q, Luo R, Zhang H, et al. Design, characterization, and application of a ph-triggered in situ gel for ocular delivery of vinpocetine. AAPS Pharm SciTech. 2020;21(7):253. doi: 10.1208/s12249-020-01791-0
- Kouchak M, Mahmoodzadeh M, Farrahi F. Designing of a pH-triggered carbopol®/hpmc in situ gel for ocular delivery of dorzolamide HCl: In vitro, in vivo, and ex vivo evaluation. AAPS PharmSciTech. 2019;20(5):210. doi: 10.1208/s12249-019-1431-y
- Barse RK, Tagalpallewar AA, Kokare CR, Sharma JP, Sharma PK. Formulation and ex vivo-in vivo evaluation of pH-triggered brimonidine tartrate in situ gel for the glaucoma treatment using application of 32 factorial design. Drug Dev Ind Pharm. 2018;44(5):800-807. doi: 10.1080/03639045.2017.1414229
- Bharath S, Karuppaiah A, Siram K, Hariharan S, Santhanam R. Development and evaluation of a pH triggered in situ ocular gel of brimonidine tartrate. J Res Pharm. 2020;24(3):416-424.doi: 10.35333/jrp.2020.164
- Yokoyama Y, Kawasaki R, Takahashi H, et al. Effects of brimonidine and timolol on the progression of visual field defects in open-angle glaucoma: A single-center randomized trial. J Glaucoma. 2019;28(7):575-583. doi: 10.1097/ijg.0000000000001285
- Jayaram H, Kolko M, Friedman DS, Gazzard G. Glaucoma: Now and beyond. Lancet. 2023;402(10414):1788-1801. doi: 10.1016/s0140-6736(23)01289-8
- Sakr MG, El-Zahaby SA, Al-Mahallawi AM, Ghorab DM. Fabrication of betaxolol hydrochloride-loaded highly permeable ocular bilosomes (HPOBs) to combat glaucoma: In vitro, ex vivo & in vivo characterizations. J Drug Deliv Sci Technol. 2023;82:104363. doi: 10.1016/j.jddst.2023.104363
- Hu J, Li H, Zhao Y, et al. Critical evaluation of multifunctional betaxolol hydrochloride nanoformulations for effective sustained intraocular pressure reduction. Int J Nanomedicine. 2022;17:5915-5931. doi: 10.2147/ijn.s382968
- Allam A, Elsabahy M, El Badry M, Eleraky NE. Betaxolol‐loaded niosomes integrated within pH‐sensitive in situ forming gel for management of glaucoma. Int J Pharm. 2021;598:120380. doi: 10.1016/j.ijpharm.2021.120380
- Durak S, Esmaeili Rad M, Alp Yetisgin A, et al. Niosomal drug delivery systems for ocular disease-recent advances and future prospects. Nanomaterials (Basel). 2020;10(6):1191. doi: 10.3390/nano10061191
- Verma A, Tiwari A, Saraf S, Panda PK, Jain A, Jain SK. Emerging potential of niosomes in ocular delivery. Expert Opin Drug Deliv. 2020;18(1):55-71. doi: 10.1080/17425247.2020.1822322
- Tian Y, Zhang T, Li J, Tao Y. Advances in development of exosomes for ophthalmic therapeutics. Adv Drug Deliv Rev. 2023;199:114899. doi: 10.1016/j.addr.2023.114899
- Cao X, Xue LD, Di Y, Li T, Tian YJ, Song Y. MSC-derived exosomal lncRNA SNHG7 suppresses endothelial-mesenchymal transition and tube formation in diabetic retinopathy via MiR-34a-5p/XBP1 axis. Life Sci. 2021;272:119232. doi: 10.1016/j.lfs.2021.119232
- Kalam MA, Iqbal M, Alshememry A, Alkholief M, Alshamsan A. Fabrication and characterization of tedizolid phosphate nanocrystals for topical ocular application: Improved solubilization and in vitro drug release. Pharmaceutics. 2022;14(7):1328. doi: 10.3390/pharmaceutics14071328
- Lawson HD, Walton SP, Chan C. Metal-organic frameworks for drug delivery: A design perspective. ACS Appl Mater Interfaces. 2021;13(6):7004-7020. doi: 10.1021/acsami.1c01089
- Gupta C, Upreti S, Punya, Singh J, Ghosh MP, Basu T. Rapid electrochemical quantification for in vitro release trait of ophthalmic drug loaded within mucoadhesive metal organic framework (MOF). ChemistrySelect. 2021;6(12):3006-3012. doi: 10.1002/slct.202004558
- He Y, Ye Z, Liu X, et al. Can machine learning predict drug nanocrystals? J Control Release. 2020;322:274-285. doi: 10.1016/j.jconrel.2020.03.043
- German C, Chen Z, Przekwas A, et al. Computational model of in vivo corneal pharmacokinetics and pharmacodynamics of topically administered ophthalmic drug products. Pharm Res. 2023;40(4):961-975. doi: 10.1007/s11095-023-03480-6
- Delpierre C, Lefèvre T. Precision and personalized medicine: What their current definition says and silences about the model of health they promote. Implication for the development of personalized health. Front. Sociol. 2023;8:1112159. doi: 10.3389/fsoc.2023.1112159
- Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2020;20(1):101-124. doi: 10.1038/s41573-020-0090-8
- Tetyczka C, Brisberger K, Reiser M, et al. Itraconazole nanocrystals on hydrogel contact lenses via inkjet printing: Implications for ophthalmic drug delivery. ACS Appl Nano Mater. 2022;5(7):9435-9446. doi: 10.1021/acsanm.2c01715