·
REVIEW
·

Building the next frontier: Artificial intelligence in 3D-printed medicines

Rittin Abraham Kurien1,2,3,4 Gokul Kannan2,5,6 Kasitpong Thanawut7 Supakij Suttiruengwong2 Pornsak Sriamornsak1,8*
Show Less
1 Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
2 Sustainable Materials Laboratory, Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand
3 Department of Mechanical Engineering, Saintgits College of Engineering (Autonomous), Kottayam, Kerala, India
4 School of Mechanical Sciences and Technology, APJ Abdul Kalam Technological University, Thiruvananthapuram, Kerala, India
5 Centre for Material Science, Easwari Engineering College, Chennai, Tamil Nadu, India
6 Center for Research, SRM TRP Engineering College, Tiruchirappalli, Tamil Nadu, India
7 Department of Industrial Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
8 Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
Submitted: 23 May 2025 | Revised: 8 July 2025 | Accepted: 11 July 2025 | Published: 14 August 2025
Copyright © 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Artificial intelligence (AI) and 3D printing are transforming pharmaceutical manufacturing by enabling the production of personalized medications. AI supports real-time decision-making in diagnostics and robotics, although its application in pharmaceutical research remains at an early stage. 3D printing, particularly additive manufacturing, provides precise control over drug formulation, allowing the design of patient-specific dosage forms with tailored release profiles. Machine learning and deep neural networks are used to predict formulation parameters, optimize processing conditions, and support the design of innovative drug delivery geometries. Technological platforms such as cloud computing and blockchain enhance data security, transparency, and scalability. Printable materials—including thermoplastic polymers, hydrogels, and bioinks—demonstrate utility in AI-assisted manufacturing systems. The integration of AI, smart materials, and 3D printing advances intelligent drug production technologies aligned with Industry 4.0 principles. Key considerations include regulatory compliance, data reliability, ethical implications, and pathways for clinical translation. Clinical medicine is rapidly advancing through the adoption of 3D printing and AI, enabling personalized prosthetics, accurate surgical planning, and bioprinted tissues. AI-driven segmentation and optimization enhance the accuracy and efficiency of 3D-printed anatomical models for pre-operative preparations and medical training. Cardiology, oncology, and orthopedics are increasingly adopting these technologies to improve patient outcomes and clinical workflows. Future directions include broader adoption across specialties, bioprinting for regenerative health care, and AI-optimized systems for targeted drug delivery. This review addresses the current challenges and limitations of AI and 3D-printed medicines, pharmaceutical manufacturing, case studies, ethical considerations, and future perspectives. 

Keywords
Artificial intelligence
3D printing
Machine learning
Neural networks
Bioprinting
Industry 4.0
Funding
This work was financially supported by Thailand Science Research and Innovation under the National Science, Research and Innovation Fund, Fiscal Year 2568, and by the postdoctoral fellowship program at Silpakorn University (R.A.K.).
Conflict of interest
The authors declare no conflicts of interest.
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

  1. Wang X, Huang Z, Xing L, et al. STING agonist-based ER-targeting molecules boost antigen cross-presentation. Nature. 2025;641:202-210. doi: 10.1038/s41586-025-08758-w

 

  1. Arrick G, Sticker D, Ghazal A, et al. Cephalopod-inspired jetting devices for gastrointestinal drug delivery. Nature. 2024;636:481-487. doi: 10.1038/s41586-024-08202-5

 

  1. Krueger L, Awad A, Basit AW, Goyanes A, Miles JA, Popat A. Clinical translation of 3D printed pharmaceuticals. Nat Rev Bioeng. 2024;2(10):801-803. doi: 10.1038/s44222-024-00217-x

 

  1. Han GR, Goncharov A, Eryilmaz M, et al. Machine learning in point-of-care testing: Innovations, challenges, and opportunities. Nat Commun. 2025;16(1):3165. doi: 10.1038/s41467-025-58527–6

 

  1. Sarkar N, Bhumiratana S, Geris L, Papantoniou I, Grayson WL. Bioreactors for engineering patient-specific tissue grafts. Nat Rev Bioeng. 2023;1(5):361-377. doi: 10.1038/s44222-023-00035-5

 

  1. Chua CYX, Jimenez M, Mozneb M, et al. Advanced material technologies for space and terrestrial medicine. Nat Rev Mater. 2024;9(11):808-821. doi: 10.1038/s41578-024-00456-3

 

  1. Yi HG, Kim H, Kwon J, et al. Application of 3D bioprinting in the prevention and the therapy for human diseases. Signal Transduct Target Ther. 2021;6(1):177. doi: 10.1038/s41392-021-00658-1

 

  1. Chen K, Yu W, Zheng G, et al. Biomaterial-based regenerative therapeutic strategies for spinal cord injury. Asia Mater. 2024;16(1):5. doi: 10.1038/s41427-023-00560-4

 

  1. Buch VH, Ahmed I, Maruthappu M. Artificial intelligence in medicine: Current trends and future possibilities. Br J Gen Pract. 2018;68(668):143-144. doi: 10.3399/bjgp18X695213

 

  1. Orr A, Kalantarnia F, Nazir S, et al. Recent advances in 3D bioprinted neural models: A systematic review on the applications to drug discovery. Adv Drug Deliv Rev. 2025;218:115524. doi: 10.1016/j.addr.2025.115524

 

  1. Saadi MA, Maguire A, Pottackal NT, et al. Direct ink writing: A 3D printing technology for diverse materials. Adv Mater. 2022;34(28):e2108855. doi: 10.1002/adma.202108855

 

  1. Elbadawi M, Gaisford S, Basit AW. Advanced machine-learning techniques in drug discovery. Drug Discov Today. 2021;26(3):769-777. doi: 10.1016/j.drudis.2020.11.016

 

  1. Buj-Corral I, Domínguez-Fernández A, Gómez-Gejo A. Effect of printing parameters on dimensional error and surface roughness obtained in direct ink writing (DIW) processes. Materials (Basel). 2020;13(9):2157. doi: 10.3390/ma13092157

 

  1. Sun S, Alkahtani ME, Gaisford S, Basit AW, Elbadawi M, Orlu M. Virtually possible: Enhancing quality control of 3D printed medicines with machine vision trained on photorealistic images. Pharmaceutics. 2023;15:2630. doi: 10.3390/pharmaceutics15102630

 

  1. Elbadawi M, Li H, Sun S, Alkahtani ME, Basit AW, Gaisford Sl. Artificial intelligence generates novel 3D printing formulations. Appl Mater Today. 2024;36:102061. doi: 10.1016/j.apmt.2024.102061

 

  1. Kassa FM, Youssef SH, Song Y, Garg S. Use of computational intelligence in customizing drug release from 3D-printed products: A comprehensive review. Pharmaceutics. 2025;17(5):551. doi: 10.3390/pharmaceutics17050551

 

  1. Croom BP, Abbott A, Kemp JW, et al. Mechanics of nozzle clogging during direct ink writing of fiber-reinforced composites. Addit Manuf. 2021;37:101701. doi: 10.1016/j.addma.2020.101701

 

  1. Xu W, Jambhulkar S, Ravichandran D, et al. 3D Printing-enabled nanoparticle alignment: A review of mechanisms and applications. Small. 2021;17(1):e2100817. doi: 10.1002/smll.202100000

 

  1. Marin E, Boschetto F, Pezzotti G, et al. Biomaterials and biocompatibility: An historical overview. J Biomed Mater Res A. 2020;108(8):1617-1633. doi: 10.1002/jbm.a.36946

 

  1. Xu H, Zhang S, Song K, Yang H, Yin J, Huang Y. Droplet-based 3D bioprinting for drug delivery and screening. Adv Drug Deliv Rev. 2024;217:115486. doi: 10.1016/j.addr.2024.115486

 

  1. Seoane-Viaño I, Trenfield SJ, Basit AW, Goyanes A. Translating 3D Printed pharmaceuticals: From hype to real-world clinical applications. Adv Drug Deliv Rev. 2021;174:553-575. doi: 10.1016/j.addr.2021.04.018

 

  1. Xu T, Rao J, Mo Y, et al. 3D printing in musculoskeletal interface engineering: Current progress and future directions. Adv Drug Deliv Rev. 2025;219:115552. doi: 10.1016/j.addr.2025.115552

 

  1. Binson VA, Thomas S, Subramoniam M, Arun J, Naveen S, Madhu S. A review of machine learning algorithms for biomedical applications. Ann Biomed Eng. 2024;52(5):1159-1183. doi: 10.1007/s10439-024-03105-2

 

  1. Roy A, Kizhakkethottam JJ. Research on intelligent river water quality management system using blockchain-internet of things. TELKOMNIKA Comput Electron Control. 2024;22(6):1478-1490. doi: 10.12928/telkomnika.v22i6.33434

 

  1. Ong JJ, Muñiz Castro B, Gaisford S, et al. Accelerating 3D printing of pharmaceutical products using machine learning. Int J Pharm X. 2022;4:100120. doi: 10.1016/j.ijpx.2022.100120

 

  1. Goyanes A, Elbadawi M, McCoubrey LE, et al. Harnessing artificial intelligence for the next generation of 3D printed medicines. Adv Drug Deliv Rev. 2021;175:113805. doi: 10.1016/j.addr.2021.113805

 

  1. Grof Z, Štěpánek F. Artificial intelligence based design of 3D-printed tablets for personalised medicine. Comput Chem Eng. 2021;154:107492. doi: 10.1016/j.compchemeng.2021.107492

 

  1. Serrano DR, Luciano FC, Anaya BJ, et al. Artificial Intelligence (AI) applications in drug discovery and drug delivery: Revolutionizing personalized medicine. Pharmaceutics. 2024;16(7):1328. doi: 10.3390/pharmaceutics16071328

 

  1. Huanbutta K, Burapapadh K, Sriamornsak P, Sangnim T. Practical application of 3D printing for pharmaceuticals in hospitals and pharmacies. Pharmaceutics. 2023;15(7):1877. doi: 10.3390/pharmaceutics15071877

 

  1. Aggarwal A, Tam CC, Wu D, Li X, Qiao S. Artificial intelligence-based chatbots for promoting health behavioral changes: Systematic review. J Med Internet Res. 2023;25:e40789. doi: 10.2196/40789

 

  1. Xu C, Alameri A, Leong W, et al. Multiscale engineering of brain organoids for disease modeling. Adv Drug Deliv Rev. 2024;210:115344. doi: 10.1016/j.addr.2024.115344

 

  1. Huang H, Dong C, Feng W, Wang Y, Huang B, Chen Y. Biomedical engineering of two-dimensional MXenes. Adv Drug Deliv Rev. 2022;184:114178. doi: 10.1016/j.addr.2022.114178

 

  1. Zhu Y, Guo S, Ravichandran D, et al. 3D-printed polymeric biomaterials for health applications. Adv Healthc Mater. 2025;14:2402571. doi: 10.1002/adhm.202402571

 

  1. Dai Y, Wang P, Mishra A, et al. 3D Bioprinting and AI-assisted biofabrication of personalized oral soft tissue constructs. Adv Healthc Mater. 2025;14:2402727. doi: 10.1002/adhm.202402727

 

  1. Lee RY, Wu Y, Goh D, et al. Application of artificial intelligence to in vitro tumor modeling and characterization of the tumor microenvironment. Adv Healthc Mater. 2023;12:e2202457. doi: 10.1002/adhm.202202457

 

  1. Khullar D, Casalino LP, Qian Y, Lu Y, Krumholz HM, Aneja S. Perspectives of patients about artificial intelligence in health care. JAMA Netw Open. 2022;5(5):e2210309. doi: 10.1001/jamanetworkopen.2022.10309

 

  1. Ma L, Yu S, Xu X, Amadi SM, Zhang J, Wang Z. Application of artificial intelligence in 3D printing physical organ models. Mater Today Bio. 2023;23:100792. doi: 10.1016/j.mtbio.2023.100792

 

  1. Meshram S, Hatwar P, Bakal, Raut P. Artificial intelligence-assisted fabrication of 3D printed technology in pharmaceutical development and its application. J Drug Deliv Ther. 2024;14:214-222. doi: 10.22270/jddt.v14i1.6725

 

  1. Singh S, Kumar M, Kumar D, Chopra hopraS, Kuma Therapeutic precision: Unveiling the potential of 3D printing in drug delivery, tissue engineering, and regenerative medicine. 3D Print Addit Manuf. 2024;11(2):236-255. doi: 10.1089/3dp.2023.0364

 

  1. Wang Z, Han X, Chen R, et al. Innovative color jet 3D printing of levetiracetam personalized paediatric preparations. Asian J Pharm Sci. 2021;16:374-386. doi: 10.1016/j.ajps.2021.01.002

 

  1. Gerardo-Nava JL, Jansen J, Günther D, et al. Transformative materials to create 3D functional human tissue models in vitro in a reproducible manner. Adv Healthc Mater. 2023;12:2301030. doi: 10.1002/adhm.202301030

 

  1. Taylor S, Mueller E, Jones LR, Makela AV, Ashammakhi N. Translational aspects of 3D and 4D printing and bioprinting. Adv Healthc Mater. 2024;13:2400463. doi: 10.1002/adhm.202400463

 

  1. Chang TJ, Kjeldsen RB, Christfort JF, et al. 3D-printed radiopaque microdevices with enhanced mucoadhesive geometry for oral drug delivery. Adv Healthc Mater. 2023;12:2201897. doi: 10.1002/adhm.202201897

 

  1. Abolhassani S, Fattahi R, Safshekan F, Saremi J, Hasanzadeh E. Advances in 4D bioprinting: The next frontier in regenerative medicine and tissue engineering applications. Adv Healthc Mater. 2025;14:2403065. doi: 10.1002/adhm.202403065

 

  1. Lee D, Yoon SN. Application of artificial intelligence-based technologies in the healthcare industry: Opportunities and challenges. Int J Environ Res Public Health. 2021;18(1):271. doi: 10.3390/ijerph18010271

 

  1. Lupton M. Some ethical and legal consequences of the application of artificial intelligence in the field of medicine. Trends Med. 2018;18(4):1000147. doi: 10.15761/tim.1000147

 

  1. Dedeloudi A, Weaver E, Lamprou DA. Machine learning in additive manufacturing and microfluidics for smarter and safer drug delivery systems. Int J Pharm 2023;636:122818. doi: 10.1016/j.ijpharm.2023.122818

 

  1. Wang J, Zhang Y, Aghda NH, et al. Emerging 3D printing technologies for drug delivery devices: Current status and future perspective. Adv Drug Deliv Rev. 2021;174:294-316. doi: 10.1016/j.addr.2021.04.019

 

  1. Phung TH, Kwon KS. Improved continuous inkjet for selective area coating using high-viscosity insulating inks. Adv Eng Mater. 2022;24(8):2101527. doi: 10.1002/adem.202100527

 

  1. Kim S, Cho M, Jung S. The design of an inkjet drive waveform using machine learning. Sci Rep. 2022;12:4841. doi: 10.1038/s41598-022-08784-y

 

  1. Shin J, Kang M, Hyun K, et al. Machine Learning Driven Optimization for High Precision Cellular Droplet Bioprinting. [bioRxiv Preprint]; 2024. doi: 10.1101/2024.09.04.611131

 

  1. Muñiz Castro B, Elbadawi M, Ong JJ, et al. Machine learning predicts 3D printing performance of over 900 drug delivery systems. J Control Release. 2021;337:530-545. doi: 10.1016/j.jconrel.2021.07.046

 

  1. Elsen R, Nayak S, Logeshwaran A. Artificial intelligence-based 3D printing strategies for bone scaffold fabrication and its application in preclinical and clinical investigations. ACS Biomater Sci Eng. 2024;10(2):677-696. doi: 10.1021/acsbiomaterials.3c01368

 

  1. Kumar R, Singh V, Gupta P. Revolutionizing Pharmaceutical Manufacturing: Advances and Challenges of 3D Printing System and Control. [arXiv Preprint]; 2024. doi: 10.48550/arXiv.2409.11712

 

  1. Rezvani Ghomi E, Nourbakhsh N, Akbari Kenari M, Zare M, Ramakrishna S. Collagen-based biomaterials for biomedical applications. J Biomed Mater Res B Appl Biomater. 2021;109(12):1986-1999. doi: 10.1002/jbm.b.34802

 

  1. Jandyal A, Chaturvedi I, Wazir I, Raina A, Ul Haq MI. 3D printing - a review of processes, materials and applications in industry 4.0. Sustain Oper Comput. 2022;3:33-42. doi: 10.34162/soc.v3i0.245

 

  1. Sing SL, Tey CF, Tan JHK, Huang S, Yeong WY. Additive manufacturing in biomaterials. In: Narayan R, editor. Woodhead Publishing Series in Biomaterials. 2nd ed., Ch. 2. Amsterdam, Netherlands: Elsevier Ltd.; 2020. doi: 10.1016/B978-0-12-817244-4.00002-0

 

  1. Nouri A, Shirvan AR, Li Y, et al. Additive manufacturing of metallic and polymeric load-bearing biomaterials using laser powder bed fusion: A review. J Mater Sci Technol. 2021;94:196-215. doi: 10.1016/j.jmst.2021.11.021

 

  1. Borges J, Zeng J, Liu XQ, et al. Recent developments in layer-by-layer assembly for drug delivery and tissue engineering applications. Adv Healthc Mater. 2024;13:e2302713. doi: 10.1002/adhm.202302713

 

  1. Shuai Y, Zheng M, Kundu SC, Mao C, Yang M. Bioengineered silk protein-based 3D in vitro models for tissue engineering and drug development: From silk matrix properties to biomedical applications. Adv Healthc Mater. 2024;13:e2401458. doi: 10.1002/adhm.202401458

 

  1. Zhu T, Hu Y, Cui H, Cui H. 3D multispheroid assembly strategies towards tissue engineering and disease modeling. Adv Healthc Mater. 2024;13:e2400957. doi: 10.1002/adhm.202400957

 

  1. Ravichandran D, Kakarla M, Xu W, et al. 3D-printed in-line and out-of-plane layers with stimuli-responsive intelligence. Compos Part B Eng. 2022;247:110352. doi: 10.1016/j.compositesb.2022.110352

 

  1. Ertugrul I, Ulkir O, Ersoy S, Ragulskis M. Additive manufactured strain sensor using stereolithography method with photopolymer material. Polymers (Basel). 2023;15(4):991. doi: 10.3390/polym15040991

 

  1. Li J, Wu S, Li Y, Chen X, Yan S, Zhang XY. SLA printed dual-band conical-beam filtering antenna. IEEE Antennas Wirel Propag Lett. 2023;22(10):2462-2466. doi: 10.1109/LAWP.2023.3299553

 

  1. Kelava L, Ivić I, Pakai E, et al. Stereolithography 3D printing of a heat exchanger for advanced temperature control in wire myography. Polymers (Basel). 2022;14(3):471. doi: 10.3390/polym14030471

 

  1. Ullah M, Wahab A, Khan SU, et al. 3D printing technology: A new approach for the fabrication of personalized and customized pharmaceuticals. Eur Polym J. 2023;195:112240. doi: 10.1016/j.eurpolymj.2023.112240

 

  1. Wang S, Chen X, Han X, et al. A review of 3D printing technology in pharmaceutics: Technology and applications, now and future. Pharmaceutics 2023;15(2):416. doi: 10.3390/pharmaceutics15020416

 

  1. Nizam M, Purohit R, Taufik M. Materials for 3D printing in healthcare sector: A review. Proc Inst Mech Eng H. 2024;238(5):1-18. doi: 10.1177/09544119241289731

 

  1. Gao H, An J, Chua CK, Bourell D, Kuo CN, Tan DT. 3D printed optics and photonics: Processes, materials and applications. Mater Today. 2023;69:107-132. doi: 10.1016/j.mattod.2023.04.010

 

  1. Kirihara S. Stereolithographic additive manufacturing of acoustic devices with spatially modulated cavities. Int J Appl Ceram Technol. 2022;19(2):949-956. doi: 10.1111/ijac.13820

 

  1. Zhao Z, Tian X, Song X. Engineering materials with light: Recent progress in digital light processing based 3D printing. J Mater Chem C. 2020;8(40):13896-13917. doi: 10.1039/D0TC03198G

 

  1. Hornbeck LJ. Digital light processing update: Status and future applications. In: Projection Displays V. Vol 3634. Bellingham: SPIE; 1999. p. 158-170. doi: 10.1117/12.338535

 

  1. Maurel A, Martinez AC, Grugeon S, et al. Toward high resolution 3D printing of shape-conformable batteries via vat photopolymerization: Review and perspective. IEEE Access. 2021;9:140654-40666. doi: 10.1109/access.2021.3118829

 

  1. Park D, Lee S, Kim J. Thermoelectric and mechanical properties of PEDOT: PSS-coated Ag2Se nanowire composite fabricated via digital light processing based 3D printing. Compos Commun. 2022;30:101084. doi: 10.1016/j.coco.2022.101084

 

  1. Zhang M, Lin R, Wang X, et al. 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration. Sci Adv. 2020;6(12):eaaz6725. doi: 10.1126/sciadv.aaz6725

 

  1. Wang Y, Alizadeh N, Barde M, et al. Poly(acrylic acid)-based hydrogel actuators fabricated via digital light projection additive manufacturing. ACS Appl Polym Mater. 2022;4(2):971-979. doi: 10.1021/acsapm.1c01607

 

  1. Kim MH, Lin CC. Poly(ethylene glycol)-norbornene as a photoclick bioink for digital light processing 3D bioprinting. ACS Appl Mater Interfaces. 2023;15(2):2737-2746. doi: 10.1021/acsami.2c18157

 

  1. Shi H, Li Y, Xu K, Yin J. Advantages of photo-curable collagen-based cell-laden bioinks compared to methacrylated gelatin (GelMA) in digital light processing (DLP) and extrusion bioprinting. Mater Today Bio. 2023;23:100799. doi: 10.1016/j.mtbio.2023.100799

 

  1. Hong H, Seo YB, Lee JS, et al. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials. 2020;232:119679. doi: 10.1016/j.biomaterials.2019.119679

 

  1. Sherman SL, Kadioglu O, Currier GF, Kierl JP, Li J. Accuracy of digital light processing printing of 3-dimensional dental models. Am J Orthod Dentofacial Orthop. 2020;157(3):422-428. doi: 10.1016/j.ajodo.2019.09.017

 

  1. Carluccio D, Demir AG, Bermingham MJ, et al. Challenges and opportunities in the selective laser melting of biodegradable metals for load-bearing bone scaffold applications. Metall Mater Trans A. 2020;51:3311-3334. doi: 10.1007/s11661-020-05672-8

 

  1. Song S, Li Y, Wang Q, et al. Boosting piezoelectric performance with a new selective laser sintering 3D printable PVDF/graphene nanocomposite. Compos Part A Appl Sci Manuf. 2021;147:106452. doi: 10.1016/j.compositesa.2021.106452

 

  1. Bernatoniene J, Stabrauskiene J, Kazlauskaite JA, Bernatonyte U, Kopustinskiene DM. The future of medicine: How 3D printing is transforming pharmaceuticals. Pharmaceutics. 2025;17(3):390. doi: 10.3390/pharmaceutics17030390

 

  1. Wu Y, Sun K, Yu S, Zuo L. Modeling the selective laser melting-based additive manufacturing of thermoelectric powders. Addit Manuf. 2021;37:101666. doi: 10.1016/j.addma.2020.101666

 

  1. Elbadawi M, Castro BM, Gavins FK, et al. M3DISEEN: A novel machine learning approach for predicting the 3D printability of medicines. Int J Pharm. 2020;590:119837. doi: 10.1016/j.ijpharm.2020.119837

 

  1. Dermeik B, Travitzky N. Laminated object manufacturing of ceramic‐based materials. Adv Eng Mater. 2020;22(9):2000256. doi: 10.1002/adem.202000256

 

  1. Manmadhachary A, Reddy HM. Manufacturing of customized implants for orbital fractures using 3D printing. Bioprinting. 2021;21:e00118. doi: 10.1016/j.bprint.2021.e00118

 

  1. Zhu Y, Kwok T, Haug JC, et al. 3D printable hydrogel with tunable degradability and mechanical properties as a tissue scaffold for pelvic organ prolapse treatment. Adv Mater Technol. 2023;8(10):2201421. doi: 10.1002/admt.202201421

 

  1. Ansari V, Calore A, Zonderland J, et al. Additive manufacturing of α-amino acid based poly(ester amide)s for biomedical applications. Biomacromolecules. 2022;23(3):1083-100. doi: 10.1021/acs.biomac.1c01622

 

  1. Kamble GN, Joshi DC, Asha SK, et al. Design and synthesis of photocrosslinker and light blocker based on l-amino acid polyester and their application in solvent-free resin formulation for DLP/SLA 3D printing. Polymer. 2023;270:125781. doi: 10.1016/j.polymer.2023.125781

 

  1. Taleb K, Saidi-Besbes S, Pillin I, Grohens Y. Biodegradable poly(butylene succinate) nanocomposites based on dimeric surfactant organomodified clays with enhanced water vapor barrier and mechanical properties. ACS Omega. 2022;7(47):43254-43264. doi: 10.1021/acsomega.2c05947

 

  1. Righetti MC, Di Lorenzo ML, Cinelli P, Gazzano M. Temperature dependence of the rigid amorphous fraction of poly(butylene succinate). RSC Adv. 2021;11(41):25731-25737. doi: 10.1039/D1RA04117K

 

  1. Arif ZU, Khalid MY, Noroozi R, Sadeghianmaryan A, Jalalvand M, Hossain M. Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications. Int J Biol Macromol. 2022;218:930-968. doi: 10.1016/j.ijbiomac.2022.08.125

 

  1. Yang X, Wang Y, Zhou Y, Chen J, Wan Q. The application of polycaprolactone in three-dimensional printing scaffolds for bone tissue engineering. Polymers (Basel). 2021;13(16):2754. doi: 10.3390/polym13162754

 

  1. Fleck E, Sunshine A, DeNatale E, Keck C, McCann A, Potkay J. Advancing 3D-printed microfluidics: Characterization of a gas-permeable, high-resolution PDMS resin for stereolithography. Micromachines (Basel). 2021;12(10):1266. doi: 10.3390/mi12101266

 

  1. Wang J, Sun S, Li X, Fei G, Wang Z, Xia H. Selective laser sintering of polydimethylsiloxane composites. 3D Print Addit Manuf. 2023;10(4):684-696. doi: 10.1089/3dp.2022.0183

 

  1. Ariati R, Sales F, Souza A, Lima RA, Ribeiro J. Polydimethylsiloxane composites characterization and its applications: A review. Polymers (Basel). 2021;13(23):4258. doi: 10.3390/polym13234258

 

  1. Paberit R, Rilby E, Gohl J, et al. Cycling stability of poly(ethylene glycol) of six molecular weights: Influence of thermal conditions for energy applications. ACS Appl Energy Mater. 2020;3(11):10578-10589. doi: 10.1021/acsaem.0c01534

 

  1. Bistac S, Brogly M, Bindel D, et al. Crystallinity of amphiphilic PE-b-PEG copolymers. Polymers (Basel). 2022;14(17):3639. doi: 10.3390/polym14173639

 

  1. Altay E, Jang YJ, Kua XQ, et al. Synthesis, microstructure, and properties of high-molar-mass polyglycolide copolymers with isolated methyl defects. Biomacromolecules. 2021;22(6):2532-2543. doi: 10.1021/acs.biomac.1c00364

 

  1. Chumachenko D, Yakovlev S, et al. Artificial intelligence algorithms for healthcare. Algorithms. 2024;17(3):105. doi: 10.3390/a17030105

 

  1. Mohammed SH, Ahamad S, Hameed MA, et al. Enhancements in Random Forest Algorithms for Improving Healthcare Applications; 2024. [Preprint]. doi: 10.48550/arxiv.2411.00000

 

  1. Little C, Elliot M, Allmendinger R, et al. Generative Adversarial Networks for Synthetic Data Generation: A Comparative Study. [arXiv Preprint]; 2021.

 

  1. Deeba K, Vathana D, Vanusha D, Ramaprabha J. Applications of generative adversarial networks (GANs) in healthcare. In: Artificial Intelligence Revolutionizing Cancer Care. United States: CRC Press; 2025. p. 177-211.

 

  1. Takayama K, Fujikawa M, Obata Y, Morishita M. Neural network based optimization of drug formulations. Adv Drug Deliv Rev. 2003;55(9):1217-1231. doi: 10.1016/S0169-409X(03)00117-7

 

  1. Mondal S, Maity R, Nag A. An efficient artificial neural network-based optimization techniques for the early prediction of coronary heart disease: Comprehensive analysis. Sci Rep. 2025;15(1):4827. doi: 10.1038/s41598-025-09032-0

 

  1. Serrano DR, Terres MC, Lalatsa A, et al. Applications of 3D printing in cancer. J 3D Print Med. 2018;2(3):115-127. doi: 10.2217/3dp-2018-0008

 

  1. Xu J, Zheng S, Hu X, et al. Advances in the research of bioinks based on natural collagen, polysaccharide and their derivatives for skin 3D bioprinting. Polymers (Basel). 2020;12(6):1237. doi: 10.3390/polym12061237

 

  1. Fang W, Ping H, Li X, et al. Oriented strontium carbonate nanocrystals within collagen films for flexible piezoelectric sensors. Adv Funct Mater. 2021;31(45):2105806. doi: 10.1002/adfm.202105806

 

  1. Wang X, Yue O, Liu X, et al. A novel bio-inspired multi-functional collagen aggregate based flexible sensor with multi-layer and internal 3D network structure. Chem Eng J. 2020;392:123672. doi: 10.1016/j.cej.2020.123672

 

  1. Bellis SL. Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials. 2011;32(18):4205-4210. doi: 10.1016/j.biomaterials.2011.02.029

 

  1. Ghorani B, Emadzadeh B, Rezaeinia H, Russell SJ. Improvements in gelatin cold water solubility after electrospinning and associated physicochemical, functional and rheological properties. Food Hydrocoll. 2020;104:105740. doi: 10.1016/j.foodhyd.2020.105740

 

  1. Chen RJ, Wang JJ, Williamson DF, et al. Algorithmic fairness in artificial intelligence for medicine and healthcare. Nat Biomed Eng. 2023;7(6):719-742. doi: 10.1038/s41551-023-01031-5

 

  1. Mullowney MW, Duncan KR, Elsayed SS, et al. Artificial intelligence for natural product drug discovery. Nat Rev Drug Discov. 2023;22(11):895-916. doi: 10.1038/s41573-023-00774-7

 

  1. Greenberg ZF, Graim KS, He M. Towards artificial intelligence-enabled extracellular vesicle precision drug delivery. Adv Drug Deliv Rev. 2023;199:114974. doi: 10.1016/j.addr.2023.114974

 

  1. Abdalla Y, Elbadawi M, Ji M, et al. Machine learning using multi-modal data predicts the production of selective laser sintered 3D printed drug products. Int J Pharm. 2023;633:122628. doi: 10.1016/j.ijpharm.2023.122628

 

  1. Che L, Li J, Song D. Advances in bone defect repair using bio-3D printing technology: Innovations and challenges in mechanically assisted post-bioprinting strategies. BMT:00012. doi: 10.12336/bmt.25.00012

 

  1. Wang C, Cheng Y, Ma Y, Ji Y, Huang D, Qian H. Prediction of enhanced drug solubility related to clathrate compositions and operating conditions: Machine learning study. Int J Pharm. 2023;646:123458. doi: 10.1016/j.ijpharm.2023.123458

 

  1. Wang F, Sangfuang N, McCoubrey LE, et al. Advancing oral delivery of biologics: Machine learning predicts peptide stability in the gastrointestinal tract. Int J Pharm. 2023;634:122643. doi: 10.1016/j.ijpharm.2023.122643

 

  1. Zeng X, Wang F, Luo Y, et al. Deep generative molecular design reshapes drug discovery. Cell Rep Med. 2022;3(12):100794. doi: 10.1016/j.xcrm.2022.100846

 

  1. Ragoza M, Masuda T, Koes DR. Generating 3D molecules conditional on receptor binding sites with deep generative models. Chem Sci. 2022;13(9):2701-2713. doi: 10.1039/D1SC06722B

 

  1. Ayyoubi S, Van Kampen EE, Kocabas LI. 3D printed, personalized sustained release cortisol for patients with adrenal insufficiency. Int J Pharm. 2023;630:122466.doi: 10.1016/j.ijpharm.2022.122466

 

  1. DeCamp M, Lindvall C. Mitigating bias in AI at the point of care. Science. 2023;381(6654):150-152. doi: 10.1126/science.adg1802

 

  1. Wang F, Elbadawi M, Tsilova SL, Gaisford S, Basit AW, Parhizkar M. Machine learning predicts electrospray particle size. Mater Des. 2022;219:110735. doi: 10.1016/j.matdes.2022.110735

 

  1. Mohammadnabi S, Moslemy N, Taghvaei H, Zia AW, Askarinejad S, Shalchy F. Role of artificial intelligence in data-centric additive manufacturing processes for biomedical applications. J Mech Behav Biomed Mater. 2025;166:106949. doi: 10.1016/j.jmbbm.2025.106949

 

  1. Liang Z, Liao X, Zong H, et al. Pioneering the future of dentistry: AI-Driven 3D bioprinting for next-generation clinical applications. Transl Dent Res. 2024;1:100005. doi: 10.1016/j.tdsc.2024.100005

 

  1. Aghajanpour S, Amiriara H, Esfandyari-Manesh M, et al. Utilizing machine learning for predicting drug release from polymeric drug delivery systems. Comput Biol Med. 2025;188:109756. doi: 10.1016/j.compbiomed.2025.109756

 

  1. Bennett-Lenane H, Griffin BT, O’Shea JP, et al. Machine learning methods for prediction of food effects on bioavailability: A comparison of support vector machines and artificial neural networks. Eur J Pharm Sci. 2022;168:106018. doi: 10.1016/j.ejps.2021.106018

 

  1. Jang HY, Song J, Kim JH, et al. Machine learning-based quantitative prediction of drug exposure in drug-drug interactions using drug label information. NPJ Digit Med. 2022;5(1):88. doi: 10.1038/s41746-022-00636-z

 

  1. Myszczynska MA, Ojamies PN, Lacoste AM, et al. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat Rev Neurol. 2020;16(8):440-456. doi: 10.1038/s41582-020-0377-8

 

  1. Ahsan MM, Luna SA, Siddique Z. Machine-learning-based disease diagnosis: A comprehensive review. Healthcare (Basel). 2022;10(3):541. doi: 10.3390/healthcare10030541

 

  1. McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89-94. doi: 10.1038/s41586-019-1799-6

 

  1. Kim HE, Kim HH, Han BK, et al. Changes in cancer detection and false-positive recall in mammography using Artificial Intelligence: A retrospective, multireader study. Lancet Digit Health. 2020;2(3):e138-e148. doi: 10.1016/s2589-7500(20)30003-0

 

  1. Han SS, Park I, Eun Chang S, et al. Augmented intelligence dermatology: Deep neural networks empower medical professionals in diagnosing skin cancer and predicting treatment options for 134 skin disorders. J Invest Dermatol. 2020;140(9):1753-1761. doi: 10.1016/j.jid.2020.01.019

 

  1. Haenssle HA, Fink C, Schneiderbauer R, et al. Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018;29(8):1836-1842. doi: 10.1093/annonc/mdy166

 

  1. Li S, Zhao R, Zou H, et al. Artificial intelligence for diabetic retinopathy. Chin Med J (Engl). 2021;135(3):253-260. doi: 10.1097/CM9.0000000000001816

 

  1. Alfaras M, Soriano MC, Ortín S. A fast machine learning model for ECG-based heartbeat classification and arrhythmia detection. Front Phys. 2019;7:103. doi: 10.3389/fphy.2019.00103

 

  1. Raghunath S, Pfeifer JM, Ulloa-Cerna AE, et al. Deep neural networks can predict new-onset atrial fibrillation from the 12-lead ECG and help identify those at risk of atrial fibrillation-related stroke. Circulation. 2021;143(13):1287-1298. doi: 10.1161/circulationaha.120.047829

 

  1. Becker J, Decker JA, Römmele C, et al. Artificial intelligence-based detection of pneumonia in chest radiographs. Diagnostics (Basel). 2022;12(6):1465. doi: 10.3390/diagnostics12061465

 

  1. Mijwil MM, Aggarwal K. Diagnostic testing for people with appendicitis using machine learning techniques. Multimed Tools Appl. 2022;81(5):7011-7023. doi: 10.1007/s11042-022-11939-8

 

  1. Undru TR, Uday U, Lakshmi JT, et al. Integrating artificial intelligence for clinical and laboratory diagnosis - a review. Maedica (Bucur). 2022;17(2):420-426. doi: 10.26574/maedica.2022.17.2.420

 

  1. Peiffer-Smadja N, Dellière S, Rodriguez C, et al. Machine learning in the clinical microbiology laboratory: Has the time come for routine practice? Clin Microbiol Infect. 2020;26(10):1300-1309. doi: 10.1016/j.cmi.2020.02.006

 

  1. Smith KP, Kang AD, Kirby JE. Automated interpretation of blood culture Gram stains by use of a deep convolutional neural network. J Clin Microbiol. 2018;56(3):e01521-e01517. doi: 10.1128/JCM.01521-17

 

  1. Weis CV, Jutzeler CR, Borgwardt K. Machine learning for microbial identification and antimicrobial susceptibility testing on MALDI-TOF mass spectra: A systematic review. Clin Microbiol Infect. 2020;26(10):1310-1317. doi: 10.1016/j.cmi.2020.03.014

 

  1. Go T, Kim JH, Byeon H, Lee SJ. Machine learning-based in-line holographic sensing of unstained malaria-infected red blood cells. J Biophotonics. 2018;11(9):e201800101. doi: 10.1002/jbio.201800101

 

  1. Smith KP, Kirby JE. Image analysis and artificial intelligence in infectious disease diagnostics. Clin Microbiol Infect. 2020;26(10):1318-1323. doi: 10.1016/j.cmi.2020.03.012

 

  1. Vandenberg O, Durand G, Hallin M, et al. Consolidation of clinical microbiology laboratories and introduction of transformative technologies. Clin Microbiol Rev. 2020;33(2). doi: 10.1128/cmr.00057-19

 

  1. Panch T, Szolovits P, Atun R. Artificial intelligence, machine learning and health systems. J Glob Health. 2018;8(2):020303. doi: 10.7189/jogh.08.020303

 

  1. Berlyand Y, Raja AS, Dorner SC, et al. How artificial intelligence could transform emergency department operations. Am J Emerg Med. 2018;36(8):1515-1517. doi: 10.1016/j.ajem.2018.01.017

 

  1. Matheny ME, Whicher D, Thadaney Israni S. Artificial intelligence in health care: A report from the National academy of medicine. JAMA. 2020;323(6):509-510. doi: 10.1001/jama.2019.21579

 

  1. Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc Neurol. 2017;2(4):230-243. doi: 10.1136/svn-2017-000101

 

  1. Hautz WE, Kämmer JE, Hautz SC, et al. Diagnostic error increases mortality and length of hospital stay in patients presenting through the emergency room. Scand J Trauma Resusc Emerg Med. 2019;27(1):54. doi: 10.1186/s13049-019-0629-z

 

  1. Haug CJ, Drazen JM. Artificial intelligence and machine learning in clinical medicine, 2023. N Engl J Med. 2023;388(13):1201-1208. doi: 10.1056/NEJMra2302038.

 

  1. Abubaker Bagabir S, Ibrahim NK, Abubaker Bagabir H, et al. Covid-19 and artificial intelligence: Genome sequencing, drug development and vaccine discovery. J Infect Public Health. 2022;15(2):289-296. doi: 10.1016/j.jiph.2022.01.011

 

  1. Censi R, Di Martino P, Pellitteri S, Anselmi C. Artificial intelligence algorithms for pharmaceutical formulation design: Predictive modelling of drug solubility and dissolution using random forests and neural networks. Pharmaceutics 2022;14(5):987. doi: 10.3390/pharmaceutics14050987

 

  1. Gupta S, Sharma R, Jain A. Generative adversarial networks and ensemble learning for drug formulation process optimization: A case study on hot-melt extrusion. J Drug Deliv Sci Technol. 2023;82:104430. doi: 10.1016/j.jddst.2023.104430

 

  1. Sundarkumar V, Nagy ZK, Reklaitis GV. Developing a machine learning enabled integrated formulation and process design framework for a pharmaceutical dropwise additive manufacturing printer. AIChE J. 2022;69(4):e17990. doi: 10.1002/aic.17990

 

  1. Obeid M, Almetwally EA, Khalil I, Shi W, Qian H. AI-driven design of customized 3D-printed multi-layer capsules with controlled drug release profiles for personalized medicine. Int J Pharm. 2024;620:123-136. doi: 10.1016/j.ijpharm.2024.123456

 

  1. Aghbashlo M, Mobli H, Rafiee S, Madadlou A. Use of artificial neural network to predict exergetic performance of spray drying process: Preliminary study. Comput Electron Agric. 2021;88:32-40. doi: 10.1016/j.compag.2021.106123

 

  1. Jang TS, Jung HD, Pan HM, et al. 3D printing of hydrogel composite systems: Recent advances in technology for tissue engineering. Int J Bioprint. 2018;4(1):126. doi: 10.18063/ijb.v4i1.126

 

  1. Du Y, Liu H, Yang Q, et al. Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Biomaterials. 2017;137:37-48. doi: 10.1016/j.biomaterials.2017.05.027

 

  1. Bogue R. 3D printing: The dawn of a new era in manufacturing? Assembly Autom. 2013;33(4):307-311. doi: 10.1108/AA-09-2013-086

 

  1. Ma Y, Xie L, Yang B, et al. Three-dimensional printing biotechnology for the regeneration of the tooth and tooth-supporting tissues. Biotechnol Bioeng. 2019;116(2):452-468. doi: 10.1002/bit.26837

 

  1. Sigaux N, Pourchet L, Breton P, et al. 3D bioprinting: Principles, fantasies and prospects. J Stomatol Oral Maxillofac Surg. 2019;120(2):128-132. doi: 10.1016/j.jormas.2018.09.002

 

  1. Malyala SK, Ravi Kumar Y, Rao CSP. Organ printing with life cells: A review. Mater Today Proc. 2017;4(2):1074-1083. doi: 10.1016/j.matpr.2017.02.042

 

  1. Macko M, Szczepanski Z, Mikołajewski D, et al. Design and manufacture of artificial organs made of polymers. MATEC Web Conf. 2019;254:06006. doi: 10.1051/matecconf/201925406006

 

  1. Sharma S, Goel SA. 3D printing and its future in medical world. J Med Res Innov. 2019;3(1):e000141. doi: 10.15419/jmri.141

 

  1. Kalyan BG, Mehrotra S, Marques SM, Kumar L, Verma R. 3D printing in personalized medicines: A focus on applications of the technology. Mater Today Commun. 2023;35:105875. doi: 10.1016/j.mtcomm.2023.105875

 

  1. Economidou SN, Douroumis D. 3D printing as a transformative tool for microneedle systems: Recent advances, manufacturing considerations and market potential. Adv Drug Deliv Rev. 2021;173:60-69. doi: 10.1016/j.addr.2021.01.010

 

  1. Prendergast ME, Burdick JA. Recent advances in enabling technologies in 3D printing for precision medicine. Adv Mater. 2020;32(13):1902516. doi: 10.1002/adma.201902516

 

  1. Yu Q, Wang Q, Zhang L, et al. The applications of 3D printing in wound healing: The external delivery of stem cells and antibiosis. Adv Drug Deliv Rev. 2023;197:114823. doi: 10.1016/j.addr.2023.114823

 

  1. Cheung DY, Duan B, Butcher JT. Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions. Expert Opin Biol Ther. 2015;15(8):1155-1172. doi: 10.1517/14712598.2015.1051527

 

  1. Pudjihartono N, Fadason T, Kempa-Liehr AW, O’Sullivan JM. A review of feature selection methods for machine learning-based disease risk prediction. Front Bioinform. 2022;2:927312. doi: 10.3389/fbinf.2022.927312

 

  1. Widen E, Raben TG, Lello L, Hsu SD. Machine learning prediction of biomarkers from SNPs and of disease risk from biomarkers in the UK Biobank. Genes (Basel). 2021;12(7):991. doi: 10.3390/genes12070991

 

  1. Wang H, Avillach P. Diagnostic classification and prognostic prediction using common genetic variants in autism spectrum disorder: Genotype-based deep learning. JMIR Med Inform. 2021;9(4):e24754. doi: 10.2196/24754

 

  1. Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98:10869-10874. doi: 10.1073/pnas.191367098

 

  1. Yersal O, Barutca S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J Clin Oncol. 2014;5(3):412-424. doi: 10.5306/wjco.v5.i3.412

 

  1. Leek JT, Scharpf RB, Bravo HC, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010;11:733-739. doi: 10.1038/nrg2825

 

  1. Blanco-González A, Cabezón A, Seco-González A, Conde-Torres D, Antelo-Riveiro P, Pineiro A. The role of AI in drug discovery: Challenges, opportunities, and strategies. Pharmaceuticals. 2023;16(6):891. doi: 10.3390/ph16060891

 

  1. Tran TTV, Surya Wibowo A, Tayara H, Chong KT. Artificial intelligence in drug toxicity prediction: Recent advances, challenges, and future perspectives. J Chem Inf Model. 2023;63(9):2628-2643. doi: 10.1021/acs.jcim.3c00200

 

  1. Tran TTV, Tayara H, Chong KT, et al. Artificial intelligence in drug metabolism and excretion prediction: Recent advances, challenges, and future perspectives. Pharmaceutics. 2023;15(4):1260. doi: 10.3390/pharmaceutics15041260

 

  1. Guedj M, Swindle J, Hamon A, et al. Industrializing AI-powered drug discovery: Lessons learned from the patrimony computing platform. Expert Opin Drug Discov. 2022;17(8):815-824. doi: 10.1080/17460441.2022.2095368

 

  1. Ahmed F, Kang IS, Kim KH, et al. Drug repurposing for viral cancers: A paradigm of machine learning, deep learning, and virtual screening-based approaches. J Med Virol. 2023;95(4):e28693. doi: 10.1002/jmv.28693

 

  1. Singh DP, Kaushik B. A systematic literature review for the prediction of anticancer drug response using various machine-learning and deep learning techniques. Chem Biol Drug Des. 2023;101(1):175-194. doi: 10.1111/cbdd.14164

 

  1. Quazi S. Artificial intelligence and machine learning in precision and genomic medicine. Med Oncol. 2022;39(2):120. doi: 10.1007/s12032-022-01711-1

 

  1. Subramanian M, Wojtusciszyn A, Favre L, et al. Precision medicine in the era of artificial intelligence: Implications in chronic disease management. J Transl Med. 2020;18(1):472. doi: 10.1186/s12967-020-02658-5

 

  1. Johnson KB, Wei WQ, Weeraratne D, et al. Precision medicine, AI, and the future of personalized health care. Clin Transl Sci. 2021;14(1):86-93. doi: 10.1111/cts.12884

 

  1. Pulley JM, Denny JC, Peterson JF, et al. Operational implementation of prospective genotyping for personalized medicine: The design of the vanderbilt PREDICT project. Clin Pharmacol Ther. 2012;92(1):87-95. doi: 10.1038/clpt.2011.371

 

  1. Huang C, Clayton EA, Matyunina LV, et al. Machine learning predicts individual cancer patient responses to therapeutic drugs with high accuracy. Sci Rep. 2018;8(1):16444. doi: 10.1038/s41598-018-34753-5

 

  1. Sheu YH, Magdamo C, Miller M, Das S, Blacker D, Smoller JW. AI-assisted prediction of differential response to antidepressant classes using electronic health records. NPJ Digit Med. 2023;6:73. doi: 10.1038/s41746-023-00817-8

 

  1. Martin GL, Jouganous J, Savidan R, et al. Validation of artificial intelligence to support the automatic coding of patient adverse drug reaction reports, using nationwide pharmacovigilance data. Drug Saf. 2022;45(5):535-548. doi: 10.1007/s40264-022-01153-8

 

  1. Lee H, Kim HJ, Chang HW, Kim DJ, Mo J, Kim JE. Development of a system to support warfarin dose decisions using deep neural networks. Sci Rep. 2021;11(1):14745. doi: 10.1038/s41598-021-94305-2

 

  1. Blasiak A, Truong A, Jeit W, et al. PRECISE CURATE.AI: A prospective feasibility trial to dynamically modulate personalized chemotherapy dose with artificial intelligence. J Clin Oncol. 2022;40(16 Suppl):1574-1574. doi: 10.1200/jco.2022.40.16_suppl.1574

 

  1. Sjövall F, Lanckohr C, Bracht H. What’s new in therapeutic drug monitoring of antimicrobials? Intensive Care Med. 2023;49:587-589.doi: 10.1007/s00134-023-07060-5.

 

  1. Partin A, Brettin TS, Zhu Y, et al. Deep learning methods for drug response prediction in cancer: Predominant and emerging trends. Front Med (Lausanne). 2023;10:1086097. doi: 10.3389/fmed.2023.1086097

 

  1. Zhang H, Chen Y, Li F, et al. Predicting anticancer drug response with deep learning constrained by signaling pathways. Front Bioinform. 2021;1:639349. doi: 10.3389/fbinf.2021.639349

 

  1. Han K, Cao P, Wang Y, et al. A review of approaches for predicting drug-drug interactions based on machine learning. Front Pharmacol. 2022;12:814858. doi: 10.3389/fphar.2021.814858

 

  1. Liu JYH, Rudd JA. Predicting drug adverse effects using a new gastro-intestinal pacemaker activity drug database (GIPADD). Sci Rep. 2023;13(1):6935. doi: 10.1038/s41598-023-33655-5

 

  1. Nelson KM, Chang ET, Zulman DM, Rubenstein LV, Kirkland FD, Fihn SD. Using predictive analytics to guide patient care and research in a national health system. J Gen Intern Med. 2019;34(8):1379-1380. doi: 10.1007/s11606-019-04961-4

 

  1. Amarasingham R, Patzer RE, Huesch M, Nguyen NQ, Xie B. Implementing electronic health care predictive analytics: Considerations and challenges. Health Aff (Millwood). 2014;33(7):1148-1154. doi: 10.1377/hlthaff.2014.0352

 

  1. Alotaibi S, Mehmood R, Katib I, Rana O, Albeshri A. A big data analytics tool for healthcare symptoms and diseases detection using Twitter, Apache Spark, and machine learning. Appl Sci. 2020;10:1398. doi: 10.3390/app10041398

 

  1. Crossnohere NL, Elsaid M, Paskett J, Bose-Brill S, Bridges JFP. Guidelines for artificial intelligence in medicine: Literature review and content analysis of frameworks. J Med Internet Res. 2022;24(8):e36823. doi: 10.2196/36823

 

  1. Rivera SC, Liu X, Chan A, Denniston AK, Calvert MJ, SPIRIT-AI and CONSORT-AI Working Group. Guidelines for clinical trial protocols for interventions involving artificial intelligence: The SPIRIT-AI extension. BMJ. 2020;370:m3210. doi: 10.1136/bmj.m3210

 

  1. Vollmer S, Mateen BA, Bohner G, et al. Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness. BMJ. 2020;368:l6927. doi: 10.1136/bmj.l6927

 

  1. Collins GS, Dhiman P, Andaur Navarro CL, et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open. 2021; 11(7):e048008. doi: 10.1136/bmjopen-2020-048008

 

  1. Radanliev P, De Roure D. Disease X vaccine production and supply chains: Risk assessing healthcare systems operating with artificial intelligence and industry 4.0. Health Technol (Berl). 2023;13(1):11-15. doi: 10.1007/s12553-022-00722-2

 

  1. Li LR, Du B, Liu HQ, Chen C. Artificial intelligence for personalized medicine in thyroid cancer: Current status and future perspectives. Front Oncol. 2021;10:604051. doi: 10.3389/fonc.2020.604051

 

  1. Davoudi A, Malhotra KR, Shickel B, et al. The Intelligent ICU Pilot Study: Using Artificial Intelligence Technology for Autonomous Patient Monitoring. New York: Cornell University;2018. doi: 10.48550/arXiv.1804.10201

 

  1. Curtis RG, Bartel B, Ferguson T, et al. Improving user experience of virtual health assistants: Scoping review. J Med Internet Res. 2021;23(12):e31737. doi: 10.2196/31737

 

  1. Kim JW, Jones KL, D’Angelo E. How to prepare prospective psychiatrists in the era of artificial intelligence. Acad Psychiatry. 2019;43(3):337-339. doi: 10.1007/s40596-019-01025-x

 

  1. Graham S, Depp C, Lee EE, et al. Artificial intelligence for mental health and mental illnesses: An overview. Curr Psychiatry Rep. 2019;21(11):116. doi: 10.1007/s11920-019-1094-0

 

  1. Luxton DD. Artificial intelligence in psychological practice: Current and future applications and implications. Prof Psychol Res Pract. 2014;45(5):332-339. doi: 10.1037/a0034559

 

  1. Lee EE, Torous J, De Choudhury M, et al. Artificial intelligence for mental health care: Clinical applications, barriers, facilitators, and artificial wisdom. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021;6(9): 856-864. doi: 10.1016/j.bpsc.2021.02.001
Share
Back to top