·
ORIGINAL RESEARCH
·

Three-dimensional cellularized matrix supplemented with secretome enhances tissue regeneration in an incisional hernia repair model

Siufui Hendrawan1,2* Olivia Marcelina1 Astheria Eryani3 Erwin Siahaan4 Hans U. Baer1,5,6
Show Less
1 Tarumanagara Human Cell Technology Laboratory, Faculty of Medicine, Tarumanagara University, Jakarta, Indonesia
2 Department of Biochemistry and Molecular Biology, Faculty of Medicine, Tarumanagara University, Jakarta, Indonesia
3 Department of Histology, Faculty of Military Medicine Defense University, Bogor, West Java, Indonesia
4 Department of Mechanical Engineering, Faculty of Engineering, Tarumanagara University, Jakarta, Indonesia
5 Baermed Tissue Engineering Limited, Freienbach, Switzerland
6 Department of Visceral and Transplantation Surgery, Faculty of Medicine, University of Bern, Bern, Switzerland
Submitted: 21 May 2025 | Revised: 5 August 2025 | Accepted: 6 August 2025 | Published: 4 September 2025
Copyright © 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Present standard treatment for incisional hernia (IH) focuses on wound closure by providing mechanical reinforcement to the affected tissue, generally through the implantation of synthetic polypropylene (PP) mesh. However, PP mesh primarily functions to hold organs in place and does not actively stimulate intrinsic tissue regeneration. Meanwhile, in the aging population and in individuals with pre-existing complications, impaired wound healing and reduced elasticity increase the risk of hernia recurrence. In this study, we developed a three-dimensional cellularized implant with secretome (Sec) supplementation, aiming to promote tissue regeneration and the formation of a more mechanically robust scar in IH repair. The cellularized matrix (Cell/Matrix) was produced by seeding fibroblasts onto a three-dimensional collagen-coated poly-L-lactic acid matrix. Supplementation with Sec derived from human umbilical cord mesenchymal stem cells was performed to produce the Cell/Matrix+Sec implant. Implantation was performed in the sublay position (between muscle and peritoneal membrane), beneath an incisional cut at the midline abdomen of Wistar rats to mimic IH repair. Rats with no implant (Sham) served as the control group, while others received PP mesh (Mesh), an acellularized matrix (Matrix), Cell/Matrix, and Cell/Matrix+Sec implants. At 2 months post-implantation, abdominal tissue samples extracted from the Cell/Matrix+Sec implant group exhibited the greatest biomechanical strength, accompanied by a higher collagen type I/III ratio, neovascularization count, α-smooth muscle actin-positive vessels, and formation of neuron bundles. Meanwhile, Sham and Mesh groups displayed the lowest values in all parameters, respectively. Despite having lower mechanical strength compared with PP mesh, implantation of the cellularized matrix resulted in better muscle tissue integrity and maturation. Hence, these findings highlight the potential of Cell/Matrix+Sec as a novel adjuvant implant to complement the present standard approach to hernia repair, which lacks regenerative capacities.

Keywords
Abdominal tensile strength
Collagen ratio
Incisional hernia
Poly-L-lactic acid cellularized matrix
Secretome
Human umbilical cord-derived mesenchymal stem cells
Funding
This study was funded by the Institute of Research and Community Service of Tarumanagara University (grant numbers: 0437-Int-KLPPM/ UNTAR/V/2024; 070-SPK-PENREG-KLPPM/UNTAR/IV/2024) and supported by Baermed Tissue Engineering Ltd., Freienbach, Switzerland.
Conflict of interest
HUB has an interest in acquiring intellectual properties in tissue engineering. Other authors declare no potential conflict of interest.
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

  1. Caglià P, Tracia A, Borzì L, et al. Incisional hernia in the elderly: Risk factors and clinical considerations. Int J Surg. 2014;12(S2):S164-S169. doi: 10.1016/j.ijsu.2014.08.357

 

  1. Holihan JL, Hannon C, Goodenough C, et al. Ventral hernia repair: A meta-analysis of randomized controlled trials. Surg Infect (Larchmt). 2017;18(6):647-658. doi: 10.1089/sur.2017.029

 

  1. Itatsu K, Yokoyama Y, Sugawara G, et al. Incidence of and risk factors for incisional hernia after abdominal surgery. Br J Surg. 2014;101(11):1439-1447.doi: 10.1002/bjs.9600

 

  1. Eker HH, Hansson BME, Buunen M, et al. Laparoscopic vs open incisional hernia repair. JAMA Surg. 2013;148(3):259-263. doi: 10.1001/jamasurg.2013.1466

 

  1. van Silfhout L, Leenders LAM, Heisterkamp J, Ibelings MS. Recurrent incisional hernia repair: Surgical outcomes in correlation with body-mass index. Hernia. 2021;25(1):77-83. doi: 10.1007/s10029-020-02320-5

 

  1. Thankam FG, Larsen NK, Varghese A, et al. Biomarkers and heterogeneous fibroblast phenotype associated with incisional hernia. Mol Cell Biochem. 2021;476(9):3353-3363. doi: 10.1007/s11010-021-04166-6

 

  1. Peeters E, De Hertogh G, Junge K, Klinge U, Miserez M. Skin as marker for collagen type I/III ratio in abdominal wall fascia. Hernia. 2014;18(4):519-525. doi: 10.1007/s10029-013-1128-1

 

  1. Hu W, Zhang Z, Zhu L, et al. Combination of polypropylene mesh and in situ injectable mussel-inspired hydrogel in laparoscopic hernia repair for preventing post-surgical adhesions in the piglet model. ACS Biomater Sci Eng. 2020;6(3):1735-1743. doi: 10.1021/acsbiomaterials.9b01333

 

  1. Heymann F, von Trotha KT, Preisinger C, et al. Polypropylene mesh implantation for hernia repair causes myeloid cell-driven persistent inflammation. JCI Insight. 2019;4(2):e123862. doi: 10.1172/jci.insight.123862

 

  1. Amato G, Puleio R, Romano G, et al. Physiologic cyclical load on inguinal hernia scaffold ProFlor turns biological response into tissue regeneration. Biology (Basel). 2023;12(3):434. doi: 10.3390/biology12030434

 

  1. Garcia DPC, Santos Neto C, Hubner PNV, et al. Treatment of abdominal wall hernia with suture, or polypropylene, or collagen prosthesis. Acta Cir Bras. 2016;31(6):371-376. doi: 10.1590/S0102-865020160060000002

 

  1. Hendrawan S, Bono E, Hutter A, Weber U, Lheman J, Baer HU. Evaluation of 3D PLLA scaffolds coated with nano-thick collagen as carrier for hepatocytes. J Biomed Mater Res Part B Appl Biomater. 2021;109(5):723-732. doi: 10.1002/jbm.b.34738

 

  1. Hendrawan S, Lheman J, Weber U, et al. Fibroblast matrix implants-a better alternative for incisional hernia repair? Biomed Mater. 2024;19(3):035033. doi: 10.1088/1748-605X/ad3da4

 

  1. Hendrawan S, Marcelina O, Tan ST, Baer HU. Immobilization of hUC-MSCs conditioned medium on 3D PLLA collagen-coated matrix enhances diabetic wound healing progression. Eng Regen. 2024;5(3):421-431. doi: 10.1016/j.engreg.2024.04.005

 

  1. Hendrawan S, Kusnadi Y, Lagonda CA, et al. Wound healing potential of human umbilical cord mesenchymal stem cell conditioned medium: An in vitro and in vivo study in diabetes-induced rats. Vet World. 2021;14(8):2109-2117. doi: 10.14202/vetworld.2021.2109-2117

 

  1. Tan ST, Aisyah PB, Firmansyah Y, Nathasia N, Budi E, Hendrawan S. Effectiveness of secretome from human umbilical cord mesenchymal stem cells in gel (10% SM-hUCMSC gel) for chronic wounds (diabetic and trophic ulcer) – phase 2 clinical trial. J Multidiscip Healthc. 2023;16:1763-1777. doi: 10.2147/JMDH.S408162

 

  1. Tan ST, Firmansyah Y, Halim KC, Aisyah PB, Hendrawan S. Effectiveness of conditioned medium mesenchymal stem cells intracutaneous for trophic ulcer due to morbun hansen. Bali Med J. 2024;13(1):725-736. doi: 10.15562/bmj.v13i1.5022

 

  1. Liao CJ, Chen CF, Chen JH, Chiang SF, Lin YJ, Chang KY. Fabrication of porous biodegradable polymer scaffolds using a solvent merging/ particulate leaching method. J Biomed Mater Res. 2002;59(4):676-681. doi: 10.1002/jbm.10030

 

  1. Sugiyama K, Okamura A, Kawazoe N, Tateishi T, Sato S, Chen G. Coating of collagen on a poly(l-lactic acid) sponge surface for tissue engineering. Mater Sci Eng C. 2012;32(2):290-295. doi: 10.1016/j.msec.2011.10.031

 

  1. Chen G, Okamura A, Sugiyama K, et al. Surface modification of porous scaffolds with nanothick collagen layer by centrifugation and freeze-drying. J Biomed Mater Res Part B Appl Biomater. 2009;90(2):864-872. doi: 10.1002/jbm.b.31356

 

  1. Melman L, Jenkins ED, Hamilton NA, et al. Early biocompatibility of crosslinked and non-crosslinked biologic meshes in a porcine model of ventral hernia repair. Hernia. 2011;15(2):157-164. doi: 10.1007/s10029-010-0770-0

 

  1. Fuentes R, Saravia D, Arias A, Prieto R, Dias F. Mandibular dental implant placement using demineralized bone matrix (DBM). Biomed Res. 2017;28(6):2656-2660.

 

  1. Liu J, Song Q, Yin W, et al. Bioactive scaffolds for tissue engineering: A review of decellularized extracellular matrix applications and innovations. Exploration. 2025;5(1):20230078. doi: 10.1002/EXP.20230078

 

  1. Thankam FG, Palanikumar G, Fitzgibbons RJ, Agrawal DK. Molecular mechanisms and potential therapeutic targets in incisional hernia. J Surg Res. 2019;236:134-143. doi: 10.1016/j.jss.2018.11.037

 

  1. Reilly MJ, Larsen NK, Agrawal S, Thankam FG, Agrawal DK, Fitzgibbons RJ. Selected conditions associated with an increased incidence of incisional hernia: A review of molecular biology. Am J Surg. 2021;221(5):942-949. doi: 10.1016/j.amjsurg.2020.09.004

 

  1. Arenal JJ, Rodriguez-Vielba P, Gallo E, Tinoco C. Hernias of the abdominal wall in patients over the age of 70 years. Eur J Surg. 2002;168(8-9):460-463. doi: 10.1080/110241502321116451

 

  1. Amato G, Agrusa A, Puleio R, Calò P, Goetze T, Romano G. Neo-nervegenesis in 3D dynamic responsive implant for inguinal hernia repair: Qualitative study. Int J Surg. 2020;76:114-119. doi: 10.1016/j.ijsu.2020.02.046

 

  1. Amato G, Agrusa A, Calò PG, et al. Fixation free laparoscopic obliteration of inguinal hernia defects with the 3D dynamic responsive scaffold ProFlor. Sci Rep. 2022;12(1):18971. doi: 10.1038/s41598-022-23128-6

 

  1. Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev. 2016;107:163-175. doi: 10.1016/j.addr.2016.06.018

 

  1. Stefaniak K, Masek A. Green copolymers based on poly(lactic acid)-short review. Materials (Basel). 2021;14(18):5254. doi: 10.3390/ma14185254

 

  1. Friedman DW, Boyd CD, Norton P, et al. Increases in type III collagen gene expression and protein synthesis in patients with inguinal hernias. Ann Surg. 1993;218(6):754-760. doi: 10.1097/00000658-199312000-00009

 

  1. Zhang J, Nugrahaningrum DA, Marcelina O, et al. Tyrosol facilitates neovascularization by enhancing skeletal muscle cells viability and paracrine function in diabetic hindlimb ischemia mice. Front Pharmacol. 2019;10:909. doi: 10.3389/fphar.2019.00909

 

  1. Diaz R, Quiles MT, Guillem-Marti J, et al. Apoptosis-like cell death induction and aberrant fibroblast properties in human incisional hernia fascia. Am J Pathol. 2011;178(6):2641-2653. doi: 10.1016/j.ajpath.2011.02.044

 

  1. Hodge JG, Decker HE, Robinson JL, Mellott AJ. Tissue TissueE, Robinson JL, Melmesenchymal stem cell secretome capacity to improve regenerative activity of keratinocytes and fibroblasts in vitro. Wound Repair Regen. 2023;31(3):367-383. doi: 10.1111/wrr.13076

 

  1. Kastner N, Mester-Tonczar J, Winkler J, et al. Comparative effect of MSC secretome to MSC co-culture on cardiomyocyte gene expression under hypoxic conditions in vitro. Front Bioeng Biotechnol. 2020;8:502213. doi: 10.3389/fbioe.2020.502213

 

  1. Li Q, Li B, Ye T, et al. Requirements for human mesenchymal stem celll stem cellman mesenchymal stem cellndiInterdiscip Med. 2023;1(1):e20220015. doi: 10.1002/INMD.20220015

 

  1. Zhong W, Meng H, Ma L, et al. Hydrogels loaded with MSC‐derived small extracellular vesicles: A novel cell‐free tissue engineering system for diabetic wound management. VIEW. 2024;5(4):20230110. doi: 10.1002/VIW.20230110

 

  1. Tian L, Wang Z, Chen S, et al. Ellagic acidic acidisEVs encapsulated in GelMA hydrogel accelerate diabetic wound healing by activating EGFR on skin repair cells. Cell Prolif. 2025:e70064. doi: 10.1111/cpr.70064

 

  1. Blázquez R, Sánchez-Margallo FM, Álvarez V, Usón A, Marinaro F, Casado JG. Fibrin glue mesh fixation combined with mesenchymal stem cells or exosomes modulates the inflammatory reaction in a murine model of incisional hernia. Acta Biomater. 2018;71:318-329. doi: 10.1016/j.actbio.2018.02.01
Share
Back to top