Dose-dependent toxicity of fluorescein isothiocyanate-labeled zeolitic imidazolate framework-8 nanoparticles in Swiss albino mice
Nanoscale metal–organic frameworks have attracted significant attention from the research community due to their tailorable composition and structures, high porosity, and facile surface modification. The development of targeted nanoscale drug delivery systems (DDSs) is important in improving target specificity, reducing side effects, and enhancing the therapeutic efficacy of drugs. At the same time, toxicological studies are crucial in the development and safe use of novel DDSs to eliminate unforeseen health risks. Such analyses investigate nano-biointeractions and evaluate potential cytotoxic, genotoxic, or immunotoxic effects. In this study, we synthesized nano-sized luminescent fluorescein 5-isothiocyanate (FITC)-labeled zeolitic imidazolate framework-8 (ZIF-8) nanoparticles through a simple chemical approach. Basic characterization studies of the nanoparticles were performed using X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) analysis. SEM and TEM analysis confirmed the dodecahedral shape of the nanoparticles with an average size of 65–70 nm. The fluorescent emission from FITC-labeled ZIF-8 nanoparticles corresponded to the typical emission of incorporated FITC in the ZIF-8. The PL emission spectrum confirmed the incorporation of FITC into the ZIF-8, thereby offering fluorescence probing of the nanoparticles. In addition, we investigated the in vivo toxicity profile of FITC-labeled ZIF-8 nanoparticles in 6–8-week-old Swiss albino mice to establish safe dosage limits. The results of hematological, biochemical, inflammatory, antioxidant, and immunotoxicity markers, as well as histopathological evaluation, showed no significant toxicity at moderate doses of FITC-labeled ZIF-8 nanoparticles. Thus, FITC-labeled ZIF-8 nanoparticles can be safely employed as a suitable drug delivery platform for in vivo applications, such as in cancer therapy.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
- Parasuraman S. Toxicological screening. J Pharmacol Pharmacother. 2011;2(2):74-79. doi: 10.4103/0976-500X.81895
- Goud NS. Biocompatibility evaluation of medical devices. In: Faqi AS, editor. A Comprehensive Guide to Toxicology in Nonclinical Drug Development. Cambridge, MA: Academic Press; 2016. p. 957-973. doi: 10.1016/b978-0-323-85704-8.00030-x
- Zhao H, Gong L, Wu H, et al. Development of novel paclitaxel-loaded ZIF-8 metal-organic framework nanoparticles modified with peptide dimers and an evaluation of its inhibitory effect against prostate cancer cells. Pharmaceutics. 2023;15(7):1874. doi: 10.3390/pharmaceutics15071874
- Tran VA, Lee SW. pH-triggered degradation and release of doxorubicin from zeolitic imidazolate framework-8 (ZIF8) decorated with polyacrylic acid. RSC Adv. 2021;11(16):9222-9234. doi: 10.1039/d0ra10423j
- Wu W, Yu X, Sun J, et al. Zeolitic imidazolate framework (ZIF-8) decorated iron oxide nanoparticles loaded doxorubicin hydrochloride for osteosarcoma treatment - in vitro and in vivo preclinical studies. Int J Nanomed. 2023;18:7985-7999. doi: 10.2147/ijn.s438771
- Iranpour S, Bahrami AR, Dayyani M, Saljooghi AS, Matin MM. A potent multifunctional ZIF-8 nanoplatform developed for colorectal cancer therapy by triple-delivery of chemo/radio/targeted therapy agents. J Mater Chem B. 2024;12(4):1096-1114. doi: 10.1039/d3tb02571c
- Pan Y, Wang S, He X, et al. A combination of glioma in vivo imaging and in vivo drug delivery by metal-organic framework based composite nanoparticles. J Mater Chem B. 2019;7:7683-7689. doi: 10.1039/C9TB01651A
- Huang J, Xu Z, Jiang Y, et al. Metal organic framework-coated gold nanorod as an on-demand drug delivery platform for chemo-photothermal cancer therapy. J Nanobiotechnoloy. 2021;19(1):219. doi: 10.1186/s12951-021-00961-x
- Cravillon J, Munzer S, Lohmeier SJ, Feldhoff A, Huber K, Wiebcke M. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem Mater. 200;21:1410-1412. doi: 10.1021/cm900166h
- Rajkumar K, Kanipandian N, Thirumurugan R. Toxicity assessment on haemotology, biochemical and histopathological alterations of silver nanoparticles-exposed freshwater fish. Appl Nanosci. 2016;6:19-29. doi: 10.1007/s13204-015-0417-7
- Aravind SR, Joseph MM, Varghese S, Balaram P, Sreelekha TT. Antitumor and immunopotentiating activity of polysaccharide PST001 isolated from the seed kernel of Tamarindus indica: An in vivo study in mice. ScientificWorldJournal. 2012;2012:361382. doi: 10.1100/2012/361382
- Joseph MM, Aravind SR, George SK, Pillai KR, Mini S, Sreelekha TT. Galactoxyloglucan-modified nanocarriers of doxorubicin for improved tumor-targeted drug delivery with minimal toxicity. J Biomed Nanotechnol. 2014;10(11):3253-3268. doi: 10.1166/jbn.2014.1957
- Shimizu T, Kondo K, Hayaishi O. Role of prostaglandin endoperoxides in the serum thiobarbituric acid reaction. Arch Biochem Biophys. 1981;206(2):271-276. doi: 10.1016/0003-9861(81)90091-6
- Axelrod B, Cheesbrough TM, Laasko S. Lipoxygenase from soybeans. Methods Enzymol. 1981;71:441-451. doi: 10.1016/0076-6879(81)71055-3
- Bradley PP, Priebat DA, Christensen RD, Rothstein G. Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker. J Investig Dermatol. 1982;78:206-209. doi: 10.1111/1523-1747.ep12506462
- Salter M, Knowles RG. Assay of NOS activity by the measurement of conversion of oxyhemoglobin to methemoglobin by NO. Methods Mol Biol. 1998;100:61-65. doi: 10.1385/1-59259-749-1:61
- Claiborne A. Catalase activity. In: Greenwald RA, editor. CRC Handbook of Methods for Oxygen Radical Research. Boca Raton: CRC Press; 1985. p. 283-284. doi: 10.1201/9781351072922.
- Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys. 1984;21(2):130-132.
- Patterson JW, Lazarow A. Determination of glutathione. In: Glick D, editors. Book Series: Methods of Biochemical Analysis. Vol. 3. New York: Interscience; 1955. doi: 10.1002/9780470110188.ch9
- Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130-7139. doi: 10.1016/S0021-9258(19)42083-8
- Mohandas J, Marshall JJ, Duggin GG, Horvath JS, Tiller DJ. Differential distribution of glutathione and glutathione-related enzymes in rabbit kidney. Possible implications in analgesic nephropathy. Biochem Pharmacol. 1984;33(11):1801-1807. doi: 10.1016/0006-2952(84)90353-8
- Carlberg I, Mannervik B. Glutathione reductase. Methods Enzymol. 1985;113:484-490. doi: 10.1016/s0076-6879(85)13062-4
- Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302-310. doi: 10.1016/s0076-6879(78)52032-6
- Lowry OH, Roseberough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-275. doi: 10.1016/S0021-9258(19)52451-6
- Awasthi KK, Verma R, Awasthi A, Awasthi K, Soni I, John PJ. In vivo genotoxic assessment of silver nanoparticles in liver cells of Swiss albino mice using comet assay. Adv Mater Lett. 2015;6:187-193. doi: 10.5185/amlett.2015.5640
- Yang X, Schnackenberg LK, Shi Q, Salminen WF. Hepatic toxicity biomarkers. In: Gupta R, editors. Biomarkers in Toxicology. 2nd ed., Ch. 13. United States: Academic Press; 2014. p. 241-259. doi: 10.1016/b978-0-12-404630-6.00013-0
- Thapa BR, Walia A. Liver function tests and their interpretation. Indian J Pediatr. 2007;74(7):663-671. doi: 10.1007/s12098-007-0118-7
- Yao Y, Zang Y, Qu J, Tang M, Zhang T. The toxicity of metallic nanoparticles on liver: The subcellular damages, mechanisms, and outcomes. Int J Nanomedicine. 2019;14:8787-8804. doi: 10.2147/ijn.s212907
- Bull H, Murray PG, Thomas D, Fraser AM, Nelson PN. Acid phosphatases. Mol Pathol. 2002;55(2):65-72. doi: 10.1136/mp.55.2.65
- Fuchs TC, Hewitt P. Biomarkers for drug-induced renal damage and nephrotoxicity-an overview for applied toxicology. AAPS J. 2011;13(4):615-631. doi: 10.1208/s12248-011-9301-x
- Giordano C, Karasik O, King-Morris K, Asmar A. Uric acid as a marker of kidney disease: Review of the current literature. Dis Markers. 2015;2015:382918. doi: 10.1155/2015/382918
- Chen YC, Su CT, Wang ST, Lee HD, Lin SY. A preliminary investigation of the association between serum uric acid and impaired renal function. Chang Gung Med J. 2009;32(1):66-71.
- Ramaiah L, Bounous DI, Elmore SA. Hematopoietic System: Haschek and Rousseaux’s Handbook of Toxicologic Pathology. 3rd ed., Vol. 3., Ch. 50. Netherlands: Elsevier. p. 1863-1933; 2013. doi: 10.1016/b978-0-12-415759-0.00050-9
- Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci. 2005;88(2):412-419. doi: 10.1093/toxsci/kfi256
- Rosales C. Neutrophil: A cell with many roles in inflammation or several cell types? Front Physiol. 2018;9:113. doi: 10.3389/fphys.2018.00113
- Liz R, Simard JC, Leonardi LB, Girard D. Silver nanoparticles rapidly induce atypical human neutrophil cell death by a process involving inflammatory caspases and reactive oxygen species and induce neutrophil extracellular traps release upon cell adhesion. Int Immunopharmacol. 2015;28(1):616-625. doi: 10.1016/j.intimp.2015.06.030
- Bian Z, Guo Y, Ha B, Zen K, Liu Y. Regulation of the inflammatory response: Enhancing neutrophil infiltration under chronic inflammatory conditions. J Immunol. 2012;188(2):844-853. doi: 10.4049/jimmunol.1101736
- Turini ME, DuBois RN. Cyclooxygenase-2: A therapeutic target. Annu Rev Med. 2002;53:35-57. doi: 10.1146/annurev.med.53.082901.103952
- Seta F, Bachschmid M. Cyclooxygenase Pathway of the Arachidonate Cascade. South Asia: ELS; 2012. doi: 10.1002/9780470015902.a0023401
- Dubois RN, Abramson SB, Crofford L, et al. Cyclooxygenase in biology and disease. FASEB J. 1998;12(12):1063-1073. doi: 10.1096/fasebj.12.12.1063
- Gilbert NC, Rui Z, Neau DB, et al. Conversion of human 5-lipoxygenase to a 15-lipoxygenase by a point mutation to mimic phosphorylation at Serine-663. FASEB J. 2012;26(8):3222-3229. doi: 10.1096/fj.12-205286
- Chandrasekharan JA, Sharma-Walia N. Lipoxins: Nature’s way to resolve inflammation. J Inflamm Res. 2015;8:181-192. doi: 10.2147/JIR.S90380
- Ndrepepa G. Myeloperoxidase - a bridge linking inflammation and oxidative stress with cardiovascular disease. Clin Chim Acta. 2019;493:36-51. doi: 10.1016/j.cca.2019.02.022
- McSorley SJ, Liew FY. Nitric oxide. In: Delves PJ, editor. Encyclopedia of Immunology. 2nd ed; 1998. p. 1859-61.
- Coleman JW. Nitric oxide in immunity and inflammation. Int Immunopharmacol. 2001;1(8):1397-1406. doi: 10.1016/s1567-5769(01)00086-8
- Weydert CJ, Cullen JJ. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc. 2010;5(1):51-66. doi: 10.1038/nprot.2009.197
- Berg JM, Tymoczko J, Stryer L. Biochemistry. 5th ed. New York: W.H. Freeman; 2002.
- Nandi A, Yan LJ, Jana CK, Das N. Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxid Med Cell Longev. 2019;2019:9613090. doi: 10.1155/2019/9613090
- Forman HJ, Zhang H, Rinna A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med. 2009;30(1-2):1-12. doi: 10.1016/j.mam.2008.08.006
- Srinivas A, Rao PJ, Selvam G, Goparaju A, Murthy PB, Reddy PN. Oxidative stress and inflammatory responses of rat following acute inhalation exposure to iron oxide nanoparticles. Hum Exp Toxicol. 2012;31(11):1113-1131. doi: 10.1177/0960327112446515
- Prabhakar PV, Reddy UA, Singh SP, et al. Oxidative stress induced by aluminum oxide nanomaterials after acute oral treatment in Wistar rats. J Appl Toxicol. 2012;32(6):436-445. doi: 10.1002/jat.1775. Retraction in: J Appl Toxicol. 2023;43(4):615. doi: 10.1002/jat.4412
- Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta. 1979;582(1):67-78. doi: 10.1016/0304-4165(79)90289-7
- Gaweł S, Wardas M, Niedworok E, Wardas P. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek. 2004;57(9-10):453-455.
- Ito F, Sono Y, Ito T. Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: Oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants (Basel). 2019;8(3):72. doi: 10.3390/antiox8030072
- Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9-19. doi: 10.1097/wox.0b013e3182439613
- Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int. 2013;2013:942916. doi: 10.1155/2013/942916
- Vergani L, Floreani M, Russell A, et al. Antioxidant defences and homeostasis of reactive oxygen species in different human mitochondrial DNA-depleted cell lines. Eur J Biochem. 2004;271(18):3646-3656. doi: 10.1111/j.1432-1033.2004.04298.x
- Haque R, Bin-Hafeez B, Parvez S, et al. Aqueous extract of walnut (Juglans regia L.) protects mice against cyclophosphamide-induced biochemical toxicity. Hum Exp Toxicol. 2003;22(9):473-480. doi: 10.1191/0960327103ht388oa
- Elsabahy M, Wooley KL. Cytokines as biomarkers of nanoparticle immunotoxicity. Chem Soc Rev. 2013;42(12):5552-5576. doi: 10.1039/c3cs60064e
- Ibrahim KE, Al-Mutary MG, Bakhiet AO, Khan HA. Histopathology of the liver, kidney, and spleen of mice exposed to gold nanoparticles. Molecules. 2018;23(8):1848. doi: 10.3390/molecules23081848
- Awaad A. Histopathological and immunological changes induced by magnetite nanoparticles in the spleen, liver and genital tract of mice following intravaginal instillation. J Basic Appl Zool. 2015;71:32-47. doi: 10.1016/j.jobaz.2015.03.003
- Ajdari M, Ghahnavieh MZ. Histopathology effects of nickel nanoparticles on lungs, liver, and spleen tissues in male mice. Int Nano Lett. 2014;4:113. doi: 10.1007/s40089-014-0113-8
- Wu A, Han M, Ni Z, et al. Multifunctional Sr/Se co-doped ZIF-8 nanozyme for chemo/chemodynamic synergistic tumor therapy via apoptosis and ferroptosis. Theranostics. 2024;14(5):1939-1955. doi: 10.7150/thno.92663
- Gong L, Zhao H, Chen L, Liu Y, et al. Novel peptide-modified zeolitic imidazolate framework-8 nanoparticles with pH-sensitive release of doxorubicin for targeted treatment of colorectal cancer. Pharmaceutics. 2025;17(2):246. doi: 10.3390/pharmaceutics17020246
- Mao Y, Wang L, Xu Z, et al. Developing a selection framework for zinc ion-based biomaterial design: Guided by the biosafety assessment of ZIF-8 and ZnO. ACS Biomater Sci Eng. 2024;10(5):2967-2982. doi: 10.1021/acsbiomaterials.3c01693
- Kumari S, Howlett TS, Ehrman RN, et al. In vivo biocompatibility of ZIF-8 for slow release via intranasal administration. Chem Sci. 2023;14(21):5774-5782. doi: 10.1039/d3sc00500c