Transforming therapeutics through biomaterials: A comprehensive insight into biomaterials’ role in effective drug delivery and healthcare advancement
Biomaterials are engineered substances designed to interact with biological systems for therapeutic or diagnostic purposes. Their inherent properties—including biocompatibility, biodegradability, and structural versatility—have driven major advancements in drug delivery technologies. The global biomaterials market size was estimated at USD 178.0 billion in 2023 and is projected to grow at a compound annual growth rate of 15.6% from 2024 to 2030. The growing incidence of musculoskeletal and chronic skeletal disorders is expected to drive demand for biomaterial-based implants, thereby contributing to market expansion. This review critically examines biomaterials, focusing on their classification into biobased, biodegradable, and biocompatible categories and analyzes their physicochemical properties and functional benefits. It highlights their applications in oncology, cardiovascular therapy, neurodegenerative diseases, and vaccination. Key challenges—including immunogenicity, cytotoxicity, and manufacturing complexities—are discussed, emphasizing the need for rigorous evaluation and adaptive regulatory frameworks. The review also explores recent advances in smart biomaterials for precision drug delivery, underscoring their potential to revolutionize personalized medicine through targeted, efficient, and patient-specific therapies.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
- El-Tanani M, Satyam SM, Rabbani SA, et al. Revolutionizing drug delivery: The impact of advanced materials science and technology on precision medicine. Pharmaceutics. 2025;17(3):375. doi: 10.3390/pharmaceutics17030375
- Moni SS, Moshi JM, Matou-Nasri S, et al. Advances in materials science for precision melanoma therapy: Nanotechnology-enhanced drug delivery systems. Pharmaceutics. 2025;17(3):296. doi: 10.3390/pharmaceutics17030296
- Jaensson M, Dahlberg K, Nilsson U. Factors influencing day surgery patients’ quality of postoperative recovery and satisfaction with recovery: A narrative review. Perioper Med (Lond). 2019;8(1):3. doi: 10.1186/s13741-019-0115-1
- Iyngkaran P, Appuhamilage PY, Patabandige G, et al. Barriers to cardiac rehabilitation among patients diagnosed with cardiovascular diseases-A scoping review. Int J Environ Res Public Health. 2024;21(3):339. doi: 10.3390/ijerph21030339
- Mbata AO, Soyege OS, Nwokedi CN, et al. Preventative medicine and chronic disease management: Reducing healthcare costs and improving long-term public health. Int J Multidiscip Res Growth Eval. 2024;5(6):1584-1600. doi: 10.54660/.IJMRGE.2024.5.6.1584-1600
- Neuman MR, Baura GD, Meldrum S, et al. Advances in medical devices and medical electronics. Proc IEEE. 2012;100(Special Centennial Issue):1537-1550. doi: 10.1109/JPROC.2012.2190684
- Kiparissides C, Kammona O. Nanotechnology advances in diagnostics, drug delivery, and regenerative medicine. In: van de Voorde M, editor. The Nano‐Micro Interface: Bridging the Micro and Nano Worlds. Germany: Wiley-VCH; 2015. p. 311-340. doi: 10.1002/9783527679195.ch16
- El-Bassyouni GT, Mouneir SM, El-Shamy AM. Advances in surface modifications of titanium and its alloys: Implications for biomedical and pharmaceutical applications. Multiscale Multidiscip Model Exp Des. 2025;8(5):265. doi: 10.1007/s41939-025-00823-1
- Sharma S, Sudhakara P, Singh J, et al. Critical review of biodegradable and bioactive polymer composites for bone tissue engineering and drug delivery applications. Polymers (Basel). 2021;13(16):2623. doi: 10.3390/polym13162623
- Yasmin F, Vafadar A, Tolouei-Rad M. Application of additive manufacturing in the development of polymeric bioresorbable cardiovascular stents: A review. Adv Mater Technol. 2025;10(1):2400210. doi: 10.1002/admt.202400210
- Culbreath CJ, Taylor MS, McCullen SD, Mefford OT. A review of additive manufacturing in tissue engineering and regenerative medicine. Biomed Mater Devices. 2025;3(1):237-258. doi: 10.1007/s44174-024-00183-3
- Borhani S, Hassanajili S, Ahmadi TSH, Rabbani S. Cardiovascular stents: Overview, evolution, and next generation. Prog Biomater. 2018;7:175-205. doi: 10.1007/s40204-018-0097-y
- Iqbal N, Khan AS, Asif A, Yar M, Haycock JW, Rehman IU. Recent concepts in biodegradable polymers for tissue engineering paradigms: A critical review. Int Mater Rev. 2019;64(2):91-126. doi: 10.1080/09506608.2018.1460943
- Mayakrishnan V, Murugan PA. Degradation studies of resorbable materials for biomedical applications. In: Arumugam V, editor. Nanomanufacturing Techniques in Sustainable Healthcare Applications. United States: CRC Press; 2024. p. 258-277. doi: 10.1201/9781003470311
- Kazi RN, Hasani IW, Khafaga DS, et al. Nanomedicine: The Effective Role of Nanomaterials in Healthcare from Diagnosis to Therapy. Pharma. 2025;17(8):987. doi: 10.3390/pharmaceutics17080987. doi: 10.1201/9781003470311
- Abaidullah N, Muhammad K, Waheed Y. Delving into nanoparticle systems for enhanced drug delivery technologies. AAPS PharmSciTech. 2025;26(3):74. doi: 10.1208/s12249-025-03063-1
- Pareek A, Kumar D, Pareek A, Gupta MM. Advancing cancer therapy with quantum dots and other nanostructures: A review of drug delivery innovations, applications, and challenges. Cancers (Basel). 2025;17(5):878. doi: 10.3390/cancers17050878
- Suresh KN, Padma SR, Chandra BNK, et al. A review on biological and biomimetic materials and their applications. Appl Phys A. 2020;126(6):445. doi: 10.1007/s00339-020-03633-z
- Wang H, Lyu Y, Bosiakov S, Zhu H, Ren Y. A review on the mechanical metamaterials and their applications in the field of biomedical engineering. Front Mater. 2023;10:1273961. doi: 10.3389/fmats.2023.1273961
- Wang Z, Chen J, Khan SA, et al. Plasmonic metasurfaces for medical diagnosis applications: A review. Sensors (Basel). 2021;22(1):133. doi: 10.3390/s22010133
- Vanaei S, Hashemi M, Solouk A, et al. Manufacturing, processing, and characterization of self-expanding metallic stents: A comprehensive review. Bioengineering. 2024;11(10):983. doi: 10.3390/bioengineering11100983
- Moeini A, Hassanzadeh CT, Malek KA, Vinicius LFM, Baino F, Montazerian M. A critical review of bioactive glasses and glass-ceramics in cancer therapy. Int J Appl Glass Sci. 2023;14(1):69-87. doi: 10.1111/ijag.16601
- Yang Y, Qiu Y, Lin C, Chen X, Zhao F. Stimulus-responsive smart bioactive glass composites for repair of complex tissue defects. Theranostics. 2025;15(5):1760-1786. doi: 10.7150/thno.104944
- Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in biomaterials for drug delivery. Adv Mater. 2018;30(29):1705328. doi: 10.1002/adma.201705328
- Global Market Insights Inc. Biomaterials Market - By Product (Metallic, Polymeric, Ceramic, Natural), by Application (Cardiovascular, Orthopedic, Dental, Plastic Surgery, Ophthalmology, Wound Healing, Neurology, Tissue Engineering) & Forecast, 2024-2032. Report ID: GMI6603; 2023. Available from: https://www.gminsights.com/industry-analysis/biomaterials-market [Last accessed 2025 Apr 13].
- Trucillo P. Biomaterials for drug delivery and human applications. Materials (Basel). 2024;17(2):456. doi: 10.3390/ma17020456
- Kenchegowda M, Angolkar M, Hani U, et al. Polymeric microneedle advancements in macromolecule drug delivery: Current trends, challenges, and future perspectives. Naunyn Schmiedebergs Arch Pharmacol. 2025;398(4):1-35. doi: 10.1007/s00210-025-04117-8
- Eldeeb AE, Salah S, Elkasabgy NA. Biomaterials for tissue engineering applications and current updates in the field: A comprehensive review. AAPS PharmSciTech. 2022;23(7):267. doi: 10.1208/s12249-022-02419-1
- Rybachuk O, Nesterenko Y, Zhovannyk V. Modern advances in spinal cord regeneration: Hydrogel combined with neural stem cells. Front Pharmacol. 2024;15:1419797. doi: 10.3389/fphar.2024.1419797
- Kumar PV, Kavita, Arora R, Sharma T. Unleashing the power of silk-based proteins as biomaterials for cutting-edge drug delivery: A comprehensive review. J Biomater Sci Polym Ed. 2025;36(2):247-271. doi: 10.1080/09205063.2024.2397215
- Dixit T, Vaidya A, Ravindran S. Polymeric nanoparticles-based targeted delivery of drugs and bioactive compounds for arthritis management. Future Sci OA. 2025;11(1):2467591. doi: 10.1080/20565623.2025.2467591
- Basu B, Dutta S, Rahaman M, et al. Exploring the impact of polysaccharide-based nanoemulsions in drug delivery. J Biomed Mater Res B Appl Biomater. 2025;113(5):e35582. doi: 10.1002/jbm.b.35582
- Trucillo P, Campardelli R, Reverchon E. Liposomes: From Bangham to supercritical fluids. Processes. 2020;8(9):1022.doi: 10.3390/pr8091022
- Tao F, Ma S, Tao H, et al. Chitosan-based drug delivery systems: From synthesis strategy to osteomyelitis treatment-a review. Carbohydr Polym. 2021;251:117063. doi: 10.1016/j.carbpol.2020.117063
- How KN, Yap WH, Lim CL, Goh BH, Lai ZW. Hyaluronic acid-mediated drug delivery system targeting for inflammatory skin diseases: A mini review. Front Pharmacol. 2020;11:1105. doi: 10.3389/fphar.2020.01105
- Sun S, Cui Y, Yuan B, et al. Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration. Front Bioeng Biotechnol. 2023;11:1117647. doi: 10.3389/fbioe.2023.1117647
- Wang J, Li B, Qiu L, Qiao X, Yang H. Dendrimer-based drug delivery systems: History, challenges, and latest developments. J Biol Eng. 2022;16(1):18. doi: 10.1186/s13036-022-00298-5
- Chaudhuri A, Ramesh K, Kumar DN, et al. Polymeric micelles: A novel drug delivery system for the treatment of breast cancer. J Drug Deliv Sci Technol. 2022;77:103886. doi: 10.1016/j.jddst.2022.103886
- Li Y, Liu Y, Li R, et al. Collagen-based biomaterials for bone tissue engineering. Mater Des. 2021;210:110049. doi: 10.1016/j.matdes.2021.110049
- Saravanakumar K, Park S, Santosh SS, et al. Application of hyaluronic acid in tissue engineering, regenerative medicine, and nanomedicine: A review. Int J Biol Macromol. 2022;222:2744-2760. doi: 10.1016/j.ijbiomac.2022.10.055
- Zhang Y, Zhang C, Li Y, et al. Evolution of biomimetic ECM scaffolds from decellularized tissue matrix for tissue engineering: A comprehensive review. Int J Biol Macromol. 2023;246:125672. doi: 10.1016/j.ijbiomac.2023.125672
- Ding Z, Cheng W, Mia MS, Lu Q. Silk biomaterials for bone tissue engineering. Macromol Biosci. 2021;21(8):2100153. doi: 10.1002/mabi.202100153
- Sahoo DR, Biswal T. Alginate and its application to tissue engineering. SN Appl Sci. 2021;3(1):30. doi: 10.1007/s42452-020-04096-w
- Salehi AO, Keshel SH, Sefat F, Tayebi L. Use of polycaprolactone in corneal tissue engineering: A review. Mater Today Commun. 2021;27:102402. doi: 10.1016/j.mtcomm.2021.102402
- Chen X, Li H, Ma Y, Jiang Y. Calcium phosphate-based nanomaterials: Preparation, multifunction, and application for bone tissue engineering. Molecules. 2023;28(12):4790. doi: 10.3390/molecules28124790
- Guo-Hui JI, Jing-Jing MI, Kun WU. Recent advance of stainless steel used in non-active surgical implantable medical device and regulatory perspective. Chin J Med Instrum. 2022;46(3):312-317. doi: 10.3969/j.issn.1671-7104.2022.03.016
- Dunne N, Tzagiollari A, Sahebalzamani M, Dunne TJ. Acrylic cements for bone fixation in joint replacement. In: Revell P, editor. Joint Replacement Technology. 3rd ed. Woodhead Publishing Series in Biomaterials. Woodhead Publishing; 2021. p. 213-62. doi: 10.1016/B978-0-12-821082-6.00021-2
- Pidhatika B, Widyaya VT, Nalam PC, Swasono YA, Ardhani R. Surface modifications of high-performance polymer polyetheretherketone (PEEK) to improve its biological performance in dentistry. Polymers (Basel). 2022;14(24):5526. doi: 10.3390/polym14245526
- Piconi C, Sprio S. Oxide bioceramic composites in orthopedics and dentistry. J Compos Sci. 2021;5(8):206. doi: 10.3390/jcs5080206
- Wu S, Wu S, Zhang X, Feng T, Wu L. Chitosan-based hydrogels for bioelectronic sensing: Recent advances and applications in biomedicine and food safety. Biosensors (Basel). 2023;13(1):93. doi: 10.3390/bios13010093
- Pawelec KM, Tu E, Chakravarty S, et al. Incorporating tantalum oxide nanoparticles into implantable polymeric biomedical devices for radiological monitoring. Adv Healthc Mater. 2023;12(18):2203167. doi: 10.1002/adhm.202203167
- Choi JR. Development of point-of-care biosensors for COVID-19. Front Chem. 2020;8:517. doi: 10.3389/fchem.2020.00517
- Deng J, Tian F, Liu C, Liu Y, Zhao S, Tan W. Rapid one-step detection of viral particles using an aptamer-based thermophoretic assay. J Am Chem Soc. 2021;143(19):7261-7266. doi: 10.1021/jacs.1c02929
- Chen YS, Chen C, Lai CP, Lee GB. Isolation and digital counting of extracellular vesicles from blood via membrane-integrated microfluidics. Sens Actuat Chem. 2022;358:131473. doi: 10.1016/j.snb.2022.131473
- Krawiec P, Różański L, Czarnecka-Komorowska D, Warguła Ł. Evaluation of the thermal stability and surface characteristics of thermoplastic polyurethane V-belt. Materials (Basel). 2020;13(7):1502. doi: 10.3390/ma13071502
- Philippe A. Alternatives to gold standard diagnostic tools for distinguishing “natural kinds” on the autism spectrum. Front Psychiatry. 2022;13:862410. doi: 10.3389/fpsyt.2022.862410
- Kim J, Shim JS, Han BH, et al. Hydrogel-based hybridization chain reaction (HCR) for detection of urinary exosomal miRNAs as a diagnostic tool of prostate cancer. Biosens Bioelectron. 2021;192:113504. doi: 10.1016/j.bios.2021.113504
- Koyani RD. Synthetic polymers for microneedle synthesis: From then to now. J Drug Deliv Sci Technol. 2020;60:102071. doi: 10.1016/j.jddst.2020.102071
- Shahi M, Mohammadnejad D, Karimipour M, Rasta SH, Rahbarghazi R, Abedelahi A. Hyaluronic acid and regenerative medicine: New insights into the stroke therapy. Curr Mol Med. 2020;20(9):675-691. doi: 10.2174/1566524020666200326095837
- Kong X, Chen L, Li B, Quan C, Wu J. Applications of oxidized alginate in regenerative medicine. J Mater Chem B. 2021;9(12):2785-2801. doi: 10.1039/D0TB02691C
- Sharma D, Rout SR, Kenguva G, Khatravath M, Jain GK, Dandela R. PLGA-based nanoparticles as regenerative medicine. In: Poly (Lactic- Co-Glycolic Acid) (PLGA) Nanoparticles for Drug Delivery. Amsterdam: Elsevier; 2023. p. 335-356. doi: 10.1016/B978-0-323-91215-0.00011-X
- Zhu D, Jiang Z, Li N, et al. Insights into the use of genetically modified decellularized biomaterials for tissue engineering and regenerative medicine. Adv Drug Deliv Rev. 2022;188:114413. doi: 10.1016/j.addr.2022.114413
- Merk M, Chirikian O, Adlhart C. 3D PCL/gelatin/genipin nanofiber sponge as scaffold for regenerative medicine. Materials (Basel). 2021;14(8):2006. doi: 10.3390/ma14082006
- Braga SF, Trovatti E, Carvalho RA, Carvalho AJ, Iemma MR, Amaral AC. Bioactive fibrin scaffolds for use in musculoskeletal regenerative medicine. Braz Arch Biol Technol. 2020;63:e20190003. doi: 10.1590/1678-4324-2020190003
- Al-Ghadban S, Artiles M, Bunnell BA. Adipose stem cells in regenerative medicine: Looking forward. Front Bioeng Biotechnol. 2022;9:837464. doi: 10.3389/fbioe.2021.837464
- Kamble SS, Choudhari J, Nimma R, Kumar TV, Patil KK, Gacche RN. Chloroxylon swietenia (Roxb.) DC induces cell death and apoptosis by down‐regulating the NF‐κB pathway in MCF‐7 breast cancer cells: In vitro and in vivo investigations. Cancer Rep (Hoboken). 2022;5(10):e1600. doi: 10.1002/cnr2.1600
- Azizipour N, Avazpour R, Weber MH, Sawan M, Ajji A, Rosenzweig DH. Uniform tumor spheroids on surface-optimized microfluidic biochips for reproducible drug screening and personalized medicine. Micromachines (Basel). 2022;13(4):587. doi: 10.3390/mi13040587
- Mohamed SB, Hassan FA. The evaluation of Paclitaxel effects on the Caco-2 cell line of colon cancer patients. J Pharm Negat Results. 2022;13:459-463. doi: 10.47750/pnr.2022.13.s01.56
- Aboul-Soud MAM, Alzahrani AJ, Mahmoud A. Induced pluripotent stem cells (iPSCs)-roles in regenerative therapies, disease modelling and drug screening. Cells. 2021;10(9):2319. doi: 10.3390/cells10092319
- Barbosa MA, Xavier CP, Pereira RF, Petrikaitė V, Vasconcelos MH. 3D cell culture models as recapitulators of the tumor microenvironment for the screening of anti-cancer drugs. Cancers (Basel). 2021;14(1):190. doi: 10.3390/cancers14010190
- Altmaier S, Meiser I, Lemesre E, et al. Human iPSC-derived hepatocytes in 2D and 3D suspension culture for cryopreservation and in vitro toxicity studies. Reprod Toxicol. 2022;111:68-80. doi: 10.1016/j.reprotox.2022.05.005
- Halkias C, Orth A, Feltis BN, Macrides TA, Gibson BC, Wright PFA. An advanced method for quantitative measurements of cholesterol crystallization. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(3):158872. doi: 10.1016/j.bbalip.2020.158872
- Rosa JG, Lima C, Lopes-Ferreira M. Zebrafish larvae behavior models as a tool for drug screenings and pre-clinical trials: A review. Int J Mol Sci. 2022;23(12):6647. doi: 10.3390/ijms23126647
- Bao Y, Maeki M, Ishida A, Tani H, Tokeshi M. Effect of organic solvents on a production of PLGA-based drug-loaded nanoparticles using a microfluidic device. ACS Omega. 2022;7(37):33079-33086. doi: 10.1021/acsomega.2c03137
- Song W, Luo M, Li H, et al. A novel metabolite as a hapten to prepare monoclonal antibodies for rapid screening of quinoxaline drug residues. Foods. 2022;11(20):3305. doi: 10.3390/foods11203305
- Chang LH, Seitz O. RNA-templated chemical synthesis of proapoptotic L- and D-peptides. Bioorg Med Chem. 2022;66:116786. doi: 10.1016/j.bmc.2022.116786
- Geppert M, Himly M. Iron oxide nanoparticles in bioimaging-an immune perspective. Front Immunol. 2021;12:688927. doi: 10.3389/fimmu.2021.688927
- Ishmukhametov I, Fakhrullin R. Dark-field hyperspectral microscopy for carbon nanotubes bioimaging. Appl Sci. 2021;11(24):12132. doi: 10.3390/app112412132
- Klymchenko AS, Liu F, Collot M, Anton N. Dye‐loaded nanoemulsions: Biomimetic fluorescent nanocarriers for bioimaging and nanomedicine. Adv Healthc Mater. 2021;10(1):2001289. doi: 10.1002/adhm.202001289
- De la Encarnacion C, de Aberasturi DJ, Liz-Marzán LM. Multifunctional plasmonic-magnetic nanoparticles for bioimaging and hyperthermia. Adv Drug Deliv Rev. 2022;189:114484. doi: 10.1016/j.addr.2022.114484
- Yuan D, Ellis CM, Davis JJ. Mesoporous silica nanoparticles in bioimaging. Materials (Basel). 2020;13(17):3795. doi: 10.3390/ma13173795
- Li B, Zhang R, Bi R, Olivo M. Applications of optical fiber in label-free biosensors and bioimaging: A review. Biosensors (Basel). 2022;13(1):64. doi: 10.3390/bios13010064
- Qian J, Feng Z, Fan X, Kuzmin A, Gomes AS, Prasad PN. High contrast 3-D optical bioimaging using molecular and nanoprobes optically responsive to IR light. Phys Rep. 2022;962:1-107. doi: 10.1016/j.physrep.2022.02.004
- Liang Z, Zhu H, Wang X, et al. Adjuvants for coronavirus vaccines. Front Immunol. 2020;11:589833. doi: 10.3389/fimmu.2020.589833
- Liang Y, Huang L, Liu T. Development and delivery systems of mRNA vaccines. Front Bioeng Biotechnol. 2021;9:718753. doi: 10.3389/fbioe.2021.718753
- Hou J, Ye W, Chen J. Current development and challenges of tetravalent live-attenuated dengue vaccines. Front Immunol. 2022;13:840104. doi: 10.3389/fimmu.2022.840104
- Duong VA, Nguyen TTL, Maeng HJ. Recent advances in intranasal liposomes for drug, gene, and vaccine delivery. Pharmaceutics. 2023;15(1):207. doi: 10.3390/pharmaceutics15010207
- Li M, Wang H, Tian L, et al. COVID-19 vaccine development: Milestones, lessons and prospects. Signal Transduct Target Ther. 2022;7(1):146. doi: 10.1038/s41392-022-00996-y
- Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid nanoparticles-from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano. 2021;15(11):16982-17015. doi: 10.1021/acsnano.1c04996
- Vyas J, Raytthatha N, Vyas P, et al. Biomaterial-based additive manufactured composite scaffolds for tissue engineering and regenerative medicine: A comprehensive review. Polymers (Basel). 2025;17(8):1090. doi: 10.3390/polym17081090
- Ashammakhi N, GhavamiNejad A, Tutar R, et al. Highlights on advancing frontiers in tissue engineering. Tissue Eng Part B Rev. 2022;28(3):633-664. doi: 10.1089/ten.teb.2021.001
- Festas AJ, Ramos A, Davim JP. Medical devices biomaterials -a review. Proc Inst Mech Eng L J Mater Des Appl. 2020;234(1):218-228. doi: 10.1177/1464420719882458
- Raheem A, Mandal K, Biswas S, et al. Smart biomaterials in healthcare: Breakthroughs in tissue engineering, immunomodulation, patient-specific therapies, and biosensor applications. Appl Phys Rev. 2025;12(1):011333. doi: 10.1063/5.0238817
- Welch EC, Powell JM, Clevinger TB, Fairman AE, Shukla A. Advances in biosensors and diagnostic technologies using nanostructures and nanomaterials. Adv Funct Mater. 2021;31(44):2104126. doi: 10.1002/adfm.202104126
- Brokesh AM, Gaharwar AK. Inorganic biomaterials for regenerative medicine. ACS Appl Mater Interfaces. 2020;12(5):5319-5344. doi: 10.1021/acsami.9b17801
- Liu Z, Tang M, Zhao J, Chai R, Kang J. Looking into the future: Toward advanced 3D biomaterials for stem‐cell‐based regenerative medicine. Adv Mater. 2018;30(17):e1705388. doi: 10.1002/adma.201705388
- Lee SY, Koo IS, Hwang HJ, Lee DW. In vitro three-dimensional (3D) cell culture tools for spheroid and organoid models. SLAS Discov. 2023;28(4):119-137. doi: 10.1016/j.slasd.2023.03.006
- Rani R, Sethi K, Singh G. Nanomaterials and their applications in bioimaging. In: Plant Nanobionics: Approaches in Nanoparticles, Biosynthesis, and Toxicity. Vol. 2. Berlin: Springer Nature Switzerland; 2019. p. 429-450. doi: 10.1007/978-3-030-16379-2_15
- Cheng M, Chai Y, Rong G, et al. Nanotechnology-based strategies for vaccine development: Accelerating innovation and delivery. Biomater Transl. 2025;6(1):55. doi: 10.12336/biomatertransl.2025.01.005
- Vinchurkar K, Bukke SP, Jain P, et al. Advances in sustainable biomaterials: Characterizations, and applications in medicine. Discov Polym. 2025;2(1):2. doi: 10.1007/s44347-025-00014-8
- Samir A, Ashour FH, Hakim AA, Bassyouni M. Recent advances in biodegradable polymers for sustainable applications. NPJ Mater Degrad. 2022;6(1):68. doi: 10.1038/s41529-022-00277-7
- Geevarghese R, Sajjadi SS, Hudecki A, et al. Biodegradable and non-biodegradable biomaterials and their effect on cell differentiation. Int J Mol Sci. 2022;23(24):16185. doi: 10.3390/ijms232416185
- Rivera-Briso AL, Serrano-Aroca Á. Poly (3-Hydroxybutyrate-co-3- Hydroxyvalerate): Enhancement strategies for advanced applications. Polymers. 2018;10(7):732. doi: 10.3390/polym10070732
- Taib NA, Rahman MR, Huda D, et al. A review on poly lactic acid (PLA) as a biodegradable polymer. Polym Bull. 2023;80(2):1179-1213. doi: 10.1007/s00289-022-04160-y
- Agostinho B, Silvestre AJ, Coutinho JA, Sousa AF. Synthetic (bio)degradable polymers - when does recycling fail? Green Chem. 2023;25(1):13-31. doi: 10.1039/D2GC02726G
- Singh N, Demirsöz R. Recycling of traditional plastics: PP, PS, PVC, PET, HDPE, and LDPE, and their blends and composites. In: Nanomaterials in Manufacturing Processes. Boca Raton: CRC Press; 2022. p. 235-258. doi: 10.1201/9781003154884
- Elendu C, Amaechi DC, Elendu TC, et al. Essential information about nanotechnology in cardiology. Ann Med Surg (Lond). 2025;87(2):748-779. doi: 10.1097/MS9.0000000000002867
- Dilnawaz F. Polymeric biomaterial and lipid-based nanoparticles for oral drug delivery. Curr Med Chem. 2017;24(22):2423-2438. doi: 10.2174/0929867323666161028160004
- Sheoran S, Arora S, Samsonraj R, Govindaiah P. Lipid-based nanoparticles for treatment of cancer. Heliyon. 2022;8(5):e09403. doi: 10.1016/j.heliyon.2022.e09403
- Parveen S, Misra R, Sahoo SK. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed Cancer. 2017:47-98. doi: 10.1201/9781315114361
- Summer M, Hussain T, Ali S, Khan RR, Muhammad G, Liaqat I. Exploring the underlying modes of organic nanoparticles in diagnosis, prevention, and treatment of cancer: A review from drug delivery to toxicity. Int J Polym Mater Polym Biomater. 2025;74(9):829-845. doi: 10.1080/00914037.2024.2375337
- Wu J, Ko S, Lee E, et al. Gold nanoparticles in imaging: Advances, applications, and future perspectives. Appl Spectrosc Rev. 2025:1-40. doi: 10.1080/05704928.2025.2495022
- Sadraei A, Naghib SM. 4D printing of physical stimuli-responsive hydrogels for localized drug delivery and tissue engineering. Polym Rev. 2025;65(1):104-168. doi: 10.1080/15583724.2024.2427184
- Rasekh M, Arshad MS, Ahmad Z. Advances in drug delivery integrated with regenerative medicine: Innovations, challenges, and future frontiers. Pharmaceutics. 2025;17(4):456. doi: 10.3390/pharmaceutics17040456
- Rasekh M, Arshad MS, Ahmad Z. Advances in drug delivery integrated with regenerative medicine: Innovations, challenges, and future frontiers. Pharmaceutics. 2025;17(4):456. doi: 10.3390/pharmaceutics17040456
- Deshmukh R, Sethi P, Singh B, et al. Recent review on biological barriers and host–material interfaces in precision drug delivery: advancement in biomaterial engineering for better treatment therapies. Pharma. 2024;16(8):1076. doi: 10.3390/pharmaceutics16081076
- Naderi H, Matin MM, Bahrami AR. Critical issues in tissue engineering: Biomaterials, cell sources, angiogenesis, and drug delivery systems. J Biomater Appl. 2011;26(4):383-417. doi: 10.1177/0885328211408946
- Rezaei M, Davani F, Alishahi M, Masjedi F. Updates in immunocompatibility of biomaterials: Applications for regenerative medicine. Expert Rev Med Devices. 2022;19(4):353-367. doi: 10.1080/17434440.2022.2075730
- He S, Wu L, Li X, et al. Metal-organic frameworks for advanced drug delivery. Acta Pharm Sin B. 2021;11(8):2362-2395. doi: 10.1016/j.apsb.2021.03.019
- Zhou HCJ, Kitagawa S. Metal-organic frameworks (MOFs). Chem Soc Rev. 2014;43(16):5415-5418. doi: 10.1039/C4CS90059F
- Li X, Porcel E, Menendez‐Miranda M, et al. Highly porous hybrid metal-organic nanoparticles loaded with gemcitabine monophosphate: A multimodal approach to improve chemo‐ and radiotherapy. ChemMedChem. 2020;15(3):274-283. doi: 10.1002/cmdc.201900596
- Nel AE, Parak WJ, Chan WCW, et al. Where are we heading in nanotechnology environmental health and safety and materials characterization? ACS Nano. 2015;9(6):5627-5630. doi: 10.1021/acsnano.5b03496
- Marcos-Almaraz MT, Gref R, Agostoni V, et al. Towards improved HIV-microbicide activity through the co-encapsulation of NRTI drugs in biocompatible metal organic framework nanocarriers. J Mater Chem B. 2017;5(43):8563-8569. doi: 10.1039/c7tb01933e
- Franssen FM, Alter P, Bar N, et al. Personalized medicine for patients with COPD: Where are we? Int J Chron Obstruct Pulmon Dis. 201;14:1465-1484. doi: 10.2147/COPD.S175706
- Park T, Gu P, Kim CH, et al. Artificial intelligence in urologic oncology: The actual clinical practice results of IBM Watson for Oncology in South Korea. Prostate Int. 2023;11(4):218-221. doi: 10.1016/j.prnil.2023.09.001
- Bouzo BL, Calvelo M, Martin-Pastor M, Garcia-Fandino R, de la Fuente M. In vitro-in silico modeling approach to rationally designed simple and versatile drug delivery systems. Int J Phys Chem B. 2020;124(28):5788-5800. doi: 10.1021/acs.jpcb.0c02731
- Aundhia C, Parmar G, Talele C, Shah N, Talele D. Impact of artificial intelligence on drug development and delivery. Curr Top Med Chem. 2025;25:1165-1184. doi: 10.2174/0115680266324522240725053634
- Arora G, Joshi J, Mandal RS, Shrivastava N, Virmani R, Sethi T. Artificial intelligence in surveillance, diagnosis, drug discovery and vaccine development against COVID-19. Pathogens. 2021;10(8):1048. doi: 10.3390/pathogens10081048