Curcumin-loaded chitosan nanoemulsion: Evaluation of stability and release kinetics
Curcumin, a potent bioactive compound derived from Curcuma longa, exhibits significant antibacterial, antioxidant, and anti-inflammatory properties, indicating broad applications in the food and agricultural industries. However, its practical utility is constrained by inherently low water solubility, poor bioavailability, and chemical instability when exposed to environmental factors. This study addresses these limitations by nanoencapsulating curcumin within a chitosan-based nanoemulsion, curcumin-loaded chitosan nanoemulsions (CurChiNEM), formulate through an emulsification process followed by ionotropic gelation using sodium tripolyphosphate (TPP). Initial extraction from turmeric yielded 8.29% curcumin, confirmed by a maximum absorption wavelength at 425 nm. Formulation 1 (2.5 mg/mL curcumin concentration) achieved the highest encapsulation efficiency (77.82 ± 1.2%) and resulted in the smallest particle size (664 ± 0.467 nm), determined using ImageJ. Scanning electron microscopy further revealed that the formulate nanoemulsions resulted in smooth, quasi-spherical particles. Fourier transform infrared spectroscopy further confirmed the effective crosslinking of chitosan to TPP and loading of curcumin. Moreover, the formulated nanoemulsion significantly enhanced curcumin’s stability, retaining 87.56% of its content after 28 days of ambient storage, 77.02% under prolonged ultraviolet light exposure, and approximately 67.71% when subjected to 100°C treatment. In contrast, free curcumin degraded rapidly under identical conditions, exhibiting near-total loss. In vitro release studies conducted at pH 7.4 elucidated a diffusion-controlled release mechanism, optimally described by the Higuchi release kinetics model (R2 = 0.9736). These compelling findings affirm the chitosan/TPP nanoemulsion as a highly effective and promising delivery system for substantially enhancing the stability and facilitating the controlled release of curcumin, thereby broadening its potential for diverse applications.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
- Anas M, Falak A, Khan A, et al. Therapeutic potential and agricultural benefits of curcumin: A comprehensive review of health and sustainability applications. J Umm Al-Qura Univ Appl Sci. 2024;5:1-16. doi: 10.1007/s43994-024-00200-7
- Pandey AK, Sanches Silva A, Varshney R, Chávez-González ML, Singh P. Curcuma-based botanicals as crop protectors: From knowledge to application in food crops. Curr Res Biotechnol. 2021;3:235-248. doi: 10.1016/j.crbiot.2021.06.002
- Elmowafy M, Shalaby K, Elkomy MH, et al. Polymeric nanoparticles for delivery of natural bioactive agents: Recent advances and challenges. Polymers (Basel). 2023;15(5):1123. doi: 10.3390/polym15051123
- Silva PT, De Fries LLM, De Menezes CR, et al. Microencapsulation: Concepts, mechanisms, methods and some applications in food technology. Cienc Rural. 2014;44:1304-1311. doi: 10.1590/0103-8478cr20130971
- Doronio JP, Salazar JR, Monserate JJ, Arevalo BJA, Eugenio PJG, Sarong MM. Nanoencapsulation of anthocyanin extract from fermented black garlic (FBG) based on biocompatible polymeric materials. Ann Chim Sci Mater. 2022;46(1):343. doi: 10.18280/acsm.460105
- De Guzman JJ, Monserate JJ, Panajon NM, Salazar JR, Eugenio PJG, Sarong MM. Nanoencapsulation of lycopene from tomato waste using chitosan and alginate for enhanced stability and antioxidant activity. Int J Des Nat Ecodyn. 2024;19:1261-1267. doi: 10.18280/ijdne.190417
- Jeliński T, Przybyłek M, Cysewski P. Natural deep eutectic solvents as agents for improving solubility, stability and delivery of curcumin. Pharm Res. 2019;36(8):116. doi: 10.1007/s11095-019-2643-2
- Racz LZ, Racz CP, Pop LC, et al. Strategies for improving bioavailability, bioactivity, and physical-chemical behavior of curcumin. Molecules. 2022;27(20):6854. doi: 10.3390/molecules27206854
- Azad AK, Lai J, Wan Sulaiman WMA, et al. The fabrication of polymer-based curcumin-loaded formulation as a drug delivery system: An updated review from 2017 to the present. Pharmaceutics. 2024;16(2):160. doi: 10.3390/pharmaceutics16020160
- Suchithkumar C, Reddy S, Divyavani P, et al. Modern challenges in agriculture. AIP Conf Proc. 2024;2971(1):040051. doi: 10.1063/5.0195744
- Sarong MM, Orge RF, Eugenio PJG, Monserate JJ. Utilization of rice husks into biochar and nanosilica: For clean energy, soil fertility and green nanotechnology. Int J Des Nat Ecodyn. 2020;15(1):97-102. doi: 10.18280/ijdne.150113
- Devi P, Mathi Maran SP. Nano emulsion based pesticides formulations from a bioengineering perspective. Acta Sci Agric. 2023;7(2):50-59. doi: 10.31080/asag.2023.07.1233
- Ceylan Z, Meral R, Kose S, et al. Characterized nano-size curcumin and rosemary oil for the limitation microbial spoilage of rainbow trout fillets. LWT. 2020;134:109965. doi: 10.1016/j.lwt.2020.109965
- Chavda VP. Nanobased nano drug delivery: A comprehensive review. In: Applications of Targeted Nano Drugs and Delivery Systems. Netherlands: Elsevier; 2019. p. 69-92. doi: 10.1016/b978-0-12-814029-1.00004-1
- Gauthier G, Capron I. Pickering nanoemulsions: An overview of manufacturing processes, formulations, and applications. J Colloid Interface Sci Open. 2021;4:100036. doi: 10.1016/j.jcis.2021.100036
- Tran VV, Vu TTT, Hoang Bui VK, Thi Tran NH. Use of herbal extract for body-care formulations. In: Nanotechnology for the Preparation of Cosmetics Using Plant-Based Extracts. Netherlands: Elsevier; 2022. p. 263-282. doi: 10.1016/b978-0-12-822967-5.00011-4
- Zabot GL, Schaefer Rodrigues F, Polano Ody L, et al. Encapsulation of bioactive compounds for food and agricultural applications. Polymers (Basel). 2022;14(19):4194. doi: 10.3390/polym14194194
- Lucio D, Martínez-Ohárriz MC. Chitosan: Strategies to increase and modulate drug release rate. In: Biological Activities and Application of Marine Polysaccharides. London: IntechOpen; 2017. doi: 10.5772/65714
- Kumar S, Singh NN, Singh A, Singh N, Sinha RK. Use of Curcuma longa L. Extract to stain various tissue samples for histological studies. AYU. 2014;35(4):447-451. doi: 10.4103/0974-8520.159027
- Chin SF, Mohd Yazid SNA, Pang SC. Preparation and characterization of starch nanoparticles for controlled release of curcumin. Int J Polym Sci. 2014;2014(1):340121. doi: 10.1155/2014/340121
- Li PH, Lu WC. Effects of storage conditions on the physical stability of d-limonene nanoemulsion. Food Hydrocoll. 2016;53:218-224. doi: 10.1016/j.foodhyd.2015.01.031
- Paramera EI, Konteles SJ, Karathanos VT. Stability and release properties of curcumin encapsulated in Saccharomyces cerevisiae, β-cyclodextrin and modified starch. Food Chem. 2011;125(3):913-922. doi: 10.1016/j.foodchem.2010.09.071
- Wang Y, Lu Z, Lv F, Bie X. Study on microencapsulation of curcumin pigments by spray drying. Eur Food Res Technol. 2009;229(3):391-396. doi: 10.1007/s00217-009-1064-6
- Das RK, Kasoju N, Bora U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine. 2010;6(1):153-160. doi: 10.1016/j.nano.2009.05.009
- Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67(3):217-223.
- Sharifi-Rad J, El Rayess Y, Abi Rizk A, et al. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front Pharmacol. 2020;11:01021. doi: 10.3389/fphar.2020.01021
- Akbar MU, Rehman K, Zia KM, Qadir MI, Akash MSH, Ibrahim M. Critical review on curcumin as a therapeutic agent: From traditional herbal medicine to an ideal therapeutic agent. Crit Rev Eukaryot Gene Expr. 2018;28(1):17-24. doi: 10.1615/critreveukaryotgeneexpr.2018020888
- Kusumaningrum M, Ardhiansyah H, Putranto AW, et al. Turmeric extraction (Curcuma longa L.) using the reflux method and characterization. J Bahan Alam Terbarukan. 2022;11(2):85-91. doi: 10.20527/jbat.v11i2.39784
- Jati PT, Wiradiestia D, Altway A, et al. Extraction process optimization of curcumin from Curcuma xanthorrhiza Roxb. With supercritical carbon dioxide using ethanol as a cosolvent. ACS Omega. 2023;9(1):1251. doi: 10.1021/acsomega.3c07497
- Kwon HL, Chung MS. Pilot-scale subcritical solvent extraction of curcuminoids from Curcuma long L. Food Chem. 2015;185:58-64. doi: 10.1016/j.foodchem.2015.03.114
- Ciuca MD, Racovita RC. Curcumin: Overview of extraction methods, health benefits, and encapsulation and delivery using microemulsions and nanoemulsions. Int J Mol Sci. 2023;24(10):8874. doi: 10.3390/ijms24108874
- Kim HJ, Kim DJ, Karthick SN, et al. Curcumin dye extracted from Curcuma longa L. Used as sensitizers for efficient dye-sensitized solar cells. Int J Electrochem Sci. 2013;8(6):8320-8328. doi: 10.1016/S1452-3981(23)12891-4
- Van Nong H, Hung LX, Thang PN, et al. Fabrication and vibration characterization of curcumin extracted from turmeric (Curcuma longa) rhizomes of the Northern Vietnam. Springerplus. 2016;5(1):1147. doi: 10.1186/s40064-016-2812-2
- Nair RS, Morris A, Billa N, Leong CO. An evaluation of curcumin-encapsulated chitosan nanoparticles for transdermal delivery. AAPS PharmSciTech. 2019;20(2):69. doi: 10.1208/s12249-018-1279-6
- Mofazzal Jahromi MA, Musawi SA, Pirestani M, et al. Curcumin-loaded chitosan tripolyphosphate nanoparticles as a safe, natural and effective antibiotic inhibits the infection of Staphylococcus aureus and Pseudomonas aeruginosa in vivo. Iran J Biotechnol. 2014;12(3):1-8. doi: 10.15171/ijb.1012
- Janik M, Hanula M, Khachatryan K, Khachatryan G. Nano-/ microcapsules, liposomes, and micelles in polysaccharide carriers: Applications in food technology. Appl Sci (Basel). 2023;13(21):11610. doi: 10.3390/app132111610
- Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Drug release study of the chitosan-based nanoparticles. Heliyon. 2022;8(1):e08674. doi: 10.1016/j.heliyon.2022.e08674
- Zielińska A, Carreiró F, Oliveira AM, et al. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules. 2020;25:3731. doi: 10.3390/molecules25163731
- Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci. 1997;63(1):125-132. doi: 10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4
- Acevedo-Fani A, Soliva-Fortuny R, Martin-Belloso O. Nanoemulsions as edible coatings. Curr Opin Food Sci. 2018;15:43-49. doi: 10.1016/j.cofs.2017.06.002
- Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech. 2015;5(2):123-127. doi: 10.1007/s13205-014-0214-0
- Sambhakar S, Malik R, Bhatia S, et al. Nanoemulsion: An emerging novel technology for improving the bioavailability of drugs. Scientifica (Cairo). 2023;2023(1):6640103. doi: 10.1155/2023/6640103
- Yuan Q, Shah J, Hein S, Misra RDK. Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomater. 2010;6(3):1140-1148. doi: 10.1016/j.actbio.2009.08.027
- Costa EM, Silva S, Pintado M. Chitosan nanoparticles production: Optimization of physical parameters, biochemical characterization, and stability upon storage. Appl Sci (Basel). 2023;13(3):1900. doi: 10.3390/app13031900
- Bhumkar DR, Pokharkar VB. Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: A technical note. AAPS PharmSciTech. 2006;7(2):E50. doi: 10.1208/pt070250
- Loutfy SA, Elberry MH, Farroh KY, et al. Antiviral activity of chitosan nanoparticles encapsulating curcumin against hepatitis C virus genotype 4a in human hepatoma cell lines. Int J Nanomedicine. 2020;15:2699-2715. doi: 10.2147/IJN.S238240
- Anitha A, Maya S, Deepa N, Chennazhi KP, Nair SV, Jayakumar R. Curcumin-loaded N, O-carboxymethyl chitosan nanoparticles for cancer drug delivery. J Biomater Sci Polym Ed. 2012;23(11):1381-1400. doi: 10.1163/092050611X581534
- Piacentini E. Encapsulation efficiency. In: Encyclopedia of Membranes. Berlin: Springer; 2016. p. 706-707. doi: 10.1007/978-3-662-44324-8_1945
- Yulu C, Jiahong XV, Yuan F. Curcumin-loaded nano-emulsion prepared by high pressure homogenization: Impact of emulsifiers on physicochemical stability and in vitro digestion. Food Sci Technol. 2022;42:e115121. doi: 10.1590/fst.115121
- Liu Y, Ma M, Yuan Y. The potential of curcumin-based co-delivery systems for applications in the food industry: Food preservation, freshness monitoring, and functional food. Food Res Int. 2023;171:113070. doi: 10.1016/j.foodres.2023.113070
- Castro PJ, Sousa SC, Pullar RC, et al. Films of chitosan and natural modified hydroxyapatite as effective UV-protecting, biocompatible and antibacterial wound dressings. Int J Biol Macromol. 2020;159:1177-1185. doi: 10.1016/j.ijbiomac.2020.05.077
- Lin D, Xiao L, Qin W, et al. Preparation, characterization and antioxidant properties of curcumin encapsulated chitosan/lignosulfonate micelles. Carbohydr Polym. 2022;281:119080. doi: 10.1016/j.carbpol.2021.11908
- Rachtanapun P, Klunklin W, Jantrawut P, et al. Characterization of chitosan film incorporated with curcumin extract. Polymers (Basel). 2021;13(6):963. doi: 10.3390/polym13060963
- Zhu Y, Sun P, Duan C, et al. Improving stability and bioavailability of curcumin by quaternized chitosan coated nanoemulsion. Food Res Int. 2023;174:113634. doi: 10.1016/j.foodres.2023.113634
- Lee BN, Hong SJ, Yu MH, Shin GH, Kim JT. Enhancement of storage stability and masking effect of curcumin by turmeric extract-loaded nanoemulsion and water-soluble chitosan coating. Pharmaceutics. 2022;14(8):1547. doi: 10.3390/pharmaceutics14081547
- Chen HW, Chen SD, Wu HT, Cheng CH, Chiou CS, Chen WT. Improvement in curcumin’s stability and release by formulation in flexible nano-liposomes. Nanomaterials (Basel). 2024;14(22):1836. doi: 10.3390/nano14221836
- Nagarajan M, Rajasekaran B, Benjakul S, Venkatachalam K. Influence of chitosan-gelatin edible coating incorporated with longkong pericarp extract on refrigerated black tiger Shrimp (Penaeus monodon). Curr Res Food Sci. 2021;4:345-353. doi: 10.1016/j.crfs.2021.05.003