Cite this article
14
Download
219
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

An overview of CRISPR-artificial intelligence theranostics: Current and emerging applications

Prerna Vats1# Bhavika Baweja1# Chainsee Saini1 Atar Singh Kushwah2 Ashok Kumar3 Sandeep K. Srivastava1 Rajeev Nema1*
Show Less
1 Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan, India
2 Women’s Biomedical Research Institute, Icahn School of Medicine at Mount Sinai, New York, United States of America
3 Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, India
Submitted: 22 July 2025 | Revised: 25 August 2025 | Accepted: 28 August 2025 | Published: 28 October 2025
© 2025 by the Author(s). Licensee Biomaterials Translational, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0) (https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en)
Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostics are revolutionizing precision medicine by enabling highly sensitive detection of nucleic acid and protein biomarkers. Building on these capabilities, CRISPR-based theranostics now aim to unify real-time disease detection with targeted therapeutic interventions. However, traditional CRISPR diagnostics face several limitations, including restricted multiplexing, off-target effects, and challenges in delivery efficiency. To overcome these issues, artificial intelligence (AI) has significantly enhanced CRISPR platforms by enabling intelligent guide RNA (gRNA) design, interpretation of complex biosensor outputs, and facilitation of rapid clinical decision-making. Machine learning tools such as DeepCRISPR, Azimuth 2.0, DeepHF, and CRISPRpred support the development of highly specific gRNAs, reduce off-target events, and personalize genome-editing strategies based on individual genomic profiles. Recently, by combining CRISPR systems with nanomaterials, fluorescence-based detection, and electrochemical sensing, researchers have developed advanced biosensors capable of detecting a broad spectrum of disease biomarkers, from cancer-associated nucleic acids to viral and genetic disorders. These advances support both diagnostics and gene therapy, enabling accurate, low-cost testing at home, in point-of-care settings, and in resource-limited environments. Together, the integration of AI and CRISPR is accelerating biomarker discovery and the development of intelligent, adaptive therapeutic platforms. New point-of-care diagnostic tests (POCTs) based on CRISPR-AI are essential for early screening of high-mortality diseases, and CRISPR-based diagnostic assays have emerged as powerful, versatile alternatives to traditional nucleic acid tests, offering rapid, programmable, and portable diagnostic solutions. This review explores the evolution of CRISPR-AI theranostic systems, current and emerging POCT applications. It highlights the technological, clinical, and ethical challenges shaping their translation into next-generation precision diagnostics. 

Keywords
CRISPR-Cas
Biosensing
Gene editing
Diagnostics
Precision medicine
Funding
The authors would like to acknowledge funding support from Manipal University Jaipur for the Enhanced Seed Grant under the Endowment Fund (No. E3/2023-24/QE-04-05), as well as the Department of Science & Technology - Fund for Improvement of S&T Infrastructure project (DST/2022/1012) from the Government of India, awarded to the Department of Biosciences, Manipal University Jaipur.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327(5962):167-170. doi: 10.1126/science.1179555

 

  1. Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet. 2010;11(3):181-190. doi: 10.1038/nrg2749

 

  1. Allen D, Rosenberg M, Hendel A. Using synthetically engineered guide RNAs to enhance CRISPR genome editing systems in mammalian cells. Front Genome Ed. 2021;2:617910. doi: 10.3389/fgeed.2020.617910

 

  1. Otoo JA, Schlappi TS. REASSURED multiplex diagnostics: A critical review and forecast. Biosensors (Basel). 2022;12(2):124. doi: 10.3390/bios12020124

 

  1. Ochiai H, Yamamoto T. Genome editing using zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). In: Yamamoto T, editor. Targeted Genome Editing Using Site-Specific Nucleases: ZFNs, TALENs, and the CRISPR/Cas9 System. Berlin: Springer Japan; 2015. p. 3-24. doi: 10.1007/978-4-431-55227-7_1

 

  1. Reddy P, Vilella F, Izpisua Belmonte JC, Simón C. Use of customizable nucleases for gene editing and other novel applications. Genes (Basel). 2020;11(9):976. doi: 10.3390/genes11090976

 

  1. He Y, Yan W, Long L, et al. The CRISPR/Cas system: A customizable toolbox for molecular detection. Genes (Basel). 2023;14(4):850. doi: 10.3390/genes14040850

 

  1. O’Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA. Programmable RNA recognition and cleavage by CRISPR/ Cas9. Nature. 2014;516(7530):263-266. doi: 10.1038/nature13769

 

  1. Mali F. Key socio-economic and (Bio)ethical challenges in the CRISPR-Cas9 patent landscape. In: Genome Editing in Drug Discovery. United States: John Wiley & Sons, Ltd.; 2022. p. 315-327. doi: 10.1002/9781119671404.ch21

 

  1. Yan F, Wang W, Zhang J. CRISPR-Cas12 and Cas13: The lesser known siblings of CRISPR-Cas9. Cell Biol Toxicol. 2019;35(6):489-492. doi: 10.1007/s10565-019-09489-1

 

  1. Zhang L, Jiang H, Zhu Z, Liu J, Li B. Integrating CRISPR/Cas within isothermal amplification for point-of-Care Assay of nucleic acid. Talanta. 2022;243:123388. doi: 10.1016/j.talanta.2022.123388

 

  1. Bhardwaj P, Kant R, Behera SP, Dwivedi GR, Singh R. Next-generation diagnostic with CRISPR/Cas: Beyond nucleic acid detection. Int J Mol Sci. 2022;23(11):6052. doi: 10.3390/ijms23116052

 

  1. Yao J, Yang M, Duan Y. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem Rev. 2014;114(12):6130-6178. doi: 10.1021/cr200359p

 

  1. Xu Z, Chen D, Li T, et al. Microfluidic space coding for multiplexed nucleic acid detection via CRISPR-Cas12a and recombinase polymerase amplification. Nat Commun. 2022;13(1):6480. doi: 10.1038/s41467-022-34086-y

 

  1. WareJoncas Z, Campbell JM, Martínez-Gálvez G, et al. Precision gene editing technology and applications in nephrology. Nat Rev Nephrol. 2018;14(11):663-677. doi: 10.1038/s41581-018-0047-x

 

  1. Ghavami S, Pandi A. Chapter Five - CRISPR interference and its applications. In: Singh V, editor. Progress in Molecular Biology and Translational Science. Reprogramming the Genome: Applications of CRISPR-Cas in Non-mammalian Systems Part B. Vol. 180. United States: Academic Press; 2021. p. 123-140. doi: 10.1016/bs.pmbts.2021.01.007

 

  1. Safari F, Farajnia S, Ghasemi Y, Zarghami N. New developments in CRISPR technology: Improvements in specificity and efficiency. Curr Pharm Biotechnol. 2017;18(13):1038-1054. doi: 10.2174/1389201019666180209120533

 

  1. Komor AC, Badran AH, Liu DR. Editing the genome without double-stranded DNA breaks. ACS Chem Biol. 2018;13(2):383-388. doi: 10.1021/acschembio.7b00710

 

  1. Slomovic S, Pardee K, Collins JJ. Synthetic biology devices for in vitro and in vivo diagnostics. Proc Natl Acad Sci. 2015;112(47):14429-14435. doi: 10.1073/pnas.1508521112

 

  1. Bulle M, Rahman MM, Islam MR, Abbagani S. Strategies to develop climate-resilient chili peppers: Transcription factor optimization through genome editing. Planta. 2025;262(2):30. doi: 10.1007/s00425-025-04747-5

 

  1. Srivastav AK, Mishra MK, Lillard JW, Singh R. Transforming pharmacogenomics and CRISPR gene editing with the power of artificial intelligence for precision medicine. Pharmaceutics. 2025;17(5):555. doi: 10.3390/pharmaceutics17050555

 

  1. Dixit S, Kumar A, Srinivasan K, Vincent PMDR, Ramu Krishnan N. Advancing genome editing with artificial intelligence: Opportunities, challenges, and future directions. Front Bioeng Biotechnol. 2024;11:1335901. doi: 10.3389/fbioe.2023.1335901

 

  1. Srivastava R. Advancing precision oncology with AI-powered genomic analysis. Front Pharmacol. 2025;16:1591696. doi: 10.3389/fphar.2025.1591696

 

  1. Flynn CD, Chang D. Artificial intelligence in point-of-care biosensing: Challenges and opportunities. Diagnostics (Basel). 2024;14(11):1100. doi: 10.3390/diagnostics14111100

 

  1. Taha BA, Ahmed NM, Talreja RK, et al. Synergizing nanomaterials and artificial intelligence in advanced optical biosensors for precision antimicrobial resistance Diagnosis. ACS Synth Biol. 2024;13(6):1600-1620. doi: 10.1021/acssynbio.4c00070

 

  1. Dara M, Dianatpour M, Azarpira N, Omidifar N. Convergence of CRISPR and artificial intelligence: A paradigm shift in biotechnology. Human Gene. 2024;41:201297. doi: 10.1016/j.humgen.2024.201297

 

  1. Kim H. Overcoming immune barriers in allogeneic CAR-NK therapy: From multiplex gene editing to AI-driven precision design. Biomolecules. 2025;15(7):935. doi: 10.3390/biom15070935

 

  1. Munawar N, Ahmad A. CRISPR/Cas system: An introduction. In: Ahmad A, Khan SH, Khan Z, editors. CRISPR Crops: The Future of Food Security. Berlin: Springer; 2021. p. 1-35. doi: 10.1007/978-981-15-7142-8_1

 

  1. Broeders M, Herrero-Hernandez P, Ernst MPT, Ploeg AT van der, Pijnappel WWMP. Sharpening the molecular scissors: Advances in gene-editing technology. iScience. 2020;23(1):100789. doi: 10.1016/j.isci.2019.100789

 

  1. Liu Y, Pinto F, Wan X, et al. Reprogrammed tracrRNAs enable repurposing of RNAs as crRNAs and sequence-specific RNA biosensors. Nat Commun. 2022;13(1):1937. doi: 10.1038/s41467-022-29604-x

 

  1. Kim HS, Kweon J, Kim Y. Recent advances in CRISPR-based functional genomics for the study of disease-associated genetic variants. Exp Mol Med. 2024;56(4):861-869. doi: 10.1038/s12276-024-01212-3

 

  1. Kolanu ND. CRISPR-Cas9 gene editing: Curing genetic diseases by inherited epigenetic modifications. Glob Med Genet. 2024;11(1):113-122. doi: 10.1055/s-0044-1785234

 

  1. Iranpour S, Abrishami A, Saljooghi AS. Covalent organic frameworks in cancer theranostics: Advancing biomarker detection and tumor-targeted therapy. Arch Pharm Res. 2025;48(3):183-211. doi: 10.1007/s12272-025-01536-2

 

  1. Nidhi S, Anand U, Oleksak P, et al. Novel CRISPR-cas systems: An updated review of the current achievements, applications, and future research perspectives. Int J Mol Sci. 2021;22(7):3327. doi: 10.3390/ijms22073327

 

  1. Schmidt H, Zhang M, Chakarov D, et al. Genome-wide CRISPR guide RNA design and specificity analysis with GuideScan2. Genome Biol. 2025;26(1):41. doi: 10.1186/s13059-025-03488-8

 

  1. Karvelis T, Gasiunas G, Young J, et al. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biol. 2015;16(1):253. doi: 10.1186/s13059-015-0818-7

 

  1. Fal K, Carles CC. dCas-based tools to visualize chromatin or modify epigenetic marks at specific plant genomic loci. In: Baroux C, Tatout C, editors. Methods for Plant Nucleus and Chromatin Studies: Methods and Protocols. Berlin: Springer US; 2025. p. 305-332. doi: 10.1007/978-1-0716-4228-3_17

 

  1. Xie J, Huang X, Wang X, et al. ACBE, a new base editor for simultaneous C-to-T and A-to-G substitutions in mammalian systems. BMC Biol. 2020;18(1):131. doi: 10.1186/s12915-020-00866-5

 

  1. Petrova IO, Smirnikhina SA. The development, optimization and future of prime editing. Int J Mol Sci. 2023;24(23):17045. doi: 10.3390/ijms242317045

 

  1. Qi C, Shen X, Li B, et al. PAMPHLET: PAM prediction homologous-enhancement toolkit for precise PAM prediction in CRISPR-Cas systems. J Genet Genomics. 2025;52(2):258-268. doi: 10.1016/j.jgg.2024.10.014

 

  1. Aljabali AAA, El-Tanani M, Tambuwala MM. Principles of CRISPR-Cas9 technology: Advancements in genome editing and emerging trends in drug delivery. J Drug Deliv Sci Technol. 2024;92:105338. doi: 10.1016/j.jddst.2024.105338

 

  1. Habimana JD, Huang R, Muhoza B, et al. Mechanistic insights of CRISPR/Cas nucleases for programmable targeting and early-stage diagnosis: A review. Biosens Bioelectron. 2022;203:114033. doi: 10.1016/j.bios.2022.114033

 

  1. Shihong Gao D, Zhu X, Lu B. Development and application of sensitive, specific, and rapid CRISPR-Cas13-based diagnosis. J Med Virol. 2021;93(7):4198-4204. doi: 10.1002/jmv.26889

 

  1. Zhu C, Zhang F, Li H, et al. CRISPR/Cas systems accelerating the development of aptasensors. Trends Anal Chem. 2023;158:116775. doi: 10.1016/j.trac.2022.116775

 

  1. Hassan YM, Mohamed AS, Hassan YM, El-Sayed WM. Recent developments and future directions in point-of-care next-generation CRISPR-based rapid diagnosis. Clin Exp Med. 2025;25(1):33. doi: 10.1007/s10238-024-01540-8

 

  1. Tao J, Bauer DE, Chiarle R. Assessing and advancing the safety of CRISPR-Cas tools: From DNA to RNA editing. Nat Commun. 2023;14(1):212. doi: 10.1038/s41467-023-35886-6

 

  1. Bhatia S, Pooja, Yadav SK. CRISPR-Cas for genome editing: Classification, mechanism, designing and applications. Int J Biol Macromol. 2023;238:124054. doi: 10.1016/j.ijbiomac.2023.124054

 

  1. Ganger S, Harale G, Majumdar P. Clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) systems: Discovery, structure, classification, and general mechanism. In: CRISPR/ Cas-Mediated Genome Editing in Plants. Burlington: Apple Academic Press; 2023.

 

  1. Liao C, Beisel CL. The tracrRNA in CRISPR biology and technologies. Annu Rev Genet. 2021;55:161-181. doi: 10.1146/annurev-genet-071719-022559

 

  1. Wang L, Han H. Strategies for improving the genome-editing efficiency of class 2 CRISPR/Cas system. Heliyon. 2024;10(19):e38588. doi: 10.1016/j.heliyon.2024.e38588

 

  1. Tan J, Forner J, Karcher D, Bock R. DNA base editing in nuclear and organellar genomes. Trends Genet. 2022;38(11):1147-1169. doi: 10.1016/j.tig.2022.06.015

 

  1. Mistry A, Tanga S, Maji B. Nucleic acid editing. In: Chatterjee S, Chattopadhyay S, editors. Nucleic Acid Biology and Its Application in Human Diseases. Berlin: Springer Nature; 2023. p. 365-416. doi: 10.1007/978-981-19-8520-1_11

 

  1. Zhang JH, Adikaram P, Pandey M, Genis A, Simonds WF. Optimization of genome editing through CRISPR-Cas9 engineering. Bioengineered. 2016;7(3):166-174. doi: 10.1080/21655979.2016.1189039

 

  1. Ahmad A, Ashraf S, Majeed HN, et al. Bioinformatic tools in CRISPR/ Cas platform. In: Ahmad A, Khan SH, Khan Z, editors. The CRISPR/Cas Tool Kit for Genome Editing. Berlin: Springer; 2022. p. 53-111. doi: 10.1007/978-981-16-6305-5_3

 

  1. Philippidis A. Cloud cover: Benchling expands into early development. GEN Edge. 2021;3(1):568-573. doi: 10.1089/genedge.3.1.093

 

  1. Labun K, Montague TG, Krause M, Torres Cleuren YN, Tjeldnes H, Valen E. CHOPCHOP v3: Expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 2019;47(W1):W171-W174. doi: 10.1093/nar/gkz365

 

  1. Kim HK, Min S, Song M, et al. Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity. Nat Biotechnol. 2018;36(3):239-241. doi: 10.1038/nbt.4061

 

  1. Haeussler M, Schönig K, Eckert H, et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016;17(1):148. doi: 10.1186/s13059-016-1012-2

 

  1. Heigwer F, Kerr G, Boutros M. E-CRISP: Fast CRISPR target site identification. Nat Methods. 2014;11(2):122-123. doi: 10.1038/nmeth.2812

 

  1. McKenna A, Shendure J. FlashFry: A fast and flexible tool for large-scale CRISPR target design. BMC Biol. 2018;16(1):74. doi: 10.1186/s12915-018-0545-0

 

  1. Meier JA, Zhang F, Sanjana NE. GUIDES: sgRNA design for loss-of-function screens. Nat Methods. 2017;14(9):831-832. doi: 10.1038/nmeth.4423

 

  1. Perez AR, Pritykin Y, Vidigal JA, et al. GuideScan software for improved single and paired CRISPR guide RNA design. Nat Biotechnol. 2017;35(4):347-349. doi: 10.1038/nbt.3804

 

  1. Hwang GH, Jeong YK, Habib O, et al. PE-Designer and PE-Analyzer: Web-based design and analysis tools for CRISPR prime editing. Nucleic Acids Res. 2021;49(W1):W499-W504. doi: 10.1093/nar/gkab319

 

  1. Stadager J, Bernardini C, Hartmann L, et al. CRISPR GENome and epigenome engineering improves loss-of-function genetic-screening approaches. Cell Rep Methods. 2025;5:1-25. doi: 10.1016/j.crmeth.2025.101078

 

  1. Asadbeigi A, Norouzi M, Vafaei Sadi MS, Saffari M, Bakhtiarizadeh MR. CaSilico: A versatile CRISPR package for in silico CRISPR RNA designing for Cas12, Cas13, and Cas14. Front Bioeng Biotechnol. 2022;10:957131. doi: 10.3389/fbioe.2022.957131

 

  1. Arbab M, Shen MW, Mok B, et al. Determinants of base editing outcomes from target library analysis and machine learning. Cell. 2020;182(2):463-480.e30. doi: 10.1016/j.cell.2020.05.037

 

  1. Chuai G, Ma H, Yan J, et al. DeepCRISPR: Optimized CRISPR guide RNA design by deep learning. Genome Biol. 2018;19(1):80. doi: 10.1186/s13059-018-1459-4

 

  1. Schaefer M, Clevert DA, Weiss B, Steffen A. PAVOOC: Designing CRISPR sgRNAs using 3D protein structures and functional domain annotations. Bioinformatics. 2019;35(13):2309-2310. doi: 10.1093/bioinformatics/bty935

 

  1. Cancellieri S, Canver MC, Bombieri N, Giugno R, Pinello L. CRISPRitz: Rapid, high-throughput and variant-aware in silico off-target site identification for CRISPR genome editing. Bioinformatics. 2020;36(7):2001-2008. doi: 10.1093/bioinformatics/btz867

 

  1. Hwang GH, Kim JS, Bae S. Web-based CRISPR toolkits: Cas-OFFinder, cas-designer, and cas-analyzer. In: Fulga TA, Knapp DJHF, Ferry QRV, editors. CRISPR Guide RNA Design: Methods and Protocols. Berlin: Springer US; 2021. p. 23-33. doi: 10.1007/978-1-0716-0687-2_2

 

  1. Dobson L, Reményi I, Tusnády GE. CCTOP: A consensus constrained TOPology prediction web server. Nucleic Acids Res. 2015;43(W1):W408-W412. doi: 10.1093/nar/gkv451

 

  1. Ma J, Köster J, Qin Q, et al. CRISPR-DO for genome-wide CRISPR design and optimization. Bioinformatics. 2016;32(21):3336-3338. doi: 10.1093/bioinformatics/btw476

 

  1. sgRNA Scorer 2.0: A Species-Independent Model to Predict CRISPR/Cas9 Activity. ACS Synthetic Biology. Available from: https://pubs.acs.org/doi/ abs/10.1021/acssynbio.6b00343 [Last accessed on 2025 Jun 08].

 

  1. Labuhn M, Adams FF, Ng M, et al. Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications. Nucleic Acids Res. 2018;46(3):1375-1385. doi: 10.1093/nar/gkx1268

 

  1. Hough SH, Ajetunmobi A, Brody L, Humphryes-Kirilov N, Perello E. Desktop genetics. Person Med. 2016;13(6):517-521. doi: 10.2217/pme-2016-0068

 

  1. Kearse M, Moir R, Wilson A, et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647-1649. doi: 10.1093/bioinformatics/bts199

 

  1. Cross BCS. A power-up for unbiased screening with CRISPR. Genet Eng Biotechnol News. 2018;38(18):20-21. doi: 10.1089/gen.38.18.08

 

  1. Pliatsika V, Rigoutsos I. “Off-Spotter”: Very fast and exhaustive enumeration of genomic lookalikes for designing CRISPR/Cas guide RNAs. Biol Direct. 2015;10(1):4. doi: 10.1186/s13062-015-0035-z

 

  1. Roginsky J. Analyzing CRISPR editing results. Genet Eng Biotechnol News. 2018;38(11):S24-S26. doi: 10.1089/gen.38.11.13

 

  1. Efficient Cas9‐based Genome Editing Using CRISPR Analysis Webtools in Severe Early‐Onset‐Obesity Patient‐Derived iPSCs - Patel - 2022 - Current Protocols. Wiley Online Library. Available from: https://currentprotocols. onlinelibrary.wiley.com/doi/full/10.1002/cpz1.519 [Last accessed on 2025 Jun 08].

 

  1. Vink JNA, Baijens JHL, Brouns SJJ. PAM-repeat associations and spacer selection preferences in single and co-occurring CRISPR-Cas systems. Genome Biol. 2021;22(1):281.doi: 10.1186/s13059-021-02495-9

 

  1. Molla KA, Yang Y. CRISPR/Cas-mediated base editing: Technical considerations and practical applications. Trends Biotechnol. 2019;37(10):1121-1142. doi: 10.1016/j.tibtech.2019.03.008

 

  1. Xu Z, Kuang Y, Ren B, et al. SpRY greatly expands the genome editing scope in rice with highly flexible PAM recognition. Genome Biol. 2021;22(1):6. doi: 10.1186/s13059-020-02231-9

 

  1. Wu SS, Li QC, Yin CQ, Xue W, Song CQ. Advances in CRISPR/ Cas-based gene therapy in human genetic diseases. Theranostics. 2020;10(10):4374-4382. doi: 10.7150/thno.43360

 

  1. Verma MK, Roychowdhury S, Sahu BD, Mishra A, Sethi KK. CRISPR-based point-of-care diagnostics incorporating Cas9, Cas12, and Cas13 enzymes advanced for SARS-CoV-2 detection. J Biochem Mol Toxicol. 2022;36(8):e23113. doi: 10.1002/jbt.23113

 

  1. Collias D, Beisel CL. CRISPR technologies and the search for the PAM-free nuclease. Nat Commun. 2021;12(1):555. doi: 10.1038/s41467-020-20633-y

 

  1. Mohanraju P, Saha C, van Baarlen P, Louwen R, Staals RHJ, van der Oost J. Alternative functions of CRISPR-Cas systems in the evolutionary arms race. Nat Rev Microbiol. 2022;20(6):351-364. doi: 10.1038/s41579-021-00663-z

 

  1. Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids. 2015;4:e264. doi: 10.1038/mtna.2015.37

 

  1. Singh M, Bindal G, Misra CS, Rath D. The era of Cas12 and Cas13 CRISPR-based disease diagnosis. Crit Rev Microbiol. 2022;48(6):714-729. doi: 10.1080/1040841X.2021.2025041

 

  1. Garrett SC. Pruning and tending immune memories: Spacer dynamics in the CRISPR Array. Front Microbiol. 2021;12:664299. doi: 10.3389/fmicb.2021.664299

 

  1. Hu LF, Li YX, Wang JZ, Zhao YT, Wang Y. Controlling CRISPR-Cas9 by guide RNA engineering. Wiley Interdiscip Rev RNA. 2023;14(1):e1731. doi: 10.1002/wrna.1731

 

  1. Malinin NL, Lee G, Lazzarotto CR, et al. Defining genome-wide CRISPR-Cas genome-editing nuclease activity with GUIDE-seq. Nat Protoc. 2021;16(12):5592-5615. doi: 10.1038/s41596-021-00626-x

 

  1. Ma S, Lv J, Feng Z, Rong Z, Lin Y. Get ready for the CRISPR/Cas system: A beginner’s guide to the engineering and design of guide RNAs. J Gene Med. 2021;23(11):e3377. doi: 10.1002/jgm.3377

 

  1. Khan Z, Ali Z, Khan AA, et al. History and classification of CRISPR/Cas system. In: Ahmad A, Khan SH, Khan Z, editors. The CRISPR/Cas Tool Kit for Genome Editing. Berlin: Springer; 2022. p. 29-52. doi: 10.1007/978-981-16-6305-5_2

 

  1. Kasi Viswanath K, Hamid A, Ateka E, Pappu HR. CRISPR/Cas, multiomics, and RNA interference in virus disease management. Phytopathology. 2023;113(9):1661-1676. doi: 10.1094/PHYTO-01-23-0002-V

 

  1. Zhang F, Huang Z. Mechanistic insights into the versatile class II CRISPR toolbox. Trends Biochem Sci. 2022;47(5):433-450. doi: 10.1016/j.tibs.2021.11.007

 

  1. Liu G, Lin Q, Jin S, Gao C. The CRISPR-Cas toolbox and gene editing technologies. Mol Cell. 2022;82(2):333-347. doi: 10.1016/j.molcel.2021.12.002

 

  1. Hillary VE, Ceasar SA. A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering. Mol Biotechnol. 2023;65(3):311-325. doi: 10.1007/s12033-022-00567-0

 

  1. Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell. 2018;173(3):665-676.e14. doi: 10.1016/j.cell.2018.02.033

 

  1. Wu Z, Zhang Y, Yu H, et al. Programmed genome editing by a miniature CRISPR-Cas12f nuclease. Nat Chem Biol. 2021;17(11):1132-1138. doi: 10.1038/s41589-021-00868-6

 

  1. Bonini A, Poma N, Vivaldi F, et al. Advances in biosensing: The CRISPR/Cas system as a new powerful tool for the detection of nucleic acids. J Pharm Biomed Anal. 2021;192:113645. doi: 10.1016/j.jpba.2020.113645

 

  1. Manghwar H, Lindsey K, Zhang X, Jin S. CRISPR/Cas system: Recent advances and future prospects for genome editing. Trends Plant Sci. 2019;24(12):1102-1125. doi: 10.1016/j.tplants.2019.09.006

 

  1. Zhang F. Development of CRISPR-Cas systems for genome editing and beyond. Q Rev Biophys. 2019;52:e6. doi: 10.1017/S0033583519000052

 

  1. Lee H, Sashital DG. Creating memories: Molecular mechanisms of CRISPR adaptation. Trends Biochem Sci. 2022;47(6):464-476. doi: 10.1016/j.tibs.2022.02.004

 

  1. Hille F, Charpentier E. CRISPR-Cas: Biology, mechanisms and relevance. Philos Trans R Soc Lond B Biol Sci. 2016;371(1707):20150496. doi: 10.1098/rstb.2015.0496

 

  1. Asmamaw M, Zawdie B. Mechanism and applications of CRISPR/Cas- 9-mediated genome editing. Biologics. 2021;15:353-361. doi: 10.2147/BTT.S326422

 

  1. Budhathoki JB, Xiao Y, Schuler G, et al. Real-time observation of CRISPR spacer acquisition by Cas1-Cas2 integrase. Nat Struct Mol Biol. 2020;27(5):489-499. doi: 10.1038/s41594-020-0415-7

 

  1. Qian Y, Zhou D, Li M, et al. Application of CRISPR-Cas system in the diagnosis and therapy of ESKAPE infections. Front Cell Infect Microbiol. 2023;13:1223696. doi: 10.3389/fcimb.2023.1223696

 

  1. Moon SB, Kim DY, Ko JH, Kim JS, Kim YS. Improving CRISPR Genome Editing by Engineering Guide RNAs. Trends Biotechnol. 2019;37(8):870-881. doi: 10.1016/j.tibtech.2019.01.009

 

  1. McCarty NS, Graham AE, Studená L, Ledesma-Amaro R. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat Commun. 2020;11(1):1281. doi: 10.1038/s41467-020-15053-x

 

  1. Rath D, Amlinger L, Rath A, Lundgren M. The CRISPR-Cas immune system: Biology, mechanisms and applications. Biochimie. 2015;117:119-128. doi: 10.1016/j.biochi.2015.03.025

 

  1. Richter C, Chang JT, Fineran PC. Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. Viruses. 2012;4(10):2291-2311. doi: 10.3390/v4102291

 

  1. Javaid N, Choi S. CRISPR/Cas system and factors affecting its precision and efficiency. Front Cell Dev Biol. 2021;9:761709. doi: 10.3389/fcell.2021.761709

 

  1. Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471(7340):602-607. doi: 10.1038/nature09886

 

  1. Lau CH, Tin C, Suh Y. CRISPR-based strategies for targeted transgene knock-in and gene correction. Fac Rev. 2020;9:20. doi: 10.12703/r/9-20

 

  1. Chang M, Ahn SJ, Han T, Yang D. Gene expression modulation tools for bacterial synthetic biology. Biotechnol Sustain Mater. 2024;1(1):6. doi: 10.1186/s44316-024-00005-y

 

  1. Semenova E, Jore MM, Datsenko KA, et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci. 2011;108(25):10098-10103. doi: 10.1073/pnas.1104144108

 

  1. Shalaby K, Aouida M, El-Agnaf O. Tissue-specific delivery of CRISPR therapeutics: Strategies and mechanisms of non-viral vectors. Int J Mol Sci. 2020;21(19):7353. doi: 10.3390/ijms21197353

 

  1. Gupta R, Gupta D, Ahmed KT, et al. Chapter Three - Modification of Cas9, gRNA and PAM: Key to further regulate genome editing and its applications. In: Ghosh D, editor. Progress in Molecular Biology and Translational Science. Advances in CRISPR/Cas and Related Technologies. Vol. 178. United States: Academic Press; 2021. p. 85-98. doi: 10.1016/bs.pmbts.2020.12.001

 

  1. Navarro C, Díaz MP, Duran P, et al. CRISPR-Cas systems: A functional perspective and innovations. Int J Mol Sci. 2025;26(8):3645. doi: 10.3390/ijms26083645

 

  1. Lee J, Jeong C. Single-molecule perspectives of CRISPR/Cas systems: Target search, recognition, and cleavage. BMB Rep. 2025;58(1):8-16. doi: 10.5483/BMBRep.2024-0182

 

  1. Chen J, Chen Y, Huang L, et al. Trans-nuclease activity of Cas9 activated by DNA or RNA target binding. Nat Biotechnol. 2025;43(4):558-568. doi: 10.1038/s41587-024-02255-7

 

  1. Singh J, Liu KG, Allen A, Jiang W, Qin PZ. A DNA unwinding equilibrium serves as a checkpoint for CRISPR-Cas12a target discrimination. Nucleic Acids Res. 2023;51(16):8730-8743. doi: 10.1093/nar/gkad636

 

  1. Pacesa M, Loeff L, Querques I, Muckenfuss LM, Sawicka M, Jinek M. R-loop formation and conformational activation mechanisms of Cas9. Nature. 2022;609(7925):191-196. doi: 10.1038/s41586-022-05114-0

 

  1. Kordyś M, Sen R, Warkocki Z. Applications of the versatile CRISPR-Cas13 RNA targeting system. Wiley Interdiscip Rev RNA. 2022;13(3):e1694. doi: 10.1002/wrna.1694

 

  1. Wang JY, Pausch P, Doudna JA. Structural biology of CRISPR-Cas immunity and genome editing enzymes. Nat Rev Microbiol. 2022;20(11):641-656. doi: 10.1038/s41579-022-00739-4

 

  1. Gunitseva N, Evteeva M, Borisova A, Patrushev M, Subach F. RNA-dependent RNA targeting by CRISPR-Cas systems: Characterizations and applications. Int J Mol Sci. 2023;24(8):6894. doi: 10.3390/ijms24086894

 

  1. Jeon Y, Choi YH, Jang Y, et al. Direct observation of DNA target searching and cleavage by CRISPR-Cas12a. Nat Commun. 2018;9(1):2777. doi: 10.1038/s41467-018-05245-x

 

  1. Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects. Sig Transduct Target Ther. 2020;5(1):1. doi: 10.1038/s41392-019-0089-y

 

  1. Singh S, Chaudhary R, Deshmukh R, Tiwari S. Opportunities and challenges with CRISPR-Cas mediated homologous recombination based precise editing in plants and animals. Plant Mol Biol. 2023;111(1):1-20. doi: 10.1007/s11103-022-01321-5

 

  1. Park SH, Cao M, Bao G. Detection and quantification of unintended large on-target gene modifications due to CRISPR/Cas9 editing. Curr Opin Biomed Eng. 2023;28:100478. doi: 10.1016/j.cobme.2023.100478

 

  1. Ahmad A, Rasheed M, Ashraf S, et al. Beyond traditional gene editing: Expanding applications of CRISPR-Cas. In: Gene-Edited Crops. United States: CRC Press; 2025.

 

  1. Xu X, Qi LS. A CRISPR–dCas toolbox for genetic engineering and synthetic biology. J Mol Biol. 2019;431(1):34-47. doi: 10.1016/j.jmb.2018.06.037

 

  1. Kazi TA, Biswas SR. Chapter Four - CRISPR/dCas system as the modulator of gene expression. In: Ghosh D, editor. Progress in Molecular Biology and Translational Science. Advances in CRISPR/Cas and Related Technologies. Vol. 178. United States: Academic Press; 2021. p. 99-122. doi: 10.1016/bs.pmbts.2020.12.002

 

  1. Nissim L, Perli SD, Fridkin A, Perez-Pinera P, Lu TK. Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol Cell. 2014;54(4):698-710. doi: 10.1016/j.molcel.2014.04.022

 

  1. Pandya K, Jagani D, Singh N. CRISPR-Cas systems: Programmable nuclease revolutionizing the molecular diagnosis. Mol Biotechnol. 2024;66(8):1739-1753. doi: 10.1007/s12033-023-00819-7

 

  1. Sohail M, Xie S, Zhang X, Li B. Methodologies in visualizing the activation of CRISPR/Cas: The last mile in developing CRISPR-Based diagnostics and biosensing – A review. Anal Chim Acta. 2022;1205:339541. doi: 10.1016/j.aca.2022.339541

 

  1. Pardee K, Green AA, Takahashi MK, et al. Rapid, low-cost detection of zika virus using programmable biomolecular components. Cell. 2016;165(5):1255-1266. doi: 10.1016/j.cell.2016.04.059

 

  1. Zhou W, Hu L, Ying L, Zhao Z, Chu PK, Yu XF. A CRISPR-Cas9- triggered strand displacement amplification method for ultrasensitive DNA detection. Nat Commun. 2018;9(1):5012. doi: 10.1038/s41467-018-07324-5

 

  1. Huang M, Zhou X, Wang H, Xing D. Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection. Anal Chem. 2018;90(3):2193-2200. doi: 10.1021/acs.analchem.7b04542

 

  1. Wang X, Xiong E, Tian T, et al. Clustered regularly interspaced short palindromic repeats/Cas9-mediated lateral flow nucleic acid assay. ACS Nano. 2020;14(2):2497-2508. doi: 10.1021/acsnano.0c00022

 

  1. Azhar M, Phutela R, Kumar M, et al. Rapid and accurate nucleobase detection using FnCas9 and its application in COVID-19 diagnosis. Biosens Bioelectron. 2021;183:113207. doi: 10.1016/j.bios.2021.113207

 

  1. Hajian R, Balderston S, Tran T, et al. Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor. Nat Biomed Eng. 2019;3(6):427-437. doi: 10.1038/s41551-019-0371-x

 

  1. Quan J, Langelier C, Kuchta A, et al. FLASH: A next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences. Nucleic Acids Res. 2019;47(14):e83. doi: 10.1093/nar/gkz418

 

  1. Wang T, Liu Y, Sun HH, Yin BC, Ye BC. An RNA-guided Cas9 nickase-based method for universal isothermal DNA amplification. Angew Chem. 2019;131(16):5436-5440. doi: 10.1002/ange.201901292

 

  1. Tsou JH, Leng Q, Jiang F. A CRISPR test for detection of circulating nuclei acids. Transl Oncol. 2019;12(12):1566-1573. doi: 10.1016/j.tranon.2019.08.011

 

  1. Li SY, Cheng QX, Wang JM, et al. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 2018;4:20. doi: 10.1038/s41421-018-0028-z

 

  1. Dai Y, Somoza RA, Wang L, et al. Exploring the trans-cleavage activity of CRISPR-Cas12a (cpf1) for the development of a universal electrochemical biosensor. Angew Chem Int Ed Engl. 2019;58(48):17399-17405. doi: 10.1002/anie.201910772

 

  1. Compiro P, Chomta N, Nimnual J, et al. CRISPR-Cas12a-based detection and differentiation of Mycobacterium spp. Clin Chim Acta. 2025;567:120101. doi: 10.1016/j.cca.2024.120101

 

  1. Teng F, Guo L, Cui T, et al. CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biol. 2019;20(1):132. doi: 10.1186/s13059-019-1742-z

 

  1. Li L, Li S, Wu N, et al. HOLMESv2: A CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth Biol. 2019;8(10):2228-2237. doi: 10.1021/acssynbio.9b00209

 

  1. Harrington LB, Burstein D, Chen JS, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science. 2018;362(6416):839-842. doi: 10.1126/science.aav4294

 

  1. Huang Z, Fang J, Zhou M, Gong Z, Xiang T. CRISPR-Cas13: A new technology for the rapid detection of pathogenic microorganisms. Front Microbiol. 2022;13:1011399. doi: 10.3389/fmicb.2022.1011399

 

  1. Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 2018;360(6387):439-444. doi: 10.1126/science.aaq0179

 

  1. Aralis Z, Rauch JN, Audouard M, et al. CREST, a Cas13-based, rugged, equitable, scalable testing (CREST) for SARS-CoV-2 detection in patient samples. Curr Protoc. 2022;2(2):e385. doi: 10.1002/cpz1.385

 

  1. Katzmeier F, Aufinger L, Dupin A, et al. A low-cost fluorescence reader for in vitro transcription and nucleic acid detection with Cas13a. PLoS One. 2019;14(12):e0220091. doi: 10.1371/journal.pone.0220091

 

  1. Freije CA, Myhrvold C, Boehm CK, et al. Programmable inhibition and detection of RNA viruses using Cas13. Mol Cell. 2019;76(5):826-837.e11. doi: 10.1016/j.molcel.2019.09.013

 

  1. Arizti-Sanz J, Freije CA, Stanton AC, et al. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nat Commun. 2020;11(1):5921. doi: 10.1038/s41467-020-19097-x

 

  1. Zhou T, Huang R, Huang M, Shen J, Shan Y, Xing D. CRISPR/Cas13a powered portable electrochemiluminescence chip for ultrasensitive and specific MiRNA detection. Adv Sci. 2020;7(13):1903661. doi: 10.1002/advs.201903661

 

  1. Wang Y, Li H, Luo S, Zhong M, Liu J, Li B. Research progress on signal conversion based on aptamer combined CRISPR/Cas system in biosensors. Mol Diagn Ther. 2025;29(4):499-518. doi: 10.1007/s40291-025-00785-7

 

  1. Feng Y, Liu S, Chen R, Xie A. Target binding and residence: A new determinant of DNA double-strand break repair pathway choice in CRISPR/Cas9 genome editing. J Zhejiang Univ Sci B. 2021;22(1):73-86. doi: 10.1631/jzus.B2000282

 

  1. Qian S, Chen Y, Xu X, et al. Advances in amplification-free detection of nucleic acid: CRISPR/Cas system as a powerful tool. Anal Biochem. 2022;643:114593. doi: 10.1016/j.ab.2022.114593

 

  1. Zhu R, Jiang H, Li C, et al. CRISPR/Cas9-based point-of-care lateral flow biosensor with improved performance for rapid and robust detection of Mycoplasma pneumonia. Anal Chim Acta. 2023;1257:341175. doi: 10.1016/j.aca.2023.341175

 

  1. Ali Z, Sánchez E, Tehseen M, et al. Bio-SCAN: A CRISPR/dCas9- based lateral flow assay for rapid, specific, and sensitive detection of SARS-CoV-2. ACS Synth Biol. 2022;11(1):406-419. doi: 10.1021/acssynbio.1c00499

 

  1. Zhai S, Yang Y, Wu Y, et al. A visual CRISPR/dCas9-mediated enzyme-linked immunosorbent assay for nucleic acid detection with single-base specificity. Talanta. 2023;257:124318. doi: 10.1016/j.talanta.2023.124318

 

  1. Agha ASAA, Al-Samydai A, Aburjai T. New frontiers in CRISPR: Addressing antimicrobial resistance with Cas9, Cas12, Cas13, and Cas14. Heliyon. 2025;11(2):e42013. doi: 10.1016/j.heliyon.2025.e42013

 

  1. Hadi J, Rapp D, Dhawan S, Gupta SK, Gupta TB, Brightwell G. Molecular detection and characterization of foodborne bacteria: Recent progresses and remaining challenges. Compr Rev Food Sci Food Saf. 2023;22(3):2433-2464. doi: 10.1111/1541-4337.13153

 

  1. Hadi R, Poddar A, Sonnaila S, Bhavaraju VSM, Agrawal S. Advancing CRISPR-based solutions for COVID-19 diagnosis and therapeutics. Cells. 2024;13(21):1794. doi: 10.3390/cells13211794

 

  1. Chatterjee P, Jakimo N, Jacobson JM. Minimal PAM specificity of a highly similar SpCas9 ortholog. Sci Adv. 2018;4(10):eaau0766. doi: 10.1126/sciadv.aau0766

 

  1. Hirano H, Gootenberg JS, Horii T, et al. Structure and engineering of Francisella novicida Cas9. Cell. 2016;164(5):950-961. doi: 10.1016/j.cell.2016.01.039

 

  1. Azhar Mohd, Phutela R, Kumar M, et al. Rapid and accurate nucleobase detection using FnCas9 and its application in COVID-19 diagnosis. Biosens Bioelectron. 2021;183:113207. doi: 10.1016/j.bios.2021.113207

 

  1. Kumar M, Gulati S, Ansari AH, et al. FnCas9-based CRISPR diagnostic for rapid and accurate detection of major SARS-CoV-2 variants on a paper strip. Elife. 2021;10:e67130. doi: 10.7554/eLife.67130

 

  1. Kaminski MM, Abudayyeh OO, Gootenberg JS, Zhang F, Collins JJ. CRISPR-based diagnostics. Nat Biomed Eng. 2021;5(7):643-656. doi: 10.1038/s41551-021-00760-7

 

  1. Chakraborty S. Democratizing nucleic acid-based molecular diagnostic tests for infectious diseases at resource-limited settings - from point of care to extreme point of care. Sens Diagn. 2024;3(4):536-561. doi: 10.1039/D3SD00304C

 

  1. Wang T, Wang Z, Bai L, et al. Next-generation CRISPR-based diagnostic tools for human diseases. Trends Anal Chem. 2023;168:117328. doi: 10.1016/j.trac.2023.117328

 

  1. Swarts DC, Jinek M. Mechanistic insights into the cis- and trans-acting DNase activities of Cas12a. Mol Cell. 2019;73(3):589-600.e4. doi: 10.1016/j.molcel.2018.11.021

 

  1. Swarts DC. Making the cut(s): How Cas12a cleaves target and non-target DNA. Biochem Soc Trans. 2019;47(5):1499-1510. doi: 10.1042/BST20190564

 

  1. Wang SY, Du YC, Wang DX, Ma JY, Tang AN, Kong DM. Signal amplification and output of CRISPR/Cas-based biosensing systems: A review. Anal Chim Acta. 2021;1185:338882. doi: 10.1016/j.aca.2021.338882

 

  1. Broughton JP, Deng X, Yu G, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 2020;38(7):870-874. doi: 10.1038/s41587-020-0513-4

 

  1. Yu L, Peng Y, Sheng M, Wang Q, Huang J, Yang X. Sensitive and amplification-free electrochemiluminescence biosensor for HPV-16 detection based on CRISPR/Cas12a and DNA tetrahedron nanostructures. ACS Sens. 2023;8(7):2852-2858. doi: 10.1021/acssensors.3c00806

 

  1. Luo T, Li J, He Y, et al. Designing a CRISPR/Cas12a- and Au-nanobeacon-based diagnostic biosensor enabling direct, rapid, and sensitive miRNA detection. Anal Chem. 2022;94(17):6566-6573. doi: 10.1021/acs.analchem.2c00401

 

  1. Gao H, Zhang H, Qi X, et al. CRISPR/Cas12a dual-mode biosensor for Staphylococcus aureus detection via enzyme-free isothermal amplification. Talanta. 2025;282:127013. doi: 10.1016/j.talanta.2024.127013

 

  1. Taufiq S, Nagata M, Abbas SR, Sode K. An electrochemical biosensor for the detection of tuberculosis specific DNA with CRISPR-Cas12a and redox-probe modified oligonucleotide. Heliyon. 2024;10(23):e40754. doi: 10.1016/j.heliyon.2024.e40754

 

  1. Liu P, Wang X, Liang J, et al. A recombinase polymerase amplification-coupled Cas12a mutant-based module for efficient detection of streptomycin-resistant mutations in Mycobacterium tuberculosis. Front Microbiol. 2022;12:796916. doi: 10.3389/fmicb.2021.796916

 

  1. Yee BJ, Shafiqah NF, Mohd-Naim NF, Ahmed MU. A CRISPR/Cas12a-based fluorescence aptasensor for the rapid and sensitive detection of ampicillin. Int J Biol Macromol. 2023;242:125211. doi: 10.1016/j.ijbiomac.2023.125211

 

  1. Xu J, Zhang T, Lv X, Shi L, Bai W, Ye L. An RPA-based CRISPR/Cas12a assay in combination with a lateral flow assay for the rapid detection of Shigella flexneri in food samples. Foods. 2024;13(19):3200. doi: 10.3390/foods13193200

 

  1. Sherlock Biosciences. The Future of Molecular Diagnostics. Sherlock Biosciences. Available from: https://sherlock.bio [Last accessed on 2025 Jul 16].

 

  1. Mammoth Biosciences. Mammoth Biosciences. Available from: https:// mammoth.bio [Last accessed on 2025 Jul 16].

 

  1. Innovating for Human Well-Being. Available from: https://crisprbits.com [Last accessed on 2025 Jul 16].

 

  1. CASPR Biotech. SOSV. Available from: https://sosv.com/company/caspr-biotech [Last accessed on 2025 Jul 16].

 

  1. Scope Biosciences. Available from: https://scopebio.com [Last accessed on 2025 Jul 16].

 

  1. Home - Locus Biosciences. Locus Bioscience. Available from: https://www. locus-bio.com [Last accessed on 2025 Jul 16].

 

  1. MEDiC. Available from: https://www.medic-life-sciences.com [Last accessed on 2025 Jul 16].

 

  1. CRISPR Products For Gene Editing. IDT. Available from: https://www. idtdna.com/page/products/crispr-genome-editing [Last accessed on 2025 Jul 16].

 

  1. Build Your own CRISPR Solution - in. Available from: https://www. thermofisher.com/in/en/home/life-science/genome-editing/crispr-nuclease-vector.html [Last accessed on 2025 Jul 16].

 

  1. Takara Bio-Home. Available from: https://www.takarabio.com [Last accessed on 2025 Jul 16].

 

  1. Information about CRISPR-Cpf1 (Cas12a) Systems; 2017. Available from: https://www.broadinstitute.org/crispr/information-about-crispr-cpf1- cas12a-systems [Last accessed on 2025 Jul 16].

 

  1. Repare Therapeutics. Synthetic Lethality Precision Oncology. Repare Therapeutics. Available from: https://www.reparerx.com [Last accessed on 2025 Jul 16].

 

  1. Home - KSQ Therapeutics. Available from: https://ksqtx.com [Last accessed on 2025 Jul 16].

 

  1. Preclinical Oncology CRO. Contract Research Drug Development Company. Available from: https://www.crownbio.com [Last accessed on 2025 Jul 16].

 

  1. Freenome Outpacing Cancer Starts with Early Detection. Freenome. Available from: https://www.freenome.com [Last accessed on 2025 Jul 16].

 

  1. Guardant Health. Conquering Cancer With Data. Guardant Health. Available from: https://guardanthealth.com [Last accessed on 2025 Jul 16].

 

  1. Natera: A Global Leader in cfDNA Testing. Natera. Available from: https:// www.natera.com [Last accessed on 2025 Jul 16].

 

  1. Cardea Bio. Serra Ventures, LLC. Available from: https://www. serraventures.com/cardea-bio-1 [Last accessed on 2025 Jul 16].

 

  1. Home. Ginkgo Bioworks. Available from: https://ginkgo.bio [Last accessed on 2025 Jul 16].

 

  1. Caribou Biosciences. Developing Sophisticated Allogeneic Cell Therapies. Available from: https://www.cariboubio.com [Last accessed on 2025 Jul 16].

 

  1. Ghouneimy A, Mahas A, Marsic T, Aman R, Mahfouz M. CRISPR-based diagnostics: Challenges and potential solutions toward point-of-care applications. ACS Synth Biol. 2023;12(1):1-16. doi: 10.1021/acssynbio.2c00496

 

  1. O’Connell MR. Molecular mechanisms of RNA targeting by Cas13- containing Type VI CRISPR–Cas systems. J Mol Biol. 2019;431(1):66-87. doi: 10.1016/j.jmb.2018.06.029

 

  1. Granados-Riveron JT, Aquino-Jarquin G. CRISPR/Cas13-based approaches for ultrasensitive and specific detection of microRNAs. Cells. 2021;10(7):1655. doi: 10.3390/cells10071655

 

  1. Zhao L, Qiu M, Li X, Yang J, Li J. CRISPR-Cas13a system: A novel tool for molecular diagnostics. Front Microbiol. 2022;13:1060947. doi: 10.3389/fmicb.2022.1060947

 

  1. Ramadan NK, Gaber N, Ali NM, Amer OSO, Soliman H. SHERLOCK, a novel CRISPR-Cas13a-based assay for detection of infectious bursal disease virus. J Virol Methods. 2025;337:115185. doi: 10.1016/j.jviromet.2025.115185

 

  1. Cunningham CH, Hennelly CM, Lin JT, et al. A novel CRISPR-based malaria diagnostic capable of Plasmodium detection, species differentiation, and drug-resistance genotyping. EBioMedicine. 2021;68:103415. doi: 10.1016/j.ebiom.2021.103415

 

  1. Ackerman CM, Myhrvold C, Thakku SG, et al. Massively multiplexed nucleic acid detection with Cas13. Nature. 2020;582(7811):277-282. doi: 10.1038/s41586-020-2279-8

 

  1. Yin X, Luo H, Zhou H, et al. A rapid isothermal CRISPR-Cas13a diagnostic test for genital herpes simplex virus infection. iScience. 2024;27(1):108581. doi: 10.1016/j.isci.2023.108581

 

  1. Sheng Y, Zhang T, Zhang S, et al. A CRISPR/Cas13a-powered catalytic electrochemical biosensor for successive and highly sensitive RNA diagnostics. Biosens Bioelectron. 2021;178:113027. doi: 10.1016/j.bios.2021.113027

 

  1. Jiang L, Du J, Xu H, et al. Ultrasensitive CRISPR/Cas13a-mediated photoelectrochemical biosensors for specific and direct assay of miRNA-21. Anal Chem. 2023;95(2):1193-1200. doi: 10.1021/acs.analchem.2c03945

 

  1. Kumar M, Maiti S, Chakraborty D. Capturing nucleic acid variants with precision using CRISPR diagnostics. Biosens Bioelectron. 2022;217:114712. doi: 10.1016/j.bios.2022.114712

 

  1. Mao X, Xu M, Luo S, et al. Advancements in the synergy of isothermal amplification and CRISPR-cas technologies for pathogen detection. Front Bioeng Biotechnol. 2023;11:1273988. doi: 10.3389/fbioe.2023.1273988

 

  1. Azeez SS, Hamad RS, Hamad BK, Shekha MS, Bergsten P. Advances in CRISPR-Cas technology and its applications: Revolutionising precision medicine. Front Genome Ed. 2024;6:1509924. doi: 10.3389/fgeed.2024.1509924

 

  1. Ci Q, He Y, Chen J. Novel Anti-CRISPR-assisted CRISPR biosensor for exclusive detection of single-stranded DNA (ssDNA). ACS Sens. 2024;9(3):1162-1167. doi: 10.1021/acssensors.4c00201

 

  1. Shi R, Zhong L, Liu G, Mak WC. CRISPR/Cas biosensing technology: From lab assays to integrated portable devices towards wearables. Trends Anal Chem. 2024;177:117796. doi: 10.1016/j.trac.2024.117796

 

  1. Wang Y, Peng Y, Zhou H, Gao Z. A universal CRISPR-Cas14a responsive triple-sensitized upconversion photoelectrochemical sensor. J Nanobiotechnol. 2023;21(1):389. doi: 10.1186/s12951-023-02163-z

 

  1. Qi J, Qi Q, Zhou Z, et al. PER-CRISPR/Cas14a system-based electrochemical biosensor for the detection of ctDNA EGFR L858R. Anal Methods. 2024;16(1):51-61. doi: 10.1039/D3AY01615C

 

  1. Li C, Liu C, Liu R, et al. A novel CRISPR/Cas14a-based electrochemical biosensor for ultrasensitive detection of Burkholderia pseudomallei with PtPd@PCN-224 nanoenzymes for signal amplification. Biosens Bioelectron. 2023;225:115098. doi: 10.1016/j.bios.2023.115098

 

  1. Huang S, Dai R, Zhang Z, et al. CRISPR/Cas-based techniques for live-cell imaging and bioanalysis. Int J Mol Sci. 2023;24(17):13447. doi: 10.3390/ijms241713447

 

  1. Zhou B, Yang R, Sohail M, et al. CRISPR/Cas14 provides a promising platform in facile and versatile aptasensing with improved sensitivity. Talanta. 2023;254:124120. doi: 10.1016/j.talanta.2022.124120

 

  1. Philippidis A. Mammoth pursues coronavirus partnership as it grows CRISPR ambitions. GEN Edge. 2020. doi: 10.1089/genedge.2.1.11

 

  1. van Dongen JE, Berendsen JTW, Steenbergen RDM, Wolthuis RMF, Eijkel JCT, Segerink LI. Point-of-care CRISPR/Cas nucleic acid detection: Recent advances, challenges and opportunities. Biosens Bioelectron. 2020;166:112445. doi: 10.1016/j.bios.2020.112445

 

  1. Naresh V, Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors (Basel). 2021;21(4):1109. doi: 10.3390/s21041109

 

  1. Li H, Xie Y, Chen F, et al. Amplification-free CRISPR/Cas detection technology: Challenges, strategies, and perspectives. Chem Soc Rev. 2023;52(1):361-382. doi: 10.1039/D2CS00594H

 

  1. Zhang Z, Hu JJ, Lin S, Wu J, Xia F, Lou X. Field effect transistor biosensors for healthcare monitoring. Interdiscip Med. 2024;2(4):e20240032. doi: 10.1002/INMD.20240032

 

  1. Zhou J, Li Z, Olajide JS, Wang G. CRISPR/Cas-based nucleic acid detection strategies: Trends and challenges. Heliyon. 2024;10(4):e26179. doi: 10.1016/j.heliyon.2024.e26179

 

  1. Cheng X, Li Y, Kou J, et al. Novel non-nucleic acid targets detection strategies based on CRISPR/Cas toolboxes: A review. Biosens Bioelectron. 2022;215:114559. doi: 10.1016/j.bios.2022.114559

 

  1. Li Y, Zhao L, Ma L, Bai Y, Feng F. CRISPR/Cas and argonaute-powered lateral flow assay for pathogens detection. Crit Rev Food Sci Nutr. 2025;65:5464-5468. doi: 10.1080/10408398.2024.2416473

 

  1. Conference proceedings - 4th international conference on molecular diagnostics and biomarker discovery: Antibody technology. BMC Proc. 2019;13(8):10. doi: 10.1186/s12919-019-0169-6

 

  1. Lino C, Barrias S, Chaves R, Adega F, Martins-Lopes P, Fernandes JR. Biosensors as diagnostic tools in clinical applications. Biochim Biophys Acta Rev Cancer. 2022;1877(3):188726. doi: 10.1016/j.bbcan.2022.188726

 

  1. Razavi Z, Soltani M, Souri M, Pazoki-Toroudi H. CRISPR-driven biosensors: A new frontier in rapid and accurate disease detection. Crit Rev Anal Chem. 2024;Sep 17:1-25. doi: 10.1080/10408347.2024.2400267

 

  1. Kumaran A, Jude Serpes N, Gupta T, et al. Advancements in CRISPR-based biosensing for next-gen point of care diagnostic application. Biosensors (Basel). 2023;13(2):202. doi: 10.3390/bios13020202

 

  1. Zavvar TS, Khoshbin Z, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. CRISPR/Cas-engineered technology: Innovative approach for biosensor development. Biosens Bioelectron. 2022;214:114501. doi: 10.1016/j.bios.2022.114501

 

  1. Dronina J, Samukaite-Bubniene U, Ramanavicius A. Towards application of CRISPR-Cas12a in the design of modern viral DNA detection tools (Review). J Nanobiotechnol. 2022;20(1):41. doi: 10.1186/s12951-022-01246-7

 

  1. Gattani A, Mandal S, Agrawal A, et al. CRISPR-based electrochemical biosensors for animal health: Recent advances. Prog Biophys Mol Biol. 2024;193:7-18. doi: 10.1016/j.pbiomolbio.2024.09.001

 

  1. Wachholz Junior D, Kubota LT. CRISPR-based electrochemical biosensors: An alternative for point-of-care diagnostics? Talanta. 2024;278:126467. doi: 10.1016/j.talanta.2024.126467

 

  1. Duan H, Wang Y, Tang SY, Xiao TH, Goda K, Li M. A CRISPR-Cas12a powered electrochemical sensor based on gold nanoparticles and MXene composite for enhanced nucleic acid detection. Sens Actuat B Chem. 2023;380:133342. doi: 10.1016/j.snb.2023.133342

 

  1. Wan Y, Zong C, Li X, et al. New insights for biosensing: Lessons from microbial defense systems. Chem Rev. 2022;122(9):8126-8180. doi: 10.1021/acs.chemrev.1c01063

 

  1. Kadam US, Cho Y, Park TY, Hong JC. Aptamer-based CRISPR-Cas powered diagnostics of diverse biomarkers and small molecule targets. Appl Biol Chem. 2023;66(1):13. doi: 10.1186/s13765-023-00771-9

 

  1. Chen A, Shah B. Electrochemical sensing and biosensing based on square wave voltammetry. Anal Methods. 2013;5(9):2158-2173. doi: 10.1039/C3AY40155C

 

  1. Randviir EP, Banks CE. A review of electrochemical impedance spectroscopy for bioanalytical sensors. Anal Methods. 2022;14(45):4602-4624. doi: 10.1039/D2AY00970F

 

  1. He C, Li Y, Liu J, et al. Application of CRISPR-Cas system in human papillomavirus detection using biosensor devices and point-of-care technologies. BME Front. 2025;6:0114. doi: 10.34133/bmef.0114

 

  1. Li L, Gopinath SCB, Lakshmipriya T, Subramaniam S, Anbu P. Zeolite-iron oxide integrated interdigitated electrode sensor for diagnosing cervical cancer. Heliyon. 2024;10(11):e31851. doi: 10.1016/j.heliyon.2024.e31851

 

  1. Ma J, Li X, Lou C, et al. Utility of CRISPR/Cas mediated electrochemical biosensors. Anal Methods. 2023;15(31):3785-3801. doi: 10.1039/D3AY00903C

 

  1. Dhar BC, Steimberg N, Mazzoleni G. Point-of-care pathogen detection with CRISPR-based programmable nucleic acid binding proteins. ChemMedChem. 2021;16(10):1566-1575. doi: 10.1002/cmdc.202000782

 

  1. Del Giovane S, Bagheri N, Di Pede AC, et al. Challenges and perspectives of CRISPR-based technology for diagnostic applications. Trends Anal Chem. 2024;172:117594. doi: 10.1016/j.trac.2024.117594

 

  1. Yang Y, Li X, Wang X, Wang Z, Gong S. CRISPR-Cas-based colorimetric strategies for nucleic acids detection. Trends Anal Chem. 2025;182:118058. doi: 10.1016/j.trac.2024.118058

 

  1. Son H. Harnessing CRISPR/Cas systems for DNA and RNA detection: Principles, techniques, and challenges. Biosensors (Basel). 2024;14(10):460. doi: 10.3390/bios14100460

 

  1. Xiao M, Tian F, Liu X, et al. Virus detection: From state-of-the-art laboratories to smartphone-based point-of-care testing. Adv Sci. 2022;9(17):2105904. doi: 10.1002/advs.202105904

 

  1. Abdolhosseini M, Zandsalimi F, Moghaddam FS, Tavoosidana G. A review on colorimetric assays for DNA virus detection. J Virol Methods. 2022;301:114461. doi: 10.1016/j.jviromet.2022.114461

 

  1. Alizadeh N, Salimi A, Hallaj R. Hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme: Principle and biosensing application. In: Seitz H, Stahl F, Walter JG, editors. Catalytically Active Nucleic Acids. Berlin: Springer International Publishing; 2020. p. 85-106. doi: 10.1007/10_2017_37

 

  1. Ferrari E. Gold nanoparticle-based plasmonic biosensors. Biosensors (Basel). 2023;13(3):411. doi: 10.3390/bios13030411

 

  1. Zhang WS, Pan J, Li F, et al. Reverse transcription recombinase polymerase amplification coupled with CRISPR-Cas12a for facile and highly sensitive colorimetric SARS-CoV-2 detection. Anal Chem. 2021;93(8):4126-4133. doi: 10.1021/acs.analchem.1c00013

 

  1. Wang Y, Peng Y, Li S, et al. The development of a fluorescence/ colorimetric biosensor based on the cleavage activity of CRISPR-Cas12a for the detection of non-nucleic acid targets. J Hazard Mater. 2023;449:131044. doi: 10.1016/j.jhazmat.2023.131044

 

  1. Aiamsa-at P, Nonthakaew N, Phiwsaiya K, Senapin S, Chaijarasphong T. CRISPR-based, genotype-specific detection of yellow head virus genotype 1 with fluorescent, lateral flow and DNAzyme-assisted colorimetric readouts. Aquaculture. 2023;574:739696. doi: 10.1016/j.aquaculture.2023.739696

 

  1. Jin X, Zhu J, Zhang Y, et al. The CRISPR/Cas system-mediated function of Hg2+ on urease activity for colorimetric detection of the tumor biomarker in clinical samples. Microchemical J. 2025;208:112317. doi: 10.1016/j.microc.2024.112317

 

  1. Saleh EAM, Ali E, Muxamadovna GM, et al. CRISPR/Cas-based colorimetric biosensors: A promising tool for the diagnosis of bacterial foodborne pathogens in food products. Anal Methods. 2024;16(22):3448-3463. doi: 10.1039/D4AY00578C

 

  1. Li X, Liu M, Men D, et al. Rapid, portable, and sensitive detection of CaMV35S by RPA-CRISPR/Cas12a-G4 colorimetric assays with high accuracy deep learning object recognition and classification. Talanta. 2024;278:126441. doi: 10.1016/j.talanta.2024.126441

 

  1. Liu J, Wachsmann-Hogiu S. Progress and challenges of point-of-need photonic biosensors for the diagnosis of COVID-19 infections and immunity. Biosensors (Basel). 2022;12(9):678. doi: 10.3390/bios12090678

 

  1. Kelly T, Yang X. Application of fluorescence- and bioluminescence-based biosensors in cancer drug discovery. Biosensors (Basel). 2024;14(12):570. doi: 10.3390/bios14120570

 

  1. Xie S, Ji Z, Suo T, Li B, Zhang X. Advancing sensing technology with CRISPR: From the detection of nucleic acids to a broad range of analytes – A review. Anal Chim Acta. 2021;1185:338848. doi: 10.1016/j.aca.2021.338848

 

  1. Huang Z, Liu S, Pei X, et al. Fluorescence signal-readout of CRISPR/Cas biosensors for nucleic acid detection. Biosensors (Basel). 2022;12(10):779. doi: 10.3390/bios12100779

 

  1. Feng W, Zhang H, Le XC. Signal amplification by the trans-cleavage activity of CRISPR-Cas systems: Kinetics and performance. Anal Chem. 2023;95(1):206-217. doi: 10.1021/acs.analchem.2c04555

 

  1. Fang C, Huang Y, Zhao Y. Review of FRET biosensing and its application in biomolecular detection. Am J Transl Res. 2023;15(2):694-709.

 

  1. Fang X, Zheng Y, Duan Y, Liu Y, Zhong W. Recent advances in design of fluorescence-based assays for high-throughput screening. Anal Chem. 2019;91(1):482-504. doi: 10.1021/acs.analchem.8b05303

 

  1. Mohammadi R, Naderi-Manesh H, Farzin L, et al. Fluorescence sensing and imaging with carbon-based quantum dots for early diagnosis of cancer: A review. J Pharm Biomed Anal. 2022;212:114628. doi: 10.1016/j.jpba.2022.114628

 

  1. Song C, Ye Z, Wang G, Yuan J, Guan Y. Core-shell nanoarchitectures: A strategy to improve the efficiency of luminescence resonance energy transfer. ACS Nano. 2010;4(9):5389-5397. doi: 10.1021/nn100820u

 

  1. Cao X, Chen C, Zhu Q. Biosensors based on functional nucleic acids and isothermal amplification techniques. Talanta. 2023;253:123977. doi: 10.1016/j.talanta.2022.123977

 

  1. Liu BM. Isothermal nucleic acid amplification technologies and CRISPR-Cas-based nucleic acid detection strategies for infectious diseases diagnostics. In: Manual of Molecular Microbiology. United States: John Wiley & Sons, Ltd.; 2025. p. 30-47. doi: 10.1002/9781683674597.ch3

 

  1. Mukherjee A, Samanta S, Das S, et al. Leveraging CRISPR-Cas-enhanced isothermal amplification tools for quick identification of pathogens causing livestock diseases. Curr Microbiol. 2025;82(6):260. doi: 10.1007/s00284-025-04226-w

 

  1. Srivastava P, Prasad D. Isothermal nucleic acid amplification and its uses in modern diagnostic technologies. 3 Biotech. 2023;13(6):200. doi: 10.1007/s13205-023-03628-6

 

  1. Wang M, Liu H, Ren J, et al. Enzyme-assisted nucleic acid amplification in molecular diagnosis: A review. Biosensors (Basel). 2023;13(2):160. doi: 10.3390/bios13020160

 

  1. Kulkarni A, Tanga S, Karmakar A, Hota A, Maji B. CRISPR-based precision molecular diagnostics for disease detection and surveillance. ACS Appl Bio Mater. 2023;6(10):3927-3945. doi: 10.1021/acsabm.3c00439

 

  1. Zahra A, Shahid A, Shamim A, Khan SH, Arshad MI. The SHERLOCK platform: An insight into advances in viral disease diagnosis. Mol Biotechnol. 2023;65(5):699-714. doi: 10.1007/s12033-022-00625-7

 

  1. Barnes KG, Lachenauer AE, Nitido A, et al. Deployable CRISPR-Cas13a diagnostic tools to detect and report Ebola and Lassa virus cases in real-time. Nat Commun. 2020;11(1):4131. doi: 10.1038/s41467-020-17994-9

 

  1. Qiao J, Zhang J, Jiang Q, et al. Boosting CRISPR/Cas12a intrinsic RNA detection capability through pseudo hybrid DNA–RNA substrate design. Nucleic Acids Res. 2025;53(11):gkaf510. doi: 10.1093/nar/gkaf510

 

  1. Calabretta MM, Gregucci D, Martínez-Pérez-Cejuela H, Michelini E. A Luciferase mutant with improved brightness and stability for whole-cell bioluminescent biosensors and in vitro biosensing. Biosensors (Basel). 2022;12(9):742. doi: 10.3390/bios12090742

 

  1. Yeh HW, Ai HW. Development and applications of bioluminescent and chemiluminescent reporters and biosensors. Annu Rev Anal Chem. 2019;12:129-150. doi: 10.1146/annurev-anchem-061318-115027

 

  1. Singhal SS, Garg R, Mohanty A, et al. Recent advancement in breast cancer research: Insights from model organisms-mouse models to zebrafish. Cancers (Basel). 2023;15(11):2961. doi: 10.3390/cancers15112961

 

  1. Deng P, Dong XC, Wang XY, Gao YP, Quan FS. Verification of CRISPR/Cas9 activity in vitro via SSA-based dual-luciferase reporter System. Mol Biol. 2024;58(3):461-470. doi: 10.1134/S0026893324700092

 

  1. Krissanaprasit A, Key CM, Pontula S, LaBean TH. Self-assembling nucleic acid nanostructures functionalized with aptamers. Chem Rev. 2021;121(22):13797-13868. doi: 10.1021/acs.chemrev.0c01332

 

  1. Chen K, Zhu L, Li J, et al. High-content tailoring strategy to improve the multifunctionality of functional nucleic acids. Biosens Bioelectron. 2024;261:116494. doi: 10.1016/j.bios.2024.116494

 

  1. Zhu F, Zhao Q. CRISPR/Cas12a linked sandwich aptamer assay for sensitive detection of thrombin. Anal Chim Acta. 2024;1287:342106. doi: 10.1016/j.aca.2023.342106

 

  1. Qing M, Sun Z, Wang L, et al. CRISPR/Cas12a-regulated homogeneous electrochemical aptasensor for amplified detection of protein. Sens Actuat B Chem. 2021;348:130713. doi: 10.1016/j.snb.2021.130713

 

  1. Song J, Song Y, Jang H, et al. Elution-free DNA detection using CRISPR/ Cas9-mediated light-up aptamer transcription: Toward all-in-one DNA purification and detection tube. Biosens Bioelectron. 2023;225:115085. doi: 10.1016/j.bios.2023.115085

 

  1. Sun H, Wang N, Zhang L, Meng H, Li Z. Aptamer-Based Sensors for Thrombin Detection Application. Chemosensors. 2022;10(7):255. doi: 10.3390/chemosensors10070255

 

  1. Guan X, Zhao J, Sha Z, et al. CRISPR/Cas12a and aptamer-chemiluminescence based analysis for the relative abundance determination of tumor-related protein positive exosomes for breast cancer diagnosis. Biosens Bioelectron. 2024;259:116380. doi: 10.1016/j.bios.2024.116380

 

  1. Liu L, Han Z, An F, et al. Aptamer-based biosensors for the diagnosis of sepsis. J Nanobiotechnol. 2021;19(1):216. doi: 10.1186/s12951-021-00959-5

 

  1. Léguillier V, Heddi B, Vidic J. Recent advances in aptamer-based biosensors for bacterial detection. Biosensors (Basel). 2024;14(5):210. doi: 10.3390/bios14050210

 

  1. Mondal B, Ramlal S, Lavu PS, Bhavanashri N, Kingston J. Highly sensitive colorimetric biosensor for staphylococcal enterotoxin B by a label-free aptamer and gold nanoparticles. Front Microbiol. 2018;9. doi: 10.3389/fmicb.2018.00179

 

  1. Urmi R, Banerjee P, Singh M, et al. Revolutionizing biomedicine: Aptamer-based nanomaterials and nanodevices for therapeutic applications. Biotechnol Rep. 2024;42:e00843. doi: 10.1016/j.btre.2024.e00843

 

  1. Lakhin AV, Tarantul VZ, Gening LV. Aptamers: Problems, solutions and prospects. Acta Naturae. 2013;5(4):34-43.

 

  1. Chowdhry R, Lu SZ, Lee S, Godhulayyagari S, Ebrahimi SB, Samanta D. Enhancing CRISPR/Cas systems with nanotechnology. Trends Biotechnol. 2023;41(12):1549-1564. doi: 10.1016/j.tibtech.2023.06.005

 

  1. Hii ARK, Qi X, Wu Z. Advanced strategies for CRISPR/Cas9 delivery and applications in gene editing, therapy, and cancer detection using nanoparticles and nanocarriers. J Mater Chem B. 2024;12(6):1467-1489. doi: 10.1039/D3TB01850D

 

  1. Huang Y, Wen Q, Xiong Y, et al. Nanomaterials driven CRISPR/Cas-based biosensing strategies. Chem Eng J. 2023;474:145615. doi: 10.1016/j.cej.2023.145615

 

  1. Peng W, Shi M, Hu B, et al. Nanotechnology-leveraged CRISPR/Cas systems: Icebreaking in trace cancer-related nucleic acids biosensing. Mol Cancer. 2025;24(1):78. doi: 10.1186/s12943-024-02222-5

 

  1. Sun T, He W, Chen X, Shu X, Liu W, Ouyang G. Nanomaterials-integrated CRISPR/Cas systems: Expanding the toolbox for optical detection. ACS Sens. 2025;10(4):2453-2473. doi: 10.1021/acssensors.5c00020

 

  1. Kim D, Le QV, Wu Y, Park J, Oh YK. Nanovesicle-mediated delivery systems for CRISPR/Cas genome editing. Pharmaceutics. 2020;12(12):1233. doi: 10.3390/pharmaceutics12121233

 

  1. Xu X, Liu C, Wang Y, et al. Nanotechnology-based delivery of CRISPR/ Cas9 for cancer treatment. Adv Drug Deliv Rev. 2021;176:113891. doi: 10.1016/j.addr.2021.113891

 

  1. Wang M, Jin L, Hang-Mei Leung P, et al. Advancements in magnetic nanoparticle-based biosensors for point-of-care testing. Front Bioeng Biotechnol. 2024;12:1393789. doi: 10.3389/fbioe.2024.1393789

 

  1. Park DH, Haizan I, Ahn MJ, Choi MY, Kim MJ, Choi JH. One-Pot CRISPR-Cas12a-Based Viral DNA detection via HRP-enriched extended ssDNA-modified Au@Fe3O4 nanoparticles. Biosensors. 2024;14(1):26. doi: 10.3390/bios14010026

 

  1. Liu L, Xu Z, Awayda K, et al. Gold nanoparticle-labeled CRISPR-Cas13a assay for the sensitive solid-state nanopore molecular counting. Adv Mater Technol. 2022;7(3):2101550. doi: 10.1002/admt.202101550

 

  1. Osborn MJ, Bhardwaj A, Bingea SP, et al. CRISPR/Cas9-based lateral flow and fluorescence diagnostics. Bioengineering (Basel). 2021;8(2):23.doi: 10.3390/bioengineering8020023

 

  1. Yin H, Sun L, Pu Y, et al. Ultrasound-controlled CRISPR/Cas9 system augments sonodynamic therapy of hepatocellular carcinoma. ACS Cent Sci. 2021;7(12):2049-2062. doi: 10.1021/acscentsci.1c01143

 

  1. Nsairat H, Alshaer W, Odeh F, et al. Recent advances in using liposomes for delivery of nucleic acid-based therapeutics. OpenNano. 2023;11:100132. doi: 10.1016/j.onano.2023.100132

 

  1. Zakari S, Niels NK, Olagunju GV, et al. Emerging biomarkers for non-invasive diagnosis and treatment of cancer: A systematic review. Front Oncol. 2024;14:1405267. doi: 10.3389/fonc.2024.1405267

 

  1. Shetti D, Mallela VR, Ye W, et al. Emerging role of circulating cell-free RNA as a non-invasive biomarker for hepatocellular carcinoma. Crit Rev Oncol Hematol. 2024;200:104391. doi: 10.1016/j.critrevonc.2024.104391

 

  1. Toden S, Goel A. Non-coding RNAs as liquid biopsy biomarkers in cancer. Br J Cancer. 2022;126(3):351-360. doi: 10.1038/s41416-021-01672-8

 

  1. Shahni SN, Albogami S, Pattnaik B, et al. CRISPR-Cas12a based detection of EGFR gene mutation in cell free DNA for early diagnosis of non-small cell lung cancer (NSCLC). Sens Biosens Res. 2025;47:100735. doi: 10.1016/j.sbsr.2025.100735

 

  1. Yang J, Lin N, Niu M, Yin B. Circulating tumor DNA mutation analysis: Advances in its application for early diagnosis of hepatocellular carcinoma and therapeutic efficacy monitoring. Aging (Albany NY). 2024;16(14):11460-11474. doi: 10.18632/aging.205980

 

  1. Kumar MA, Baba SK, Sadida HQ, et al. Extracellular vesicles as tools and targets in therapy for diseases. Sig Transduct Target Ther. 2024;9(1):27. doi: 10.1038/s41392-024-01735-1

 

  1. Zhao Z, Zhao G, Yang S, Zhu S, Zhang S, Li P. The significance of exosomal RNAs in the development, diagnosis, and treatment of pancreatic cancer. Cancer Cell Int. 2021;21(1):364. doi: 10.1186/s12935-021-02059-8

 

  1. Porzycki P, Ciszkowicz E, Semik M, Tyrka M. Combination of three miRNA (miR-141, miR-21, and miR-375) as potential diagnostic tool for prostate cancer recognition. Int Urol Nephrol. 2018;50(9):1619-1626. doi: 10.1007/s11255-018-1938-2

 

  1. Song K, Han C, Dash S, Balart LA, Wu T. MiR-122 in hepatitis B virus and hepatitis C virus dual infection. World J Hepatol. 2015;7(3):498-506. doi: 10.4254/wjh.v7.i3.498

 

  1. Pacesa M, Pelea O, Jinek M. Past, present, and future of CRISPR genome editing technologies. Cell. 2024;187(5):1076-1100. doi: 10.1016/j.cell.2024.01.042

 

  1. Lee M, Lee M, Song Y, Kim S, Park N. Recent advances and prospects of nucleic acid therapeutics for anti-cancer therapy. Molecules. 2024;29(19):4737. doi: 10.3390/molecules29194737

 

  1. Song N, Chu Y, Li S, et al. A dual-enzyme-responsive DNA-based nanoframework enables controlled co-delivery of CRISPR-Cas9 and antisense oligodeoxynucleotide for synergistic gene therapy. Adv Funct Mater. 2023;33(47):2306634. doi: 10.1002/adfm.202306634

 

  1. Lyu M, Kong L, Yang Z, Wu Y, McGhee CE, Lu Y. PNA-Assisted DNAzymes to cleave double-stranded DNA for genetic engineering with high sequence fidelity. J Am Chem Soc. 2021;143(26):9724-9728. doi: 10.1021/jacs.1c03129

 

  1. Stovicek V, Holkenbrink C, Borodina I. CRISPR/Cas system for yeast genome engineering: Advances and applications. FEMS Yeast Res. 2017;17(5):fox030. doi: 10.1093/femsyr/fox030

 

  1. Stace LB. Point-of-care testing in primary care. In: John RM, editor. Pediatric Diagnostic Labs for Primary Care: An Evidence-Based Approach. Berlin: Springer International Publishing; 2022. p. 135-169. doi: 10.1007/978-3-030-90642-9_5

 

  1. Little P, Hobbs FDR, Moore M, et al. Clinical score and rapid antigen detection test to guide antibiotic use for sore throats: Randomised controlled trial of PRISM (primary care streptococcal management). BMJ. 2013;347:f5806. doi: 10.1136/bmj.f5806

 

  1. Jarnda KV, Dai H, Ali A, et al. A review on optical biosensors for monitoring of uric acid and blood glucose using portable POCT Devices: Status, challenges, and future horizons. Biosensors (Basel). 2025;15(4):222. doi: 10.3390/bios15040222

 

  1. Bao C, Liu X, Liang C, Xu S. CRISPR/Cas-SERS sensing platforms: A frontier technology for next-generation fast, low-cost, ultra-micro biosample detection. J Raman Spectrosc. doi: 10.1002/jrs.6827

 

  1. Broughton JP, Deng X, Yu G, et al. Rapid detection of 2019 novel coronavirus SARS-CoV-2 using a CRISPR-based DETECTR Lateral Flow Assay. medRxiv. 2020. doi: 10.1101/2020.03.06.20032334

 

  1. Joung J, Ladha A, Saito M, et al. Point-of-care testing for COVID-19 using SHERLOCK diagnostics. medRxiv. 2020. doi: 10.1101/2020.05.04.20091231

 

  1. Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F. SHERLOCK: Nucleic acid detection with CRISPR nucleases. Nat Protoc. 2019;14(10):2986-3012. doi: 10.1038/s41596-019-0210-2

 

  1. Antropov DN, Stepanov GA. Molecular mechanisms underlying CRISPR/Cas-based assays for nucleic acid detection. Curr Issues Mol Biol. 2023;45(1):649-662. doi: 10.3390/cimb45010043

 

  1. Li Y, Liu Y, Tang X, et al. CRISPR/Cas-powered amplification-free detection of nucleic acids: Current state of the art, challenges, and futuristic perspectives. ACS Sens. 2023;8(12):4420-4441. doi: 10.1021/acssensors.3c01463

 

  1. Tian Z, Yan H, Zeng Y. Solid-phase extraction and enhanced amplification-free detection of pathogens integrated by multifunctional CRISPR-Cas12a. ACS Appl Mater Interfaces. 2024;16(12):14445-14456. doi: 10.1021/acsami.3c17039

 

  1. Lau CH, Huang S, Zhu H. Amplification-free nucleic acids detection with next-generation CRISPR/dx systems. Crit Rev Biotechnol. 2025;45(4):859-886. doi: 10.1080/07388551.2024.2399560

 

  1. Liu Q, Jin X, Cheng J, Zhou H, Zhang Y, Dai Y. Advances in the application of molecular diagnostic techniques for the detection of infectious disease pathogens (Review). Mol Med Rep. 2023;27(5):104. doi: 10.3892/mmr.2023.12991

 

  1. de Puig H, Lee RA, Najjar D, et al. Minimally instrumented SHERLOCK (miSHERLOCK) for CRISPR-based point-of-care diagnosis of SARS-CoV-2 and emerging variants. Sci Adv. 2021;7(32):eabh2944. doi: 10.1126/sciadv.abh2944

 

  1. Fermann GJ, Suyama J. Point of care testing in the emergency department. J Emerg Med. 2002;22(4):393-404. doi: 10.1016/S0736-4679(02)00429-8

 

  1. Razavi Z, Soltani M, Pazoki-Toroudi H, Chen P. CRISPR-microfluidics nexus: Advancing biomedical applications for understanding and detection. Sens Actuat A Phys. 2024;376:115625. doi: 10.1016/j.sna.2024.115625

 

  1. Chan KG, Ang GY, Yu CY, Yean CY. Harnessing CRISPR-Cas to combat COVID-19: From diagnostics to therapeutics. Life (Basel). 2021;11(11):1210. doi: 10.3390/life11111210

 

  1. Li Z, Ding X, Yin K, Avery L, Ballesteros E, Liu C. Instrument-free, CRISPR-based diagnostics of SARS-CoV-2 using self-contained microfluidic system. Biosens Bioelectron. 2022;199:113865. doi: 10.1016/j.bios.2021.113865

 

  1. Ngamsom B, Iles A, Kamita M, et al. An integrated lab-on-a-chip device for RNA extraction, amplification and CRISPR-Cas12a-assisted detection for COVID-19 screening in resource-limited settings. medRxiv. 2022. doi: 10.1101/2022.01.06.22268835

 

  1. Kalligosfyri PM, Lamprou E, Kalogianni DP. Emerging sensing technologies for liquid biopsy applications: Steps closer to personalized medicine. Sensors (Basel). 2024;24(24):7902. doi: 10.3390/s24247902

 

  1. Neumann F, Madaboosi N, Nilsson M. Isothermal amplification methods for point-of-care diagnostics of infectious diseases. In: Emerging Technologies in Biophysical Sciences: A World Scientific Reference. USA: World Scientific; 2020. p. 239-286. doi: 10.1142/9789811226113_0009

 

  1. Yang B, Kong J, Fang X. Programmable CRISPR-Cas9 microneedle patch for long-term capture and real-time monitoring of universal cell-free DNA. Nat Commun. 2022;13(1):3999. doi: 10.1038/s41467-022-31740-3

 

  1. Jiang Q, Mo Q, Ge C, et al. Applications of artificial intelligence-driven microfluidics in medical laboratory science. Interdiscip Med. 2025;3:e20240135. doi: 10.1002/INMD.20240135

 

  1. van Dongen JE, Segerink LI. Building the future of clinical diagnostics: An analysis of potential benefits and current barriers in CRISPR/Cas diagnostics. ACS Synth Biol. 2025;14(2):323-331. doi: 10.1021/acssynbio.4c00816

 

  1. Umar Ibrahim A, Pwavodi CP, Ozsoz M, Al-Turjman F, Galaya T, Agbo JJ. Crispr biosensing and Ai driven tools for detection and prediction of Covid-19. J Exp Theor Art Intell. 2023;35(4):489-505. doi: 10.1080/0952813X.2021.1952652

 

  1. Dave S, Dave A, Radhakrishnan S, Das J, Dave S. Chapter 16 - Biosensors for healthcare: An artificial intelligence approach. In: Das J, Dave S, Radhakrishnan S, Mohanty P, editors. Biosensors for Emerging and Re-Emerging Infectious Diseases. United States: Academic Press; 2022. p. 365-383. doi: 10.1016/B978-0-323-88464-8.00008-7

 

  1. Lee M. Deep learning in CRISPR-Cas systems: A review of recent studies. Front Bioeng Biotechnol. 2023;11:1226182. doi: 10.3389/fbioe.2023.1226182

 

  1. Baker DV, Bernal-Escalante J, Traaseth C, et al. Smartphones as a platform for molecular analysis: Concepts, methods, devices and future potential. Lab Chip. 2025;25(5):884-955. doi: 10.1039/D4LC00966E

 

  1. Zhong Z, Li Z, Yang J, Wang Q. Unified model to predict gRNA efficiency across diverse cell lines and CRISPR-Cas9 systems. J Chem Inf Model. 2023;63(23):7320-7329. doi: 10.1021/acs.jcim.3c01339

 

  1. Konstantakos V, Nentidis A, Krithara A, Paliouras G. CRISPR-Cas9 gRNA efficiency prediction: An overview of predictive tools and the role of deep learning. Nucleic Acids Res. 2022;50(7):3616-3637. doi: 10.1093/nar/gkac192

 

  1. Manghwar H, Li B, Ding X, et al. CRISPR/Cas systems in genome editing: Methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects. Adv Sci (Weinh). 2020;7(6):1902312. doi: 10.1002/advs.201902312

 

  1. Liu Q, Cheng X, Liu G, Li B, Liu X. Deep learning improves the ability of sgRNA off-target propensity prediction. BMC Bioinformatics. 2020;21(1):51. doi: 10.1186/s12859-020-3395-z

 

  1. Li T, Cheng N. Sensitive and portable signal readout strategies boost point-of-care CRISPR/Cas12a biosensors. ACS Sens. 2023;8(11):3988-4007. doi: 10.1021/acssensors.3c01338

 

  1. Liu L, Pei DS. Insights gained from RNA editing targeted by the CRISPR-Cas13 family. Int J Mol Sci. 2022;23(19):11400. doi: 10.3390/ijms231911400

 

  1. Zhang C, Yang Y, Qi T, et al. Prediction of base editor off-targets by deep learning. Nat Commun. 2023;14(1):5358. doi: 10.1038/s41467-023-41004-3

 

  1. Schene IF, Joore IP, Oka R, et al. Prime editing for functional repair in patient-derived disease models. Nat Commun. 2020;11(1):5352. doi: 10.1038/s41467-020-19136-7

 

  1. Han GR, Goncharov A, Eryilmaz M, et al. Machine learning in point-of-care testing: Innovations, challenges, and opportunities. Nat Commun. 2025;16(1):3165. doi: 10.1038/s41467-025-58527-6

 

  1. Moingeon P, Kuenemann M, Guedj M. Artificial intelligence-enhanced drug design and development: Toward a computational precision medicine. Drug Discov Today. 2022;27(1):215-222. doi: 10.1016/j.drudis.2021.09.006

 

  1. Yang Q, Dong MJ, Xu J, et al. CRISPR/RNA aptamer system activated by an AND logic gate for biomarker-driven theranostics. J Am Chem Soc. 2025;147(1):169-180. doi: 10.1021/jacs.4c08719

 

  1. Lai YH, Sun SC, Chuang MC. Biosensors with built-in biomolecular logic gates for practical applications. Biosensors (Basel). 2014;4(3):273-300. doi: 10.3390/bios4030273

 

  1. Chen YM, Hsiao TH, Lin CH, Fann YC. Unlocking precision medicine: Clinical applications of integrating health records, genetics, and immunology through artificial intelligence. J Biomed Sci. 2025;32(1):16. doi: 10.1186/s12929-024-01110-w

 

  1. O’Leary TJ, O’Leary BJ, O’Leary DP. A perspective on artificial intelligence for molecular pathologists. J Mol Diagn. 2025;27(5):323-335. doi: 10.1016/j.jmoldx.2025.01.005

 

  1. Gao S, Fang A, Huang Y, et al. Empowering biomedical discovery with AI agents. Cell. 2024;187(22):6125-6151. doi: 10.1016/j.cell.2024.09.022

 

  1. Yadav N, Narang J, Chhillar AK, Rana JS. CRISPR: A new paradigm of theranostics. Nanomedicine. 2021;33:102350. doi: 10.1016/j.nano.2020.102350

 

  1. Li SY, Cheng QX, Liu JK, Nie XQ, Zhao GP, Wang J. CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Res. 2018;28(4):491-493. doi: 10.1038/s41422-018-0022-x

 

  1. Dominguez AA, Lim WA, Qi LS. Beyond editing: repurposing CRISPR– Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol. 2016;17(1):5-15. doi: 10.1038/nrm.2015.2

 

  1. Pun FW, Ozerov IV, Zhavoronkov A. AI-powered therapeutic target discovery. Trends Pharmacol Sci. 2023;44(9):561-572. doi: 10.1016/j.tips.2023.06.010

 

  1. Akhtar M, Nehal N, Gull A, et al. Explicating the transformative role of artificial intelligence in designing targeted nanomedicine. Expert Opin Drug Deliv. 2025;22(7):971-991. doi: 10.1080/17425247.2025.2502022

 

  1. Sergeeva OV, Luo L, Guiseppi-Elie A. Cancer theragnostics: closing the loop for advanced personalized cancer treatment through the platform integration of therapeutics and diagnostics. Front Bioeng Biotechnol. 2025;12:1499474. doi: 10.3389/fbioe.2024.1499474

 

  1. Park SH, Bao G. CRISPR/Cas9 gene editing for curing sickle cell disease. Transfus Apher Sci. 2021;60(1):103060. doi: 10.1016/j.transci.2021.103060

 

  1. Liu F, Peng J, Lei YM, et al. Electrochemical detection of ctDNA mutation in non-small cell lung cancer based on CRISPR/Cas12a system. Sens Actuat B Chem. 2022;362:131807. doi: 10.1016/j.snb.2022.131807

 

  1. Jiang H, Xi H, Juhas M, Zhang Y. Biosensors for point mutation detection. Front Bioeng Biotechnol. 2021;9:797831. doi: 10.3389/fbioe.2021.797831

 

  1. Tsou JH, Leng Q, Jiang F. A CRISPR test for rapidly and sensitively detecting circulating EGFR mutations. Diagnostics (Basel). 2020;10(2):114. doi: 10.3390/diagnostics10020114

 

  1. Wilbie D, Walther J, Mastrobattista E. Delivery aspects of CRISPR/Cas for in vivo genome editing. Acc Chem Res. 2019;52(6):1555-1564. doi: 10.1021/acs.accounts.9b00106

 

  1. Bendixen L, Jensen TI, Bak RO. CRISPR-Cas-mediated transcriptional modulation: The therapeutic promises of CRISPRa and CRISPRi. Mol Ther. 2023;31(7):1920-1937. doi: 10.1016/j.ymthe.2023.03.024

 

  1. Lee MH, Thomas JL, Lin CY, Li YCE, Lin HY. Activation of insulin gene expression via transfection of a CRISPR/dCas9a system using magnetic peptide-imprinted nanoparticles. Pharmaceutics. 2023;15(4):1311. doi: 10.3390/pharmaceutics15041311

 

  1. Kang H, Park D, Kim J. Logical regulation of endogenous gene expression using programmable, multi-input processing CRISPR guide RNAs. Nucleic Acids Res. 2024;52(14):8595-8608. doi: 10.1093/nar/gkae549

 

  1. Sheth RU, Yim SS, Wu FL, Wang HH. Multiplex recording of cellular events over time into a CRISPR biological tape. Science. 2017;358(6369):1457-1461.doi: 10.1126/science.aao0958

 

  1. Jia AY, Kiess AP, Li Q, Antonarakis ES. Radiotheranostics in advanced prostate cancer: Current and future directions. Prostate Cancer Prostatic Dis. 2024;27(1):11-21. doi: 10.1038/s41391-023-00670-6

 

  1. Kostyusheva A, Brezgin S, Babin Y, et al. CRISPR-Cas systems for diagnosing infectious diseases. Methods. 2022;203:431-446. doi: 10.1016/j.ymeth.2021.04.007

 

  1. Janowicz PW, Boele T, Maschmeyer RT, et al. Enhanced detection of glioblastoma vasculature with superparamagnetic iron oxide nanoparticles and MRI. Sci Rep. 2025;15(1):14283. doi: 10.1038/s41598-025-97943-y

 

  1. Jackson BR, Sendak MP, Solomonides A, Balu S, Sittig DF. Regulation of artificial intelligence in healthcare: Clinical Laboratory Improvement Amendments (CLIA) as a model. J Am Med Inform Assoc. 2025;32(2):404-407. doi: 10.1093/jamia/ocae296

 

  1. Niazi SK. The coming of age of AI/ML in drug discovery, development, clinical testing, and manufacturing: The FDA perspectives. Drug Design Dev Ther. 2023;17:2691-2725. doi: 10.2147/DDDT.S424991

 

  1. World Health Organization. 2023 Emerging Technologies and Scientific Innovations: A Global Public Health Perspective. Geneva: World Health Organization; 2023.

 

  1. Li L, Mandal PK. Recent advancements in gene therapy for sickle cell disease and β-thalassemia. Front Hematol. 2024;3:1468952. doi: 10.3389/frhem.2024.1468952

 

  1. Zeng S, Lei S, Qu C, Wang Y, Teng S, Huang P. CRISPR/Cas-based gene editing in therapeutic strategies for beta-thalassemia. Hum Genet. 2023;142(12):1677-1703. doi: 10.1007/s00439-023-02610-9

 

  1. Khoshandam M, Soltaninejad H, Hamidieh AA, Hosseinkhani S. CRISPR, CAR-T, and NK: Current applications and future perspectives. Genes Dis. 2024;11(4):101121. doi: 10.1016/j.gendis.2023.101121

 

  1. Wang Y, Zafar N, Ali Q, et al. CRISPR/Cas genome editing technologies for plant improvement against biotic and abiotic stresses: Advances, limitations, and future perspectives. Cells. 2022;11(23):3928. doi: 10.3390/cells11233928

 

  1. Agrawal R. Emerging technologies for improvement of microbial strains using omic sciences and measuring methods for maximum product formation. In: Agrawal R, editor. Textbook of Industrial Microbiology. Berlin: Springer Nature; 2024. p. 13-39. doi: 10.1007/978-981-97-9582-6_2

 

  1. Matinvafa MA, Makani S, Parsasharif N, Zahed MA, Movahed E, Ghiasvand S. CRISPR-Cas technology secures sustainability through its applications: A review in green biotechnology. 3 Biotech. 2023;13(11):383. doi: 10.1007/s13205-023-03786-7

 

  1. Sadanov AK, Baimakhanova BB, Orasymbet SE, et al. Engineering useful microbial species for pharmaceutical applications. Microorganisms. 2025;13(3):599. doi: 10.3390/microorganisms13030599

 

  1. Cardiff RAL, Carothers JM, Zalatan JG, Sauro HM. Systems-level modeling for CRISPR-based metabolic engineering. ACS Synth Biol. 2024;13(9):2643-2652. doi: 10.1021/acssynbio.4c00053

 

  1. Li Y, Lin Z, Huang C, et al. Metabolic engineering of Escherichia coli using CRISPR–Cas9 meditated genome editing. Metabolic Eng. 2015;31:13-21. doi: 10.1016/j.ymben.2015.06.006

 

  1. Lu L, Shen X, Sun X, Yan Y, Wang J, Yuan Q. CRISPR-based metabolic engineering in non-model microorganisms. Curr Opin Biotechnol. 2022;75:102698. doi: 10.1016/j.copbio.2022.102698

 

  1. Zhao D, Zhu X, Zhou H, et al. CRISPR-based metabolic pathway engineering. Metab Eng. 2021;63:148-159. doi: 10.1016/j.ymben.2020.10.004

 

  1. Herrera ML, Paraíso-Luna J, Bustos-Martínez I, Barco Á. Targeting epigenetic dysregulation in autism spectrum disorders. Trends Mol Med. 2024;30(11):1028-1046. doi: 10.1016/j.molmed.2024.06.004

 

  1. Rittiner J, Cumaran M, Malhotra S, Kantor B. Therapeutic modulation of gene expression in the disease state: Treatment strategies and approaches for the development of next-generation of the epigenetic drugs. Front Bioeng Biotechnol. 2022;10:1035543. doi: 10.3389/fbioe.2022.1035543

 

  1. Devos Y, Mumford JD, Bonsall MB, et al. Potential use of gene drive modified insects against disease vectors, agricultural pests and invasive species poses new challenges for risk assessment. Crit Rev Biotechnol. 2022;42:254-270. doi: 10.1080/07388551.2021.1933891

 

  1. Jansson JK, McClure R, Egbert RG. Soil microbiome engineering for sustainability in a changing environment. Nat Biotechnol. 2023;41(12):1716-1728. doi: 10.1038/s41587-023-01932-3

 

  1. Mamatha Bhanu LS, Kataki S, Chatterjee S. CRISPR: New promising biotechnological tool in wastewater treatment. J Microbiol Methods. 2024;227:107066. doi: 10.1016/j.mimet.2024.107066

 

  1. Thakur N, Nigam M, Mann NA, et al. Host-mediated gene engineering and microbiome-based technology optimization for sustainable agriculture and environment. Funct Integr Genomics. 2023;23(1):57. doi: 10.1007/s10142-023-00982-9

 

  1. Chen K, Shen Z, Wang G, et al. Research progress of CRISPR-based biosensors and bioassays for molecular diagnosis. Front Bioeng Biotechnol. 2022;10:986233. doi: 10.3389/fbioe.2022.986233

 

  1. Wani AK, Akhtar N, Mir TG, et al. CRISPR/Cas12a-based biosensors for environmental monitoring and diagnostics. Environ Technol Innov. 2024;34:103625. doi: 10.1016/j.eti.2024.103625

 

  1. Huang X, Yang D, Zhang J, Xu J, Chen YE. Recent advances in improving gene-editing specificity through CRISPR-Cas9 nuclease engineering. Cells. 2022;11(14):2186. doi: 10.3390/cells11142186

 

  1. Ali N, Rampazzo RCP, Costa ADT, Krieger MA. Current nucleic acid extraction methods and their implications to point-of-care diagnostics. Biomed Res Int. 2017;2017:9306564. doi: 10.1155/2017/9306564

 

  1. Liu CW, Tsutsui H. Sample-to-answer sensing technologies for nucleic acid preparation and detection in the field. SLAS Technol. 2023;28(5):302-323. doi: 10.1016/j.slast.2023.06.002

 

  1. Hueso L, Martorell S, Sena-Torralba A, et al. Recombinase polymerase amplification technology for point-of-care diagnosis of neglected tropical diseases. Int J Infect Dis. 2025;153:107831. doi: 10.1016/j.ijid.2025.107831

 

  1. Lee Y, Lee M, Shin Y, Kim K, Kim T. Spatial omics in clinical research: A comprehensive review of technologies and guidelines for applications. Int J Mol Sci. 2025;26(9):3949. doi: 10.3390/ijms26093949

 

  1. Siddiqi S. The AJHCS strategic planning framework: Adapting government methodologies to enhance inpatient healthcare outcomes. Am J Healthc Strategy. 2024;1(2):1-5. doi: 10.61449/ajhcs.2024.1

 

  1. Al-Akayleh F, Ali Agha ASA. Trust, ethics, and user-centric design in AI-integrated genomics. In: 2024 2nd International Conference on Cyber Resilience (ICCR). 2024. p. 1-6. doi: 10.1109/ICCR61006.2024.10532890

 

  1. Athanasopoulou K, Michalopoulou VI, Scorilas A, Adamopoulos PG. Integrating artificial intelligence in next-generation sequencing: Advances, challenges, and future directions. Curr Issues Mol Biol. 2025;47(6):470. doi: 10.3390/cimb47060470

 

  1. Schlusser N, González A, Pandey M, Zavolan M. Current limitations in predicting mRNA translation with deep learning models. Genome Biol. 2024;25(1):227. doi: 10.1186/s13059-024-03369-6

 

  1. Lifecycle Governance for Explainable AI in Pharmaceutical Supply Chains: A Framework for Continuous Validation, Bias Auditing, and Equitable Healthcare Delivery. Researchgate; 2025. Available from: https://www.researchgate.net/publication/390427090_lifecycle_governance_for_explainable_ ai_in_pharmaceutical_supply_chains_a_framework_for_continuous_ validation_bias_auditing_and_equitable_healthcare_delivery [Last accessed on 2025 Jul 07].

 

  1. Kirpalani C, Kumar D. Integrating ethics and social responsibility in health informatics. In: Tripathi G, Shakya A, Kanga S, Guite LTS, Singh SK, editors. Sustainability and Health Informatics: A Systems Approach to Address the Climate Action Induced Global Challenge. Berlin: Springer Nature; 2024. p. 99-120. doi: 10.1007/978-981-97-6706-9_5

 

  1. Olaghere J, Williams DA, Farrar J, et al. Scientific advancements in gene therapies: Opportunities for global regulatory convergence. Biomedicines. 2025;13(3):758. doi: 10.3390/biomedicines13030758

 

  1. Ilcic A, Fuentes M, Lawler D. Artificial intelligence, complexity, and systemic resilience in global governance. Front Artif Intell. 2025;8:1562095. doi: 10.3389/frai.2025.1562095

 

  1. Al-Ouqaili MTS, Ahmad A, Jwair NA, Al-Marzooq F. Harnessing bacterial immunity: CRISPR-Cas system as a versatile tool in combating pathogens and revolutionizing medicine. Front Cell Infect Microbiol. 2025;15:1588446. doi: 10.3389/fcimb.2025.1588446

 

  1. Ewaisha R, Anderson KS. Immunogenicity of CRISPR therapeutics- Critical considerations for clinical translation. Front Bioeng Biotechnol. 2023;11:1138596. doi: 10.3389/fbioe.2023.1138596

 

  1. Jia S, Lv H, Li Q, Fan C, Wang F. DNA-based biocomputing circuits and their biomedical applications. Nat Rev Bioeng. 2025;3:535-548. doi: 10.1038/s44222-025-00303-8

 

  1. Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709-1712. doi: 10.1126/science.1138140

 

  1. Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. doi: 10.1126/science.1258096

 

  1. Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823-826. doi: 10.1126/science.1232033

 

  1. Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819-823. doi: 10.1126/science.1231143

 

  1. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-821. doi: 10.1126/science.1225829

 

  1. Available from: https://news.crisprtx.com/news-releases/news-release-details/crispr-therapeutics-and-vertex-establish-strategic-research [Last accessed on 2025 Jul 16].

 

  1. Editas Medicine, Inc. Common Stock (EDIT) Stock Price, Quote, News & History. Nasdaq. Available from: https://www.nasdaq.com/market-activity/ stocks/edit [Last accessed on 2025 Jul 16].

 

  1. CRISPR Therapeutics AG Common Shares (CRSP) Stock Price, Quote, News & History. Nasdaq. Available from: https://www.nasdaq.com/market-activity/stocks/crsp [Last accessed on 2025 Jul 16].

 

  1. Intellia Therapeutics, Inc. Common Stock (NTLA) Stock Price, Quote, News & History. Nasdaq. Available from: https://www.nasdaq.com/market-activity/stocks/ntla [Last accessed on 2025 Jul 16].

 

  1. Frangoul H, Altshuler D, Cappellini MD, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med. 2021;384(3):252-260. doi: 10.1056/NEJMoa2031054

 

  1. Vertex Pharmaceuticals Incorporated. A Phase 1/2/3 Study of the Safety and Efficacy of a Single Dose of Autologous CRISPR-Cas9 Modified CD34+ Human Hematopoietic Stem and Progenitor Cells (hHSPCs) in Subjects With Transfusion-Dependent β-Thalassemia; 2025. Available from: https:// clinicaltrials.gov/study/NCT03655678 [Last accessed on 2025 Jul 16].

 

  1. Celgene. A Phase 3, Multicenter, Randomized, Open-Label Study to Compare the Efficacy and Safety of Bb2121 Versus Standard Regimens in Subjects With Relapsed and Refractory Multiple Myeloma (RRMM) (KarMMa-3); 2022. Available from: https://clinicaltrials.gov/study/NCT03651128 [Last accessed on 2025 Jul 16].

 

  1. The Nobel Prize in Chemistry 2020. Available from: https://www. nobelprize.org/prizes/chemistry/2020/summary [Last accessed on 2025 Jul 16].

 

  1. STAT. Available from: https://www.statnews.com [Last accessed on 2025 Jul 16].

 

  1. Commissioner O of the. News & Events. FDA; 2024. Available from: https:// www.fda.gov/news-events [Last accessed on 2025 Jul 16].

 

  1. CRISPR-Based Gene Editing Market Size to Hit USD 13.39 Billion by 2034. Available from: https://www.precedenceresearch.com/crispr-based-gene-editing-market [Last accessed on 2025 Jul 16].

 

  1. Grand View Research. Available from: https://www.grandviewresearch. com/industry-analysis/crispr-genome-editing-market [Last accessed on 2025 Jul 16].

 

  1. Commissioner O of the. FDA Approves First Gene Therapies to Treat Patients with Sickle Cell Disease. FDA. Available from: https://www.fda.gov/ news-events/press-announcements/fda-approves-first-gene-therapies-treat-patients-sickle-cell-disease [Last accessed on 2025 May 22].

 

  1. Editas Medicine Announces New EDIT-301 Safety and Efficacy Data in 17 Patients, Presented Today at the American Society of Hematology (ASH) Annual Meeting and in a Company-sponsored Webinar. Editas Medicine. Available from: https://ir.editasmedicine.com/news-releases/news-release-details/editas-medicine-announces-new-edit-301-safety-and-efficacy-data [Last accessed on 2025 May 22].

 

  1. Beam Therapeutics to Highlight New Data from BEAM-101 Program in Sickle Cell Disease at European Hematology Association (EHA) 2025 Congress. Beam Therapeutics. Available from: https://investors.beamtx.com/news-releases/news-release-details/beam-therapeutics-highlight-new-data-beam-101-program-sickle [Last accessed on 2025 May 22].

 

  1. Intellia Therapeutics Announces First Patient Dosed in the Phase 3 MAGNITUDE Study of NTLA-2001 as a Single-Dose CRISPR-Based Treatment for Transthyretin Amyloidosis with Cardiomyopathy - Intellia Therapeutics. Available from: https://ir.intelliatx.com/news-releases/news-release-details/intellia-therapeutics-announces-first-patient-dosed-phase-3 [Last accessed on 2025 May 22].

 

  1. Marrugo-Ramírez J, Mir M, Samitier J. Blood-based cancer biomarkers in liquid biopsy: A promising non-invasive alternative to tissue biopsy. Int J Mol Sci. 2018;19(10):2877. doi: 10.3390/ijms19102877

 

  1. Durán-Vinet B, Araya-Castro K, Calderón J, et al. CRISPR/Cas13- based platforms for a potential next-generation diagnosis of colorectal cancer through exosomes micro-RNA detection: A review. Cancers. 2021;13(18):4640. doi: 10.3390/cancers13184640

 

  1. Acharya D, Mukhopadhyay A. A comprehensive review of machine learning techniques for multi-omics data integration: Challenges and applications in precision oncology. Brief Funct Genomics. 2024;23(5):549-560. doi: 10.1093/bfgp/elae013

 

  1. Abbasi AF, Asim MN, Dengel A. Transitioning from wet lab to artificial intelligence: A systematic review of AI predictors in CRISPR. J Transl Med. 2025;23(1):153. doi: 10.1186/s12967-024-06013
Share
Back to top