Microneedles in biomedicine: Innovations, challenges, and future prospects
The effective delivery of therapeutic drugs is fundamental to modern medical practice. However, conventional administration methods, primarily oral and parenteral injection, exhibit numerous limitations, including the suboptimal bioavailability of macromolecules and challenges related to patient compliance. The advent of microneedle (MN) technology is reshaping strategies in the biomedical field, effectively overcoming the constraints of traditional drug delivery and diagnostic approaches. Research indicates that MNs can penetrate the stratum corneum to form transient microchannels, facilitating the transdermal delivery of therapeutic agents while bypassing gastrointestinal and hepatic barriers. This customizable and personalized drug delivery system holds significant potential for clinical application. Beyond drug delivery, MNs also have the capacity to transform healthcare models through real-time biomarker monitoring enabled by contact with interstitial fluid. This technology demonstrates considerable promise in managing chronic conditions such as diabetes, while also opening avenues for applications in vaccination, tissue regeneration, and cancer therapy. Recent innovations include the development of stimulus-responsive MNs for precision medicine and their integration with wearable devices to achieve closed-loop therapeutic diagnostics. Despite the substantial promise of this field, challenges remain regarding clinical translation, particularly in relation to biocompatibility, mechanical strength, and drug stability. This review outlines MN classifications, design principles, and applications, emphasizing their expanding role not only in healthcare but also in precision medicine, global health, and food safety. By overcoming current barriers and integrating emerging technologies, MNs have the potential to transform diagnostic and therapeutic paradigms, delivering scalable, patient-centered solutions to a broad range of biomedical challenges.
- Jeong SH, Jang JH, Lee YB. Pharmacokinetic comparison of three different administration routes for topotecan hydrochloride in rats. Pharmaceuticals (Basel). 2020;13(9):231. doi: 10.3390/ph13090231
- Ouyang J, Zhang Z, Deng B, et al. Oral drug delivery platforms for biomedical applications. Mater Today. 2023;62:296-326. doi: 10.1016/j.mattod.2023.01.002
- Ait-Oudhia S, Chen J, Li J, van der Graaf PH. Subcutaneous biologics: Clinical pharmacology and drug development. Clin Pharmacol Ther. 2024;115(3):385-390. doi: 10.1002/cpt.3179
- Jin JF, Zhu LL, Chen M, et al. The optimal choice of medication administration route regarding intravenous, intramuscular, and subcutaneous injection. Patient Prefer Adherence. 2015;9:923-942. doi: 10.2147/PPA.S87271
- Brown MB, Martin GP, Jones SA, Akomeah FK. Dermal and transdermal drug delivery systems: Current and future prospects. Drug Deliv. 2006;13(3):175-187. doi: 10.1080/10717540500455975
- Sabbagh F, Kim BS. Recent advances in polymeric transdermal drug delivery systems. J Control Release. 2022;341:132-146. doi: 10.1016/j.jconrel.2021.11.025
- Xiao Z, He S, Huang X, et al. Preparation and transdermal performance study of a new S‐(‐)‐nicotine‐loaded nano flexible liposome hydrogel patch with long‐lasting and sustained drug‐release effects. ChemistrySelect. 2024;9(37):e202401440.doi: 10.1002/slct.202401440
- Pensado A, Hattam L, White KAJ, et al. Skin pharmacokinetics of transdermal scopolamine: Measurements and modeling. Mol Pharm. 2021;18(7):2714-2723. doi: 10.1021/acs.molpharmaceut.1c00238
- Park J, Lee H, Lim GS, Kim N, Kim D, Kim YC. Enhanced transdermal drug delivery by sonophoresis and simultaneous application of sonophoresis and iontophoresis. AAPS PharmSciTech. 2019;20(3):96. doi: 10.1208/s12249-019-1309-z
- Karve T, Banga AK. Comparative evaluation of physical and chemical enhancement techniques for transdermal delivery of linagliptin. Int J Pharm. 2024;654:123992. doi: 10.1016/j.ijpharm.2024.123992
- Vaidya J, Shende P. Potential of sonophoresis as a skin penetration technique in the treatment of rheumatoid arthritis with transdermal patch. AAPS PharmSciTech. 2020;21(5):180. doi: 10.1208/s12249-020-01725-w
- Ita KB, Popova IE. Influence of sonophoresis and chemical penetration enhancers on percutaneous transport of penbutolol sulfate. Pharm Dev Technol. 2016;21(8):990-995. doi: 10.3109/10837450.2015.1086373
- Gerstel MS, Place VA. Drug delivery device. Google Patents. US Patent No. US3964482A; 1976.
- Chiu TM, Hsu PC, Khan MY, et al. A perspective on imiquimod microneedles for treating warts. Pharmaceutics. 2021;13(5):607. doi: 10.3390/pharmaceutics13050607
- Cheng Y, Yang J, Han S, Lu Y. Near-infrared triggered biodegradable microneedle patch for controlled macromolecule drug release. Macromol Biosci. 2024;24(7):e2400105. doi: 10.1002/mabi.202400105
- Nejad HR, Sadeqi A, Kiaee G, et al. Low-cost and cleanroom-free fabrication of microneedles. Microsyst Nanoeng. 2018;4(1):17073. doi: 10.1038/micronano.2017.73
- Yang S, Feng Y, Zhang L, Chen N, Yuan W, Jin T. A scalable fabrication process of polymer microneedles. Int J Nanomedicine. 2012;7:1415-1422. doi: 10.2147/IJN.S28511
- Oh NG, Hwang SY, Na YH. Fabrication of a PVA-based hydrogel microneedle patch. ACS Omega. 2022;7(29):25179-25185. doi: 10.1021/acsomega.2c01993
- Ghanbariamin D, Samandari M, Ghelich P, et al. Cleanroom-free fabrication of microneedles for multimodal drug delivery. Small. 2023;19(29):e2207131. doi: 10.1002/smll.202207131
- Mizuno Y, Takasawa K, Hanada T, et al. Fabrication of novel-shaped microneedles to overcome the disadvantages of solid microneedles for the transdermal delivery of insulin. Biomed Microdevices. 2021;23(3):38. doi: 10.1007/s10544-021-00576-x
- Li X, Xie X, Wu Y, Zhang Z, Liao J. Microneedles: Structure, classification, and application in oral cancer theranostics. Drug Deliv Transl Res. 2023;13(9):2195-2212. doi: 10.1007/s13346-023-01311-0
- Lin S, Ouyang Y, Lin W, et al. Microenvironment-optimized GelMA microneedles for interstitial fluid extraction and real-time glucose detection. Surf Interfaces. 2024;45:103847. doi: 10.1016/j.surfin.2024.103847
- Bollella P, Sharma S, Cass AEG, Antiochia R. Minimally‐invasive microneedle‐based biosensor array for simultaneous lactate and glucose monitoring in artificial interstitial fluid. Electroanalysis. 2019;31(2):374-382. doi: 10.1002/elan.201800630
- Liu TT, Chen K, Wang Q. Skin drug permeability and safety through a vibrating solid micro-needle system. Drug Deliv Transl Res. 2018;8(5):1025-1033. doi: 10.1007/s13346-018-0544-2
- Li QY, Zhang JN, Chen BZ, Wang QL, Guo XD. A solid polymer microneedle patch pretreatment enhances the permeation of drug molecules into the skin. RSC Adv. 2017;7(25):15408-15415. doi: 10.1039/C6RA26759A
- Eş I, Kafadenk A, Gormus MB, Inci F. Xenon difluoride dry etching for the microfabrication of solid microneedles as a potential strategy in transdermal drug delivery. Small. 2023;19(27):e2206510. doi: 10.1002/smll.202206510
- Es I, Kafadenk A, Inci F. A high-precision method for manufacturing tunable solid microneedles using dicing saw and xenon difluoride-induced dry etching. J Mater Process Technol. 2024;325:118268. doi: 10.1016/j.jmatprotec.2023.118268
- Abdullah AC, Ahmadinejad E, Tasoglu S. Optimizing solid microneedle design: A comprehensive ML-augmented DOE approach. ACS Meas Sci Au. 2024;4(5):504-514. doi: 10.1021/acsmeasuresciau.4c00021
- Anbazhagan G, Suseela SB, Sankararajan R. Design, analysis and fabrication of solid polymer microneedle patch using CO2 laser and polymer molding. Drug Deliv Transl Res. 2023;13(6):1813-1827. doi: 10.1007/s13346-023-01296-w
- Chen BZ, Liu JL, Li QY, et al. Safety evaluation of solid polymer microneedles in human volunteers at different application sites. ACS Appl Bio Mater. 2019;2(12):5616-5625. doi: 10.1021/acsabm.9b00700
- Tabassum N, Rudd D, Yan L, et al. Porous silicon microneedle patches for delivery of polymyxin‐based antimicrobials. Nano Select. 2024;5(7-8):2300116. doi: 10.1002/nano.202300116
- Tabassum N, Alba M, Yan L, et al. Porous silicon microneedles for enhanced transdermal drug delivery. Adv Ther. 2023;6(1):2200156. doi: 10.1002/adtp.202200156
- Dardano P, De Martino S, Battisti M, Miranda B, Rea I, De Stefano L. One-shot fabrication of polymeric hollow microneedles by standard photolithography. Polymers (Basel). 2021;13(4):520. doi: 10.3390/polym13040520
- Ren Y, Li J, Chen Y, et al. Customized flexible hollow microneedles for psoriasis treatment with reduced-dose drug. Bioeng Transl Med. 2023;8(4):e10530. doi: 10.1002/btm2.10530
- Vinayakumar KB, Kulkarni PG, Nayak MM, et al. A hollow stainless steel microneedle array to deliver insulin to a diabetic rat. J Micromech Microeng. 2016;26(6):065013. doi: 10.1088/0960-1317/26/6/065013
- Parrilla M, Detamornrat U, Domínguez-Robles J, Donnelly RF, De Wael K. Wearable hollow microneedle sensing patches for the transdermal electrochemical monitoring of glucose. Talanta. 2022;249:123695. doi: 10.1016/j.talanta.2022.123695
- Resnik D, Možek M, Pečar B, et al. In vivo experimental study of noninvasive insulin microinjection through hollow Si microneedle array. Micromachines (Basel). 2018;9(1):40. doi: 10.3390/mi9010040
- Driskill MM, Coates IA, Hurst PJ, et al. Lyophilized SARS-CoV-2 self-amplifying RNA vaccines for microneedle array patch delivery. J Control Release. 2025;384:113944. doi: 10.1016/j.jconrel.2025.113944
- Tran KTM, Gavitt TD, Le TT, et al. A single-administration microneedle skin patch for multi-burst release of vaccine against SARS-CoV-2. Adv Mater Technol. 2023;8(3):202200905. doi: 10.1002/admt.202200905
- Rouphael NG, Paine M, Mosley R, et al. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): A randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet. 2017;390(10095):649-658. doi: 10.1016/S0140-6736(17)30575-5
- Mishra R, Maiti TK, Bhattacharyya TK. Feasibility studies on nafion membrane actuated micropump integrated with hollow microneedles for insulin delivery device. J Microelectromech Syst. 2019;28(6):987-996. doi: 10.1109/JMEMS.2019.2939189
- Xenikakis I, Tsongas K, Tzimtzimis EK, et al. Transdermal delivery of insulin across human skin in vitro with 3D printed hollow microneedles. J Drug Deliv Sci Technol. 2022;67:102891. doi: 10.1016/j.jddst.2021.102891
- Smith F, Kotowska AM, Fiedler B, et al. Using oscillation to improve the insertion depth and consistency of hollow microneedles for transdermal insulin delivery with mechanistic insights. Mol Pharm. 2025;22(1):316-329. doi: 10.1021/acs.molpharmaceut.4c00942
- Li R, Liu X, Yuan X, et al. Fast customization of hollow microneedle patches for insulin delivery. Int J Bioprint. 2022;8(2):553. doi: 10.18063/ijb.v8i2.553
- Zhang S, Sims J, Mehochko I, Zolovick R, Kwak T, Staples A. Design and characterization of 3D-printed hollow microneedle arrays for transdermal insulin delivery. AIP Adv. 2024;14(6):e065123. doi: 10.1063/5.0204216
- Davis SP, Martanto W, Allen MG, Prausnitz MR. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans Biomed Eng. 2005;52(5):909-915. doi: 10.1109/TBME.2005.845240
- Xiao N, Li H, Fan Z, et al. An electrochromism-equipped enzymatic biofuel cell system combined with hollow microneedle array for self-powered glucose sensing in interstitial fluid. Mikrochim Acta. 2025;192(4):224. doi: 10.1007/s00604-025-07096-y
- Yin S, Yu Z, Song N, et al. A long lifetime and highly sensitive wearable microneedle sensor for the continuous real-time monitoring of glucose in interstitial fluid. Biosens Bioelectron. 2024;244:115822. doi: 10.1016/j.bios.2023.115822
- Luo F, Li Z, Shi Y, et al. Integration of hollow microneedle arrays with jellyfish-shaped electrochemical sensor for the detection of biomarkers in interstitial fluid. Sensors (Basel). 2024;24(12):3729. doi: 10.3390/s24123729
- Chen J, Cheng P, Sun Y, et al. A minimally invasive hollow microneedle with a cladding structure: Ultra-thin but strong, batch manufacturable. IEEE Trans Biomed Eng. 2019;66(12):3480-3485. doi: 10.1109/TBME.2019.2906571
- Unver N, Odabas S, Demirel GB, Gul OT. Hollow microneedle array fabrication using a rational design to prevent skin clogging in transdermal drug delivery. J Mater Chem B. 2022;10(41):8419-8431. doi: 10.1039/d2tb01648f
- Datta A, Biswas S, Dhar R, Kanti Bhattacharyya T. Design and development of a piezoelectric driven micropump integrated with hollow microneedles for precise insulin delivery. J Micromech Microeng. 2023;33(7):075003. doi: 10.1088/1361-6439/acd25f
- Lee HS, Ryu HR, Roh JY, Park JH. Bleomycin-coated microneedles for treatment of warts. Pharm Res. 2017;34(1):101-112. doi: 10.1007/s11095-016-2042-x
- Jeong HR, Jun H, Cha HR, Lee JM, Park JH. Safe coated microneedles with reduced puncture occurrence after administration. Micromachines (Basel). 2020;11(8):710. doi: 10.3390/mi11080710
- Fu X, Zhang T, Xia C, et al. Spiderweb-shaped iron-coordinated polymeric network as the novel coating on microneedles for transdermal drug delivery against infectious wounds. Adv Healthc Mater. 2024;13(29):e2401788. doi: 10.1002/adhm.202401788
- Kim SJ, Shin JH, Noh JY, Song CS, Kim YC. Development of the novel coating formulations for skin vaccination using stainless steel microneedle. Drug Deliv Transl Res. 2016;6(5):486-497. doi: 10.1007/s13346-016-0321-z
- Choi IJ, Cha HR, Hwang SJ, Baek SK, Lee JM, Choi SO. Live vaccinia virus-coated microneedle array patches for smallpox vaccination and stockpiling. Pharmaceutics. 2021;13(2):209. doi: 10.3390/pharmaceutics13020209
- Baek SH, Shin JH, Kim YC. Drug-coated microneedles for rapid and painless local anesthesia. Biomed Microdevices. 2017;19(1):2. doi: 10.1007/s10544-016-0144-1
- Zhu Q, Zarnitsyn VG, Ye L, et al. Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge. Proc Natl Acad Sci U S A. 2009;106(19):7968-7973. doi: 10.1073/pnas.0812652106
- Shin Y, Kim J, Seok JH, et al. Development of the H3N2 influenza microneedle vaccine for cross-protection against antigenic variants. Sci Rep. 2022;12(1):12189. doi: 10.1038/s41598-022-16365-2
- Liang L, Zhao ZQ, Chen Y, Ren GY, Li JY, Guo XD. Some attempts to increase the amount of drug coated onto the microneedles. J Drug Deliv Sci Technol. 2022;67:102986. doi: 10.1016/j.jddst.2021.102986
- Matadh AV, Jakka D, Pragathi SG, et al. Polymer-coated polymeric (PCP) microneedles for controlled dermal delivery of 5-fluorouracil. AAPS PharmSciTech. 2022;24(1):9. doi: 10.1208/s12249-022-02471-x
- Lu Z, Du S, Li J, et al. Langmuir-blodgett-mediated formation of antibacterial microneedles for long-term transdermal drug delivery. Adv Mater. 2023;35(38):e2303388. doi: 10.1002/adma.202303388
- Mutlu ME, Ulag S, Sengor M, Daglılar S, Narayan R, Gunduz O. Electrosprayed collagen/gentamicin nanoparticles coated microneedle patches for skin treatment. Mater Lett. 2021;305:130844. doi: 10.1016/j.matlet.2021.130844
- Diao N, Qu H, Wang W, et al. Preparation and evaluation of a soluble microneedle loaded with resveratrol nanocrystals. J Drug Deliv Sci Technol. 2024;94:105463. doi: 10.1016/j.jddst.2024.105463
- Chen HJ, Lin DA, Liu F, et al. Transdermal delivery of living and biofunctional probiotics through dissolvable microneedle patches. ACS Appl Bio Mater. 2018;1(2):374-381. doi: 10.1021/acsabm.8b00102
- Cseh M, Katona G, Berkó S, Budai-Szűcs M, Csóka I. A stereolithography-based modified spin-casting method for faster laboratory-scale production of dexamethasone-containing dissolving microneedle arrays. Pharmaceutics. 2024;16(8):1005. doi: 10.3390/pharmaceutics16081005
- Kim NW, Kim SY, Lee JE, et al. Enhanced cancer vaccination by in situ nanomicelle-generating dissolving microneedles. ACS Nano. 2018;12(10):9702-9713. doi: 10.1021/acsnano.8b04146
- Lee IC, Lin WM, Shu JC, Tsai SW, Chen CH, Tsai MT. Formulation of two-layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice. J Biomed Mater Res A. 2017;105(1):84-93. doi: 10.1002/jbm.a.35869
- Li Y, Gong JY, Wang P, et al. Dissolving microneedle system containing Ag nanoparticle-decorated silk fibroin microspheres and antibiotics for synergistic therapy of bacterial biofilm infection. J Colloid Interface Sci. 2024;661:123-138. doi: 10.1016/j.jcis.2024.01.147
- Sabri AHB, Anjani QK, Gurnani P, et al. Fabrication and characterisation of poly(sulfonated) and poly(sulfonic acid) dissolving microneedles for delivery of antibiotic and antifungal agents. Int J Pharm. 2023;644:123292. doi: 10.1016/j.ijpharm.2023.123292
- Bauleth-Ramos T, El-Sayed N, Fontana F, Lobita M, Shahbazi MA, Santos HA. Recent approaches for enhancing the performance of dissolving microneedles in drug delivery applications. Mater Today. 2023;63:239-287. doi: 10.1016/j.mattod.2022.12.007
- Meng Y, Li XJ, Li Y, et al. Novel double-layer dissolving microneedles for transmucosal sequential delivery of multiple drugs in the treatment of oral mucosa diseases. ACS Appl Mater Interfaces. 2023;15(11):13892-13906. doi: 10.1021/acsami.2c19913
- Gu X, Wu Z, Wu D, et al. Hydrogel microneedle patch for treatment of liver fibrosis. Mater Today Adv. 2023;20:100417. doi: 10.1016/j.mtadv.2023.100417
- Dawud H, Edelstein-Pardo N, Mulamukkil K, Amir RJ, Abu Ammar A. Hydrogel microneedles with programmed mesophase transitions for controlled drug delivery. ACS Appl Bio Mater. 2024;7(3):1682-1693. doi: 10.1021/acsabm.3c01133
- Zhang Q, Na J, Liu X, He J. Exploration of the delivery of oncolytic newcastle disease virus by gelatin methacryloyl microneedles. Int J Mol Sci. 2024;25(4):2353. doi: 10.3390/ijms25042353
- Darmau B, Sacchi M, Texier I, Gross AJ. Self-extracting dextran-based hydrogel microneedle arrays with an interpenetrating bioelectroenzymatic sensor for transdermal monitoring with matrix protection. Adv Healthc Mater. 2025;14(2):e2403209. doi: 10.1002/adhm.202403209
- Baek S, Lee KP, Han CS, Kwon SH, Lee SJ. Hyaluronic acid-based biodegradable microneedles loaded with epidermal growth factor for treatment of diabetic foot. Macromol Res. 2024;32(1):13-22. doi: 10.1007/s13233-023-00206-w
- Chandran R, Mohd Tohit ER, Stanslas J, Salim N, Tuan Mahmood TM. Drug-loaded hydrogel microneedles for sustainable transdermal delivery of macromolecular proteins. Curr Drug Deliv. 2025. doi: 10.2174/0115672018346286241121052105
- Chi Y, Zheng Y, Pan X, et al. Enzyme-mediated fabrication of nanocomposite hydrogel microneedles for tunable mechanical strength and controllable transdermal efficiency. Acta Biomater. 2024;174:127-140. doi: 10.1016/j.actbio.2023.11.038
- Shriky B, Babenko M, Whiteside BR. Dissolving and swelling hydrogel-based microneedles: An overview of their materials, fabrication, characterization methods, and challenges. Gels. 2023;9(10):806. doi: 10.3390/gels9100806
- Chen S, Matsumoto H, Moro-Oka Y, et al. Smart microneedle fabricated with silk fibroin combined semi-interpenetrating network hydrogel for glucose-responsive insulin delivery. ACS Biomater Sci Eng. 2019;5(11):5781-5789. doi: 10.1021/acsbiomaterials.9b00532
- Bhadale RS, Londhe VY. Solid microneedle assisted transepidermal delivery of iloperidone loaded film: Characterization and skin deposition studies. J Drug Deliv Sci Technol. 2023;79:104028. doi: 10.1016/j.jddst.2022.104028
- Omolu A, Bailly M, Day RM. Assessment of solid microneedle rollers to enhance transmembrane delivery of doxycycline and inhibition of MMP activity. Drug Deliv. 2017;24(1):942-951. doi: 10.1080/10717544.2017.1337826
- Gholami S, Mohebi MM, Hajizadeh-Saffar E, Ghanian MH, Zarkesh I, Baharvand H. Fabrication of microporous inorganic microneedles by centrifugal casting method for transdermal extraction and delivery. Int J Pharm. 2019;558:299-310. doi: 10.1016/j.ijpharm.2018.12.089
- Li Y, Zhang H, Yang R, et al. Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics. Microsyst Nanoeng. 2019;5:41. doi: 10.1038/s41378-019-0077-y
- Chong RH, Gonzalez-Gonzalez E, Lara MF, et al. Gene silencing following siRNA delivery to skin via coated steel microneedles: In vitro and in vivo proof-of-concept. J Control Release. 2013;166(3):211-219. doi: 10.1016/j.jconrel.2012.12.030
- Mansouri Majd S. Hydrogel-coated microneedle biosensor for selective and low-potential glucose detection in skin-mimicking interstitial fluid phantoms. Talanta. 2025;297:128555. doi: 10.1016/j.talanta.2025.128555
- Liu Y, Zhao ZQ, Liang L, et al. Toward a solid microneedle patch for rapid and enhanced local analgesic action. Drug Deliv Transl Res. 2024;14(7):1810-1819. doi: 10.1007/s13346-023-01486-6
- Joy D, Jose J, Bibi S, et al. Development of microneedle patch loaded with bacopa monnieri solid lipid nanoparticles for the effective management of Parkinson’s disease [retracted in: Bioinorg Chem Appl. 2024;2024:9852582. doi: 10.1155/2024/9852582.]. Bioinorg Chem Appl. 2022;2022:9150205. doi: 10.1155/2022/9150205
- Liu J, Zhang Z, Lin X, et al. Magnesium metal-organic framework microneedles loaded with curcumin for accelerating oral ulcer healing. J Nanobiotechnology. 2024;22(1):594. doi: 10.1186/s12951-024-02873-y
- Zhang Y, Zhao G, Zheng M, Hu T, Yang C, Xu C. A nanometallic conductive composite-hydrogel core-shell microneedle skin patch for real-time monitoring of interstitial glucose levels. Nanoscale. 2023;15(40):16493-16500. doi: 10.1039/d3nr01245j
- Zhang R, Rana MS, Huang L, Qian K. An antibacterial sensitive wearable biosensor enabled by engineered metal-boride-based organic electrochemical transistors and hydrogel microneedles. J Mater Chem A. 2025;13(24):18590-18599. doi: 10.1039/d5ta01335f
- Gautier L, Wiart-Letort S, Massé A, et al. Design of hydrogel microneedle arrays for physiology monitoring of farm animals. Micromachines (Basel). 2024;16(9):1015. doi: 10.3390/mi16091015
- Mohan AMV, Windmiller JR, Mishra RK, Wang J. Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays. Biosens Bioelectron. 2017;91:574-579. doi: 10.1016/j.bios.2017.01.016
- Jin D, Xu Z, Zhao H, et al. A minimally invasive sensing system based on hydrogel microneedle patches and Au/Cu₂O nanospheres modified screen-printed carbon electrode for glucose monitoring in interstitial skin fluid. Microchem J. 2024;205:111367. doi: 10.1016/j.microc.2024.111367
- Dahis D, Dion MZ, Cryer AM, et al. Monitoring melanoma responses to sting agonism and focused ultrasound thermal ablation using microneedles and ultrasensitive single molecule arrays. Adv Funct Mater. 2023;33(50):2301659. doi: 10.1002/adfm.202301659
- Huang H, Qu M, Zhou Y, et al. A microneedle patch for breast cancer screening via minimally invasive interstitial fluid sampling. Chem Eng J. 2023;472:145036. doi: 10.1016/j.cej.2023.145036
- Li X, Zheng S, He M, et al. Self-calibrating multiplexed microneedle electrode array for continuous mapping of subcutaneous multi-analytes in diabetes. Innovation (Camb). 2025;6(2):100781. doi: 10.1016/j.xinn.2024.100781
- Liu Y, Yang L, Cui Y. A wearable, rapidly manufacturable, stability-enhancing microneedle patch for closed-loop diabetes management. Microsyst Nanoeng. 2024;10(1):112. doi: 10.1038/s41378-024-00663-y
- Yang Y, Sheng C, Dong F, Liu S. An integrated wearable differential microneedle array for continuous glucose monitoring in interstitial fluids. Biosens Bioelectron. 2024;256:116280. doi: 10.1016/j.bios.2024.116280
- Xu J, Yang B, Kong J, Zhang Y, Fang X. Real-time monitoring and early warning of a cytokine storm in vivo using a wearable noninvasive skin microneedle patch. Adv Healthc Mater. 2023;12(18):e2203133. doi: 10.1002/adhm.202203133
- Gao Z, Lu Z, Zhao S, et al. Microneedle sensor for real-time monitoring of inflammatory cytokine signature. Nano Today. 2025;64:102777. doi: 10.1016/j.nantod.2025.102777
- Yang J, Zhao X, Yan LX, Chen LJ, Yan XP. Dual-Indicator loaded porous polymer microneedle patches for rapid and colorimetric detection of water-injected meat. Food Chem. 2025;467:142218. doi: 10.1016/j.foodchem.2024.142218
- Xu W, Hu J, Liang H, Liu N, Zhou Y, Zhao Z. Construction of an effective colorimetric and fluorescent dual-mode microneedle patch for non-destructive detection of nitrite in pickling foods. Biosens Bioelectron. 2025;287:117744. doi: 10.1016/j.bios.2025.117744
- Huang S, Liu J, Liu Y, et al. Inhibit diffusion of the small molecule drug lidocaine hydrochloride in dissolving microneedles based on a phase separation approach. J Drug Deliv Sci Technol. 2024;100:106030. doi: 10.1016/j.jddst.2024.106030
- Wright N, Wu T, Wang Y. Multilayered microneedles for triphasic controlled delivery of small molecules and proteins. Macromol Biosci. 2024;24(4):e2300431. doi: 10.1002/mabi.202300431
- Bhatnagar S, Kumari P, Pattarabhiran SP, Venuganti VVK. Zein microneedles for localized delivery of chemotherapeutic agents to treat breast cancer: Drug loading, release behavior, and skin permeation studies. AAPS PharmSciTech. 2018;19(4):1818-1826. doi: 10.1208/s12249-018-1004-5
- He Y, Zang M, Zhang J, et al. A universal powder-laden crosslinked chitosan microneedle patch for high-dose controllable drug delivery. Int J Biol Macromol. 2024;255:127988. doi: 10.1016/j.ijbiomac.2023.127988
- Yang J, Chen Z, Ye R, et al. Touch-actuated microneedle array patch for closed-loop transdermal drug delivery. Drug Deliv. 2018;25(1):1728-1739.doi: 10.1080/10717544.2018.1507060
- Pires LR, Amado IR, Gaspar J. Dissolving microneedles for the delivery of peptides-Towards tolerance-inducing vaccines. Int J Pharm. 2020;586:119590. doi: 10.1016/j.ijpharm.2020.119590
- D’Amico C, Fusciello M, Hamdan F, et al. Transdermal delivery of PeptiCRAd cancer vaccine using microneedle patches. Bioact Mater. 2024;45:115-127. doi: 10.1016/j.bioactmat.2024.11.006
- Lee J, Neustrup MA, Slütter B, O’Mahony C, Bouwstra JA, van der Maaden K. Intradermal vaccination with PLGA nanoparticles via dissolving microneedles and classical injection needles. Pharm Res. 2024;41(2):305-319. doi: 10.1007/s11095-024-03665-7
- Pukfukdee P, Banlunara W, Rutwaree T, et al. Solid composite material for delivering viable cells into skin tissues via detachable dissolvable microneedles. ACS Appl Bio Mater. 2020;3(7):4581-4589. doi: 10.1021/acsabm.0c00498
- Hao T, Guo H, Wang C, et al. Mitochondria-targeted microneedles reverse doxorubicin resistance via apoptosis-ferroptosis synergy. ACS Nano. 2025;19(25):23315-23333. doi: 10.1021/acsnano.5c06302
- Li X, Xiao X, Zhang Y, et al. Microneedles based on hyaluronic acid-polyvinyl alcohol with antibacterial, anti-inflammatory, and antioxidant effects promote diabetic wound healing. Int J Biol Macromol. 2024;282(Pt 5):137185. doi: 10.1016/j.ijbiomac.2024.137185
- Liu S, Jin MN, Quan YS, et al. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin. J Control Release. 2012;161(3):933-941. doi: 10.1016/j.jconrel.2012.05.030
- Chen X, Yu H, Wang L, Shen D, Li C, Zhou W. Cross-linking-density-changeable microneedle patch prepared from a glucose-responsive hydrogel for insulin delivery. ACS Biomater Sci Eng. 2021;7(10):4870-4882. doi: 10.1021/acsbiomaterials.1c01073
- Zhao J, Wu Y, Chen J, et al. In vivo monitoring of microneedle-based transdermal drug delivery of insulin. J Innov Opt Health Sci. 2018;11(5):1850032. doi: 10.1142/S1793545818500323
- Kim Y, Min HS, Shin J, et al. Film-trigger applicator (FTA) for improved skin penetration of microneedle using punching force of carboxymethyl cellulose film acting as a microneedle applicator. Biomater Res. 2022;26(1):53. doi: 10.1186/s40824-022-00302-5
- Wang S, Yang C, Zhang W, et al. Glucose-responsive microneedle patch with high insulin loading capacity for prolonged glycemic control in mice and minipigs. ACS Nano. 2024;18(38):26056-26065. doi: 10.1021/acsnano.4c05562
- Xiu X, Fu H, Zhang R, et al. Novel antigen-presenting cell-targeted nanoparticles enhance split vaccine immunity through microneedles inoculation. Int J Nanomedicine. 2025;20:5529-5549. doi: 10.2147/IJN.S502724
- Kim YC, Lee JW, Esser ES, et al. Fabrication of microneedle patches with lyophilized influenza vaccine suspended in organic solvent. Drug Deliv Transl Res. 2021;11(2):692-701. doi: 10.1007/s13346-021-00927-4
- Choi Y, Lee GS, Li S, et al. Hepatitis B vaccine delivered by microneedle patch: Immunogenicity in mice and rhesus macaques. Vaccine. 2023;41(24):3663-3672. doi: 10.1016/j.vaccine.2023.05.005
- Zheng Y, Ling Z, Li Z, et al. A rapidly dissolvable microneedle patch with tip-accumulated antigens for efficient transdermal vaccination. Macromol Biosci. 2023;23(12):e2300253. doi: 10.1002/mabi.202300253
- Zheng Y, Li Z, Li S, et al. Separable nanocomposite hydrogel microneedles for intradermal and sustained delivery of antigens to enhance adaptive immune responses. Acta Biomater. 2024;185:203-214. doi: 10.1016/j.actbio.2024.07.031
- Zhang L, Xiu X, Li Z, et al. Coated porous microneedles for effective intradermal immunization with split influenza vaccine. ACS Biomater Sci Eng. 2023;9(12):6880-6890. doi: 10.1021/acsbiomaterials.3c01212
- Liu T, Sun Y, Jiang G, et al. Porcupine-inspired microneedles coupled with an adhesive back patching as dressing for accelerating diabetic wound healing. Acta Biomater. 2023;160:32-44. doi: 10.1016/j.actbio.2023.01.059
- Guo M, Wang Y, Gao B, He B. Shark tooth-inspired microneedle dressing for intelligent wound management. ACS Nano. 2021;15(9):15316-15327. doi: 10.1021/acsnano.1c06279
- Choi J, Shim S, Shin J, et al. Suprachoroidal space-inducing hydrogel-forming microneedles (SI-HFMN): An innovative platform for drug delivery to the posterior segment of the eye. Bioact Mater. 2025;50:47-60. doi: 10.1016/j.bioactmat.2025.03.024
- Liu J, Hu J, Li Y, et al. Microneedle-mediated biomimetic nanoparticles for targeted antioxidant and anti-inflammatory therapy in age-related macular degeneration. J Control Release. 2025;384:113908. doi: 10.1016/j.jconrel.2025.113908
- Ma J, Tai Z, Li Y, et al. Dissolving microneedle-based cascade-activation nanoplatform for enhanced photodynamic therapy of skin cancer. Int J Nanomedicine. 2024;19:2057-2070. doi: 10.2147/IJN.S443835
- Chen Y, Liu N, Feng S, Xu W, Mao C, Wan M. Microneedle-based nanomotor cancer vaccine combined with chemotherapy for synergistic melanoma therapy. Nanoscale. 2025;17(20):12716-12726. doi: 10.1039/d5nr01240f
- Xue H, Jin J, Huang X, et al. Wearable flexible ultrasound microneedle patch for cancer immunotherapy. Nat Commun. 2025;16(1):2650. doi: 10.1038/s41467-025-58075-z
- Huang S, Wen T, Wang J, et al. Nanoparticle-integrated dissolving microneedles for the co-delivery of R848/aPD-1 to synergistically reverse the immunosuppressive microenvironment of triple-negative breast cancer. Acta Biomater. 2024;176:344-355. doi: 10.1016/j.actbio.2024.01.009
- Lan X, Zhu W, Huang X, et al. Microneedles loaded with anti-PD-1- cisplatin nanoparticles for synergistic cancer immuno-chemotherapy. Nanoscale. 2020;12(36):18885-18898. doi: 10.1039/d0nr04213g
- Huang J, Yao Z, Li B, Ping Y. Targeted delivery of PROTAC-based prodrug activated by bond-cleavage bioorthogonal chemistry for microneedle-assisted cancer therapy. J Control Release. 2023;361:270-279. doi: 10.1016/j.jconrel.2023.07.062
- He Y, Chen N, Zang M, et al. Glucose-responsive insulin microneedle patches for long-acting delivery and release visualization. J Control Release. 2024;368:430-443. doi: 10.1016/j.jconrel.2024.03.001
- Tang N, Zheng Y, Jiang X, et al. Wearable sensors and systems for wound healing-related pH and temperature detection. Micromachines (Basel). 2021;12(4):430. doi: 10.3390/mi12040430
- Ullah A, Jang M, Khan H, et al. Microneedle array with a pH-responsive polymer coating and its application in smart drug delivery for wound healing. Sens Actuat B Chem. 2021;345:130441. doi: 10.1016/j.snb.2021.130441
- Deng S, Tai Y, Liu C, et al. Multifunctional microneedle-mediated photothermo-gas-ion synergic therapy accelerates MRSA infacted diabetic wound healing. Mater Today Bio. 2025;32:101903. doi: 10.1016/j.mtbio.2025.101903
- Zheng Z, Ye H, Wang J, et al. Visible-light-controllable drug release from multilayer-coated microneedles. J Mater Chem B. 2017;5(34):7014-7017. doi: 10.1039/c7tb01546a
- Liao Y, Liu C, Guo L, et al. Temperature-responsive detachable microneedles integrated with minoxidil nanoparticle for effectively promoting hair regrowth. Chem Eng J. 2024;495:153666. doi: 10.1016/j.cej.2024.153666
- Yang J, Gong X, Zheng Y, et al. Microneedle-based integrated pharmacokinetic and pharmacodynamic evaluation platform for personalized medicine. Nat Commun. 2025;16(1):6260. doi: 10.1038/s41467-025-61549-9
- Economidou SN, Pere CPP, Reid A, et al. 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery. Mater Sci Eng C Mater Biol Appl. 2019;102:743-755. doi: 10.1016/j.msec.2019.04.063
- Dul M, Alali M, Ameri M, et al. Assessing the risk of a clinically significant infection from a Microneedle Array Patch (MAP) product. J Control Release. 2023;361:236-245. doi: 10.1016/j.jconrel.2023.07.001
- Du G, Zhang Z, He P, Zhang Z, Sun X. Determination of the mechanical properties of polymeric microneedles by micromanipulation. J Mech Behav Biomed Mater. 2021;117:104384. doi: 10.1016/j.jmbbm.2021.104384
- Merzougui C, Yang X, Meng D, Huang Y, Zhao X. Microneedle array-based dermal interstitial fluid biopsy for cancer diagnosis: Advances and challenges. Adv Healthc Mater. 2025;14(7):e2404420. doi: 10.1002/adhm.202404420
