Lipid nanoparticle-based gene therapies for osteoarthritis: A review
Osteoarthritis (OA) remains a leading cause of disability and lacks approved disease-modifying pharmacotherapies, affecting over 500 million people worldwide. Over the past decade, advances in joint biology, molecular research on cartilage and subchondral bone degeneration, and nanomaterial studies for targeted delivery have driven gene therapy strategies for OA. Early clinical studies employing local delivery of anti-inflammatory or anabolic transgenes through adeno-associated virus, helper-dependent adenovirus, or plasmids have demonstrated intra-articular expression and initial safety, establishing regulatory and translational pathways. Recent advances in molecular biology and nanotechnology have enabled the emergence of RNA-based therapies delivered via lipid nanoparticles (LNPs). LNPs, clinically validated through their use in mRNA COVID-19 vaccines, offer a modular and scalable system for nucleic acid delivery. They provide stability for RNA constructs, enhance joint retention, and facilitate penetration into the dense extracellular matrix of cartilage. Preclinical studies have demonstrated that intra-articular administration of LNP-encapsulated small interfering RNAs and messenger RNAs can suppress inflammatory mediators, silence catabolic enzymes, and promote cartilage regeneration. This review summarizes recent studies on the design, optimization, and translational progress of LNP-based RNA therapies for OA, addressing ongoing challenges related to durability, re-dosing, scalability, and immunogenicity. It outlines a roadmap for achieving disease-modifying RNA therapeutics in OA.
- Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019;393(10182):1745-1759. doi: 10.1016/S0140-6736(19)30417-9
- Tang S, Zhang C, Oo WM, et al. Osteoarthritis. Nat Rev Dis Primers. 2025;11(1):10. doi: 10.1038/s41572-025-00594-6
- Liang W, Zhou C, Bai J, et al. Current advancements in therapeutic approaches in orthopedic surgery: A review of recent trends. Front Bioeng Biotechnol. 2024;2:1328997. doi: 10.3389/fbioe.2024.1328997
- Kim HJ, Le ND, Oh HJ, et al. Lipid nanoparticle-assisted mRNA therapy for cancer treatment. Appl Phys Rev. 2025;12(3):031328. doi: 10.1063/5.0247029
- Alfutaimani AS, Alharbi NK, Alahmari AS, Alqabbani AA, Aldayel AM. Exploring the landscape of Lipid Nanoparticles (LNPs): A comprehensive review of LNPs types and biological sources of lipids. Int J Pharm X. 2024;8:100305. doi: 10.1016/j.ijpx.2024.100305
- Qadir J, Wen SY, Yuan H, Yang BB. CircRNAs regulate the crosstalk between inflammation and tumorigenesis: The bilateral association and molecular mechanisms. Mol Ther. 2023;31(6):1514-1532. doi: 10.1016/j.ymthe.2022.12.005
- He AT, Liu J, Li F, Yang BB. Targeting circular RNAs as a therapeutic approach: Current strategies and challenges. Signal Transduct Target Ther. 2021;6(1):185. doi: 10.1038/s41392-021-00569-5
- Hołubowicz R, Du SW, Felgner J, et al. Safer and efficient base editing and prime editing via ribonucleoproteins delivered through optimized lipid-nanoparticle formulations. Nat Biomed Eng. 2025;9(1):57-78. doi: 10.1038/s41551-024-01296-2
- Guo J, Gu M, Chen Y, et al. Nucleic acid delivery by lipid nanoparticles for organ targeting. Chin Chem Lett. 2025:110849. doi: 10.1016/j.cclet.2025.110849
- Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6(12):1078-1094. doi: 10.1038/s41578-021-00358-0
- Leighton LJ, Chaudhary N, Tompkins HT, et al. The design, manufacture and LNP formulation of mRNA for research use. Nat Protocols. 2025 ;20(12):3552–3581. doi: 10.1038/s41596-025-01174-4
- Li M, Li X, He Z, et al. Delivery of GAS5 by LNP promotes tendon-bone healing in rotator cuff injury. Bioact Mater. 2025;51:758-773. doi: 10.1016/j.bioactmat.2025.06.009
- Ur Rehman S, Iqbal S, Shahid MU, Jahangir MS, Malik AL. Cartilage: Structure, function, and the pathogenesis of osteoarthritis. In: Advancements in Synovial Joint Science-Structure, Function, and Beyond. London: IntechOpen; 2024.
- Li B, Yang Z, Li Y, Zhang J, Li C, Lv N. Exploration beyond osteoarthritis: The association and mechanism of its related comorbidities. Front Endocrinol (Lausanne). 2024;15:1352671. doi: 10.3389/fendo.2024.1352671
- Alad M, Yousef F, Epure LM, et al. Unraveling osteoarthritis: Mechanistic insights and emerging therapies targeting pain and inflammation. Biomolecules. 2025;15(6):874. doi: 10.3390/biom15060874
- Shen Y, Xiong J, Zhang Y, Gao Z, Ding C, Lu Y. Messenger RNA therapy in bone and joint diseases: Rationale, delivery systems, and applications. BMT. 2025. doi: 10.12336/bmt.25.00011
- Kon E, Ad-El N, Hazan-Halevy I, Stotsky-Oterin L, Peer D. Targeting cancer with mRNA-lipid nanoparticles: Key considerations and future prospects. Nat Rev Clin Oncol. 2023;20(11):739-754. doi: 10.1038/s41571-023-00811-9
- Li T, Peng J, Li Q, Shu Y, Zhu P, Hao L. The mechanism and role of ADAMTS protein family in osteoarthritis. Biomolecules. 2022;12(7):959. doi: 10.3390/biom12070959
- Wang Z, Li W, Chen S, Tang XX. Role of ADAM and ADAMTS proteases in pathological tissue remodeling. Cell Death Discov. 2023;9(1):447. doi: 10.1038/s41420-023-01744-z
- Latourte A, Richette P. Inhibition of ADAMTS-5: The right target for osteoarthritis? Osteoarthritis Cartil. 2022;30(2):175-177. doi: 10.1016/j.joca.2021.09.012
- Xu Z, Ke T, Zhang Y, Guo L, Chen F, He W. Danshensu inhibits the IL-1β-induced inflammatory response in chondrocytes and osteoarthritis possibly via suppressing NF-κB signaling pathway. Mol Med. 2021;27(1):80. doi: 10.1186/s10020-021-00329-9
- Zhou D, Wei Y, Sheng S, et al. MMP13-targeted siRNA-loaded micelles for diagnosis and treatment of posttraumatic osteoarthritis. Bioact Mater. 2024;37:378-392. doi: 10.1016/j.bioactmat.2024.04.010
- Park H, Lee HR, Shin HJ, et al. p16INK4a-siRNA nanoparticles attenuate cartilage degeneration in osteoarthritis by inhibiting inflammation in fibroblast-like synoviocytes. Biomater Sci. 2022;10(12):3223-3235. doi: 10.1039/D1BM01941D
- Buckland J. RANKL from cartilage linked to subchondral bone loss. Nat Rev Rheumatol. 2012;8(8):439-439. doi: 10.1038/nrrheum.2012.110
- Feng T, Wu QF. A review of non-coding RNA related to NF-κB signaling pathway in the pathogenesis of osteoarthritis. Int Immunopharmacol. 2022;106:108607. doi: 10.1016/j.intimp.2022.108607
- Catheline SE, Bell RD, Oluoch LS, et al. IKKβ-NF-κB signaling in adult chondrocytes promotes the onset of age-related osteoarthritis in mice. Sci Signal. 2021;14(701):eabf3535. doi: 10.1126/scisignal.abf3535
- Warde N. Inducing tolerogenic DCs in arthritis. Nat Rev Rheumatol. 2011;7(8):437-437. doi: 10.1038/nrrheum.2011.92
- Bailey KN, Alliston T. At the crux of joint crosstalk: TGFβ signaling in the synovial joint. Curr Rheumatol Rep. 2022;24(6):184-197. doi: 10.1007/s11926-022-01074-6
- Hu K, Song M, Song T, Jia X, Song Y. Osteoimmunology in osteoarthritis: Unraveling the interplay of immunity, inflammation, and joint degeneration. J Inflamm Res. 2025;18(null):4121-4142. doi: 10.2147/JIR.S514002
- Kong K, Li B, Chang Y, et al. Delivery of FGF18 using mRNA-LNP protects the cartilage against degeneration via alleviating chondrocyte senescence. J Nanobiotechnology. 2025;23(1):34. doi: 10.1186/s12951-025-03103-9
- Rohner E, Yang R, Foo KS, Goedel A, Chien KR. Unlocking the promise of mRNA therapeutics. Nat Biotechnol. 2022;40(11):1586-1600. doi: 10.1038/s41587-022-01491-z
- Shang X. Mechanosensitive miRNAs in cartilage and subchondral bone remodeling: Emerging targets for osteoarthritis therapy. J Inflamm Res. 2025;18:9609-9625. doi: 10.2147/JIR.S529149
- Wei W, He S, Wang Z, et al. LINC01534 promotes the aberrant metabolic dysfunction and inflammation in IL-1β-simulated osteoarthritic chondrocytes by targeting miR-140-5p. Cartilage. 2021;13(2_suppl):898S-907S. doi: 10.1177/1947603519888787
- Chen Y, Huang H, Zhong W, Li L, Lu Y, Si HB. miR-140-5p protects cartilage progenitor/stem cells from fate changes in knee osteoarthritis. Int Immunopharmacol. 2023;114:109576. doi: 10.1016/j.intimp.2022.109576
- Liu D, Liang YH, Yang YT, et al. Circular RNA in osteoarthritis: An updated insight into the pathophysiology and therapeutics. Am J Transl Res. 2021;13(1):11-23.
- Pekáčová A, Baloun J, Švec X, Šenolt L. Non-coding RNAs in diseases with a focus on osteoarthritis. Wiley Interdiscip Rev RNA. 2023;14(3):e1756. doi: 10.1002/wrna.1756
- Liang ZJ, Tan J, Tang L, et al. NGF monoclonal antibody DS002 alleviates chemotherapy-induced peripheral neuropathy in rats. Acta Pharmacol Sin. 2022;43(11):2841-2847. doi: 10.1038/s41401-022-00904-8
- Liu S, Shen Y, Chen P, et al. Preparation and characterization of a high-affinity monoclonal antibody against nerve growth factor. Protein Expr Purif. 2022;189:105966. doi: 10.1016/j.pep.2021.105966
- Zhang J, Fan YX, Huang Y, et al. The safety, tolerability, pharmacokinetics and pharmacodynamics of single subcutaneous administration of a novel anti-NGF monoclonal antibody (AK115) in healthy participants: A randomized, double-blind, placebo-controlled, dose-escalation phase I clinical trial. Drug Des Dev Ther. 2025;19:3225-3235. doi: 10.2147/DDDT.S500902
- Tung NPH, Lim WM, Liew YK, et al. Recent advances in nanomedicine for ocular drug delivery. BMT. 2025. doi: 10.12336/bmt.25.00022
- Zhou K, Yuan M, Sun J, et al. Co-delivery of IL-1Ra and SOX9 via AAV inhibits inflammation and promotes cartilage repair in surgically induced osteoarthritis animal models. Gene Ther. 2025;32(3):211-222. doi: 10.1038/s41434-025-00515-y
- DeJulius CR, Walton BL, Colazo JM, et al. Engineering approaches for RNA-based and cell-based osteoarthritis therapies. Nat Rev Rheumatol. 2024;20(2):81-100. doi: 10.1038/s41584-023-01067-4
- Chen T, Weng W, Liu Y, Aspera-Werz RH, Nüssler AK, Xu J. Update on novel non-operative treatment for osteoarthritis: Current status and future trends. Front Pharmacol. 2021;12:755230. doi: 10.3389/fphar.2021.755230
- Zare M, Farhadi A, Zare F, et al. Genetically engineered E. coli invade epithelial cells and transfer their genetic cargo into the cells: An approach to a gene delivery system. Biotechnol Lett. 2023;45(7):861-871. doi: 10.1007/s10529-023-03387-7
- Harimoto T, Hahn J, Chen YY, et al. A programmable encapsulation system improves delivery of therapeutic bacteria in mice. Nat Biotechnol. 2022;40(8):1259-1269. doi: 10.1038/s41587-022-01244-y
- Nazli A, Malanga M, Sohajda T, Béni S. Cationic cyclodextrin-based carriers for drug and nucleic acid delivery. Pharmaceutics. 2025;17(1):81. doi: 10.3390/pharmaceutics17010081
- Khodaei R, Bayandori M, Sarpoli LMG, et al. Synthesis, characterization, and cellular investigation of three smart polymeric nanoparticles as efficient plasmid CRISPR (pCRISPR) delivery vehicles. Adv Nat Sci Nanosci Nanotechnol. 2024;15(4):045003. doi: 10.1088/2043-6262/ad6e5c
- Liu H, Su R, Qi W, Wang Y. Cationic polymers for gene delivery: Properties and functional optimization. ChemBioChem. 2025;26(10):e202500029. doi: 10.1002/cbic.202500029
- Thorat S, Bhattacharya S. Adrinogenic colon cancer treatment using poly (β-amino esters) (PBAEs): Mechanistic insights, advanced utilization approaches, and future directions. J Macromol Sci B. 2025;Part B:1-17. doi: 10.1080/00222348.2025.2495416
- Chen Q, Su L, He X, et al. Poly(beta-amino ester)-based nanoparticles enable nonviral delivery of base editors for targeted tumor gene editing. Biomacromolecules. 2022;23(5):2116-2125. doi: 10.1021/acs.biomac.2c00137
- Moosavi SG, Rahiman N, Jaafari MR, Arabi L. Lipid nanoparticle (LNP) mediated mRNA delivery in neurodegenerative diseases. J Control Release. 2025;381:113641. doi: 10.1016/j.jconrel.2025.113641
- Yu X, Xu T, Shi H, et al. Cartilage-targeting mRNA-lipid nanoparticles rescue perifocal apoptotic chondrocytes for integrative cartilage repair. Chem Eng J. 2023;465:142841. doi: 10.1016/j.cej.2023.142841
- Wen M, Guo X, Zhang J, et al. Non-coding RNA in cartilage regeneration: Regulatory mechanism and therapeutic strategies. Front Bioeng Biotechnol. 2025;13:1522303. doi: 10.3389/fbioe.2025.1522303
- Zhao Z, Wang P, Li Z, et al. Targeted lipid nanoparticles distributed in hydrogel treat osteoarthritis by modulating cholesterol metabolism and promoting endogenous cartilage regeneration. J Nanobiotechnol. 2024;22(1):786. doi: 10.1186/s12951-024-02965-9
- Pontes AP, Welting TJM, Rip J, Creemers LB. Polymeric nanoparticles for drug delivery in osteoarthritis. Pharmaceutics. 2022;14(12):2639. doi: 10.3390/pharmaceutics14122639
- Cui Y, Li N, Wu J, et al. Navigating the landscape of materials-based RNA delivery systems in bone healing. Adv Funct Mater. 2025:e09383. doi: 10.1002/adfm.202509383
- Anderson CD. Therapeutic potential for mRNA-based IGF-I regenerative therapy. Mol Ther Nucleic Acids. 2024;35(1):102143. doi: 10.1016/j.omtn.2024.102143
- Liu J, Zhang Y, Liu C, et al. A single dose of VEGF-A circular RNA sustains in situ long-term expression of protein to accelerate diabetic wound healing. J Control Release. 2024;373:319-335. doi: 10.1016/j.jconrel.2024.07.018
- Cai J, Qiu Z, Chi-Shing Cho W, et al. Synthetic circRNA therapeutics: Innovations, strategies, and future horizons. MedComm (2020). 2024;5(11):e720. doi: 10.1002/mco2.720
- Li M, Jia X, Lai P, et al. Injectable microenvironment-responsive hydrogels encapsulating engineered NF-κB-targeting circular RNA for osteoarthritis therapy. J Control Release. 2025;385:114039. doi: 10.1016/j.jconrel.2025.114039
- Omo-Lamai S, Zamora ME, Mueller BK, Casciano JC, Brenner JS. RNA-lipid nanoparticles for acute critical illnesses. Nat Rev Bioeng. 2025;3(9):775-790. doi: 10.1038/s44222-025-00314-5
- Sarmah S, Baidya S, De M. Recent advances in lipid nanoparticles: Nucleic acid therapeutics and targeting strategies. Small. 2025;21:e06812. doi: 10.1002/smll.202506812
- Xu S, Hu Z, Song F, Xu Y, Han X. Lipid nanoparticles: Composition, formulation, and application. Mol Ther Methods Clin Dev. 2025;33(2):101463. doi: 10.1016/j.omtm.2025.101463
- Ditto AJ, Shah PN, Yun YH. Non-viral gene delivery using nanoparticles. Expert Opin Drug Deliv. 2009;6(11):1149-1160. doi: 10.1517/17425240903241796
- Yao Z, Liu T, Wang J, et al. Targeted delivery systems of siRNA based on ionizable lipid nanoparticles and cationic polymer vectors. Biotechnol Adv. 2025;81:108546. doi: 10.1016/j.biotechadv.2025.108546
- Zhang H, Barz M. Investigating the stability of RNA-lipid nanoparticles in biological fluids: Unveiling its crucial role for understanding LNP performance. J Control Release. 2025;381:113559. doi: 10.1016/j.jconrel.2025.02.055
- Zhao X, Lin J, Liu M, et al. Targeting FAP-positive chondrocytes in osteoarthritis: A novel lipid nanoparticle siRNA approach to mitigate cartilage degeneration. J Nanobiotechnology. 2024;22(1):659. doi: 10.1186/s12951-024-02946-y
- Liu J, Liu J, Mu W, et al. Delivery strategy to enhance the therapeutic efficacy of liver fibrosis via nanoparticle drug delivery systems. ACS Nano. 2024;18(32):20861-20885. doi: 10.1021/acsnano.4c02380
- Dong C, Tan D, Sun H, et al. Interleukin-12 Delivery strategies and advances in tumor immunotherapy. Curr Issues Mol Biol. 2024;46:11548-11579.
- Joyce M, Hodgkinson T, Intini C, Dixon J, Kelly D, O’Brien F. Gene activated reinforced scaffolds for SOX9 delivery to enhance repair of large load bearing articular cartilage defects. Eur Cells Mater. 2024;47:91-108. doi: 10.22203/eCM.v047a07
- Sun M, Ma B, Pan Z, et al. Targeted therapy of osteoarthritis via intra-articular delivery of lipid-nanoparticle-encapsulated recombinant human FGF18 mRNA. Adv Healthc Mater. 2024;13(29):2400804. doi: 10.1002/adhm.202400804
- Mori Y, Saito T, Chang SH, et al. Identification of fibroblast growth factor-18 as a molecule to protect adult articular cartilage by gene expression profiling. J Biol Chem. 2014;289(14):10192-10200. doi: 10.1074/jbc.M113.524090
- Huang K, Liu X, Qin H, et al. FGF18 encoding circular mRNA-LNP based on glycerolipid engineering of mesenchymal stem cells for efficient amelioration of osteoarthritis. Biomater Sci. 2024;12(17):4427-4439.
- Kong K, Li B, Chang Y, et al. Delivery of FGF18 using mRNA-LNP protects the cartilage against degeneration via alleviating chondrocyte senescence. J Nanobiotechnol. 2025;23(1):34. doi: 10.1186/s12951-025-03103-9
- DeJulius CR, Gulati S, Hasty KA, Crofford LJ, Duvall CL. Recent advances in clinical translation of intra-articular osteoarthritis drug delivery systems. Adv Ther (Weinh). 2021;4(1):2000088. doi: 10.1002/adtp.202000088
- Cao X, Cai Z, Zhang J, Zhao F. Engineering circular RNA medicines. Nat Rev Bioeng. 2025;3(4):270-287. doi: 10.1038/s44222-024-00259-1
- Mazziotta C, Badiale G, Cervellera CF, Tognon M, Martini F, Rotondo JC. Regulatory mechanisms of circular RNAs during human mesenchymal stem cell osteogenic differentiation. Theranostics. 2024;14(1):143-158. doi: 10.7150/thno.89066
- Guo SK, Suo J, Huang Y, et al. Therapeutic circRNA aptamer alleviates PKR-associated osteoarthritis. Sci Bull (Beijing). 2025;70(14):2232-2236. doi: 10.1016/j.scib.2025.02.027
- Zhao DW, Zhang J, Chen C, et al. Rejuvenation modulation of nucleus pulposus progenitor cells reverses senescence-associated intervertebral disc degeneration. Adv Mater. 2025;37(7):2409979. doi: 10.1002/adma.202409979
- Di Francesco M, Fragassi A, Pannuzzo M, Ferreira M, Brahmachari S, Decuzzi P. Management of osteoarthritis: From drug molecules to nano/micromedicines. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(3):e1780. doi: 10.1002/wnan.1780
- Zhou L, Rubin LE, Liu C, Chen Y. Short interfering RNA (siRNA)- based therapeutics for cartilage diseases. Regen Eng Transl Med. 2021;7(3):283-290. doi: 10.1007/s40883-020-00149-z
- Shi Y, Zhen X, Zhang Y, et al. Chemically modified platforms for better RNA therapeutics. Chem Rev. 2024;124(3):929-1033. doi: 10.1021/acs.chemrev.3c00611
- Zhuo Y, Luo Z, Zhu Z, et al. Direct cytosolic delivery of siRNA via cell membrane fusion using cholesterol-enriched exosomes. Nat Nanotechnol. 2024;19(12):1858-1868. doi: 10.1038/s41565-024-01785-0
- Gandek TB, van der Koog L, Nagelkerke A. A comparison of cellular uptake mechanisms, delivery efficacy, and intracellular fate between liposomes and extracellular vesicles. Adv Healthc Mater. 2023;12(25):2300319. doi: 10.1002/adhm.202300319
- Chen Y, Su YC, Roffler SR. Polyethylene glycol immunogenicity in nanomedicine. Nat Rev Bioeng. 2025;3:742-760. doi: 10.1038/s44222-025-00321-6
- Tenchov R, Sasso JM, Zhou QA. PEGylated lipid nanoparticle formulations: Immunological safety and efficiency perspective. Bioconjug Chem. 2023;34(6):941-960. doi: 10.1021/acs.bioconjchem.3c00174
- Huang H, Lou Z, Zheng S, et al. Intra-articular drug delivery systems for osteoarthritis therapy: Shifting from sustained release to enhancing penetration into cartilage. Drug Deliv. 2022;29(1):767-791. doi: 10.1080/10717544.2022.2048130
- Rohila A, Shukla R. Recent advancements in microspheres mediated targeted delivery for therapeutic interventions in osteoarthritis. J Microencapsul. 2024;41(6):434-455. doi: 10.1080/02652048.2024.2373723
- Singh R, Malhotra H, Jadhav K, et al. Intelligently actuating dual-barrier hyaluronic acid-functionalized inflammation-responsive nanohydrogel for targeted rheumatoid arthritis therapy. ACS Appl Mater Interfaces. 2025;17(28):40012-40034. doi: 10.1021/acsami.5c06055
- Jana K, Ghosh S, Debnath B, et al. Recent advancements of hyaluronic acid nanoscaffolds in arthritis management. ChemistrySelect. 2024;9(32):e202402035. doi: 10.1002/slct.202402035
- Yang Y, Zhang H. Intra-articular injection of nanomaterials for the treatment of osteoarthritis: From lubrication function restoration to cell and gene therapy. Adv Funct Mater. 2024;34(30):2401547. doi: 10.1002/adfm.202401547
- Song S, Ma X, Li X, et al. Targeting a key pro-fibrotic factor S100A4 in cartilage to alleviate osteoarthritis progression and pain. Nano Today. 2025;63:102755. doi: 10.1016/j.nantod.2025.102755
- Madry H, Kaul G, Cucchiarini M, et al. Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Ther. 2005;12(15):1171-1179. doi: 10.1038/sj.gt.3302515
- Guo X, Zheng Q, Yang S, et al. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor β1 gene. Biomed Mater. 2006;1(4):206-215. doi: 10.1088/1748-6041/1/4/006
- Kim JY, Rhim WK, Lee SY, et al. Hybrid nanoparticle engineered with transforming growth factor -β1-overexpressed extracellular vesicle and cartilage-targeted anti-inflammatory liposome for osteoarthritis. ACS Nano. 2024;18(50):33937-33952. doi: 10.1021/acsnano.4c07992
- Choi S, Choi H, Chung JW, Kim SH. Injectable endoplasmin-loaded lipid nanoparticles-hydrogel composite for cartilage regeneration. Tissue Eng Regen Med. 2025;22(4):409-424. doi: 10.1007/s13770-024-00698-2
- Deng Z, Liu S. Inflammation-responsive delivery systems for the treatment of chronic inflammatory diseases. Drug Deliv Transl Res. 2021;11(4):1475-1497. doi: 10.1007/s13346-021-00977-8
- Morici L, Jordan O, Allémann E, Rodríguez-Nogales C. Recent advances in nanocrystals for arthritis drug delivery. Expert Opin Drug Deliv. 2025;22(7):1031-1042. doi: 10.1080/17425247.2025.2505758
- Han Y, Cao L, Li G, Zhou F, Bai L, Su J. Harnessing nucleic acids nanotechnology for bone/cartilage regeneration. Small. 2023;19(37):2301996. doi: 10.1002/smll.202301996
- Mancino C, Franke M, Greco A, et al. RNA therapies for musculoskeletal conditions. J Control Release. 2025;377:756-766. doi: 10.1016/j.jconrel.2024.11.057
