Cite this article
11
Download
74
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Cubosomes as smart nanocarriers for antimicrobial agents: A review of emerging applications

Bazigha K. Abdul Rasool1* Raneem Zakaria1 Nour Hijazi1 Aliasgar Shahiwala1
Show Less
1 Department of Pharmaceutical Sciences, College of Pharmacy, Dubai Medical University, Dubai, United Arab Emirates
Submitted: 27 May 2025 | Revised: 17 November 2025 | Accepted: 19 November 2025 | Published: 17 December 2025
© 2025 by the Author(s). Licensee Biomaterials Translational, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0) (https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en)
Abstract

Cubosomes, a distinctive class of lipid-based nanocarriers, have gained increasing attention as an advanced platform for drug delivery due to their bicontinuous cubic phase structure, high drug-loading capacity, and ability to provide sustained and controlled release. These nanoparticles are self-assembled from amphiphilic lipids and stabilizers, forming a highly ordered internal architecture that enables efficient encapsulation of hydrophilic, lipophilic, and amphiphilic molecules. This review summarizes recent advancements in the design and application of cubosome-based delivery systems, with emphasis on their structural composition, preparation techniques, and the advantages that they offer over conventional nanocarriers. Focus is also placed on their emerging role in antimicrobial therapy, where cubosomes have demonstrated significant potential as carriers for antibacterial, antiviral, and antifungal agents. Current research highlights the proficiency of cubosomes in enhancing solubility, improving bioavailability, and increasing the therapeutic effectiveness of various antimicrobial drugs. Their ability to overcome limitations such as rapid degradation, poor permeability, and drug resistance positions them as promising tools in combating persistent and emerging infectious diseases. Moreover, cubosomes have shown potential in disrupting biofilms and improving targeted delivery, further expanding their therapeutic relevance. Despite their promising attributes, challenges remain regarding large-scale manufacturing, stability during storage, and optimization of formulation parameters. Addressing these limitations will be essential to facilitate the clinical translation of cubosome-based nanomedicines. Future studies should focus on scalable production methods, enhanced stability strategies, and comprehensive in vivo evaluations to fully harness the potential of cubosomes in modern antimicrobial therapy.

Keywords
Cubosomes
Nanocarriers
Antimicrobial therapy
Drug delivery
Sustained release
Bioavailability
Funding
None.
Conflict of interest
The authors declare no competing financial interest.
References
  1. Sivadasan D, Sultan MH, Alqahtani SS, Javed S. Cubosomes in drug delivery-a comprehensive review on its structural components, preparation techniques and therapeutic applications. Biomedicines. 2023;11(4):1114. doi: 10.3390/biomedicines11041114

 

  1. Pan X, Han K, Peng X, et al. Nanostructured cubosomes as advanced drug delivery system. Curr Pharm Des. 2013;19(35):6290-6297. doi: 10.2174/1381612811319350006

 

  1. Chang C, Meikle TG, Drummond CJ, Yang Y, Conn CE. Comparison of cubosomes and liposomes for the encapsulation and delivery of curcumin. Soft Matter. 2021;17(12):3306-3313. doi: 10.1039/D0SM01655A

 

  1. Umar H, Wahab HA, Gazzali AM, Tahir H, Ahmad W. Cubosomes: Design, development, and tumor-targeted drug delivery applications. Polymers (Basel). 2022;14(15):3118. doi: 10.3390/polym14153118

 

  1. Zhang L, Li J, Tian D, Sun L, Wang X, Tian M. Theranostic combinatorial drug-loaded coated cubosomes for enhanced targeting and efficacy against cancer cells. Cell Death Dis. 2020;11(1):1. doi: 10.1038/s41419-019-2182-0

 

  1. Sadhu VR, Beram NS, Kantamneni P. A review on cubosome: The novel drug delivery system. GSC Biol Pharm Sci. 2018;5(1):076-081. doi: 10.30574/gscbps.2018.5.1.0089

 

  1. Gaballa SA, El Garhy OH, Abdelkader H. Cubosomes: Composition, Preparation, and Drug Delivery Applications. Available from: https://jabps. journals.ekb.eg

 

  1. Bhosale RR, Osmani RA, Harkare BR, Ghodake PP. Cubosomes: The inimitable nanoparticulate drug carriers. Sch Acad J Pharm. 2013;2(6):481-486.

 

  1. Mercan DA, Niculescu AG, Grumezescu AM. Nanoparticles for antimicrobial agents delivery-an up-to-date review. Int J Mol Sci. 2022;23(22):13862. doi: 10.3390/ijms232213862

 

  1. Attri N, Das S, Banerjee J, Shamsuddin SH, Dash SK, Pramanik A. Liposomes to cubosomes: The evolution of lipidic nanocarriers and their cutting-edge biomedical applications. ACS Appl Bio Mater. 2024;7(5):2677-2694. doi: 10.1021/acsabm.4c00153

 

  1. Suhag D, Thakur P, Thakur A. Introduction to nanotechnology. In: Integrated Nanomaterials and their Applications. Singapore: Springer Nature; 2023. p. 1-17. doi: 10.1007/978-981-99-6105-4_1

 

  1. Lara HH, Garza-Treviño EN, Ixtepan-Turrent L, Singh DK. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnology. 2011;9:30. doi: 10.1186/1477-3155-9-30

 

  1. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76-83. doi: 10.1016/j.biotechadv.2008.09.002

 

  1. Zhang L, Pornpattananangkul D, Hu CMJ, Huang CM. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem. 2010;17:585-594. doi: 10.2174/092986710790416290

 

  1. Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M. Broad-spectrum bioactivities of silver nanoparticles: The emerging trends and future prospects. Appl Microbiol Biotechnol. 2014;98(5):1951-1961. doi: 10.1007/s00253-013-5473-x

 

  1. Griffith DE, Thomson R, Flume PA, et al. Amikacin liposome inhalation suspension for refractory Mycobacterium avium complex lung disease: Sustainability and durability of culture conversion and safety of long-term exposure. Chest. 2021;160:831-842. doi: 10.1016/j.chest.2021.03.070

 

  1. Lembo D, Donalisio M, Civra A, Argenziano M, Cavalli R. Nanomedicine formulations for the delivery of antiviral drugs: A promising solution for the treatment of viral infections. Expert Opin Drug Deliv. 2018;15(1):93-114. doi: 10.1080/17425247.2017.1360863

 

  1. Nath AG, Dubey P, Kumar A, et al. Recent advances in the use of cubosomes as drug carriers with special emphasis on topical applications. J Lipids. 2024;2024(1):2683466. doi: 10.1155/2024/2683466

 

  1. Rizwan SB, Boyd BJ. Cubosomes: Structure, Preparation and Use as an Antigen Delivery System. Berlin: Springer; 2015. p. 125-140. doi: 10.1007/978-1-4939-1417-3_7

 

  1. Kaur SD, Singh G, Singh G, Singhal K, Kant S, Bedi N. Cubosomes as potential nanocarrier for drug delivery: A comprehensive review. J Pharm Res Int. 2021;33:118-135. doi: 10.9734/jpri/2021/v33i31b31698

 

  1. Gustafsson J, Ljusberg-Wahren H, Almgren M, Re Larsson K. Cubic lipid-water phase dispersed into submicron particles. Langmuir. 1996;12:4611-4613. doi: 10.1021/la960318y

 

  1. Dong YD, Larson I, Hanley T, Boyd BJ. Bulk and dispersed aqueous phase behavior of phytantriol: Effect of vitamin E acetate and F127 polymer on liquid crystal nanostructure. Langmuir. 2006;22(23):9512-9518. doi: 10.1021/la061706v

 

  1. Yaghmur A, Laggner P, Almgren M, Rappolt M. Self-assembly in monoelaidin aqueous dispersions: Direct vesicles to cubosomes transition. PLoS One. 2008;3(11):e3747. doi: 10.1371/journal.pone.0003747

 

  1. Abraham T, Hato M, Hirai M. Polymer-dispersed bicontinuous cubic glycolipid nanoparticles. Biotechnol Prog. 2005;21(1):255-262. doi: 10.1021/bp0498544

 

  1. Chong JYT, Mulet X, Waddington LJ, Boyd BJ, Drummond CJ. Steric stabilisation of self-assembled cubic lyotropic liquid crystalline nanoparticles: High throughput evaluation of triblock polyethylene oxide-polypropylene oxide-polyethylene oxide copolymers. Soft Matter. 2011;7(10):4768-4777. doi: 10.1039/c1sm05181d

 

  1. Chong JYT, Mulet X, Waddington LJ, Boyd BJ, Drummond CJ. High-throughput discovery of novel steric stabilizers for cubic lyotropic liquid crystal nanoparticle dispersions. Langmuir. 2012;28(25):9223-9232. doi: 10.1021/la301874v

 

  1. Spicer PT, Small WB, Lynch ML, Burns JL. Dry powder precursors of cubic liquid crystalline nanoparticles (cubosomes). J Nanopart Res. 2002;4:297-211. doi: 10.1023/A:1021184216308

 

  1. Rosa M, Infante MR, Miguel MDG, Lindman B. Spontaneous formation of vesicles and dispersed cubic and hexagonal particles in amino acid-based catanionic surfactant systems. Langmuir. 2006;22(13):5588-5596. doi: 10.1021/la053464p

 

  1. Muller F, Salonen A, Glatter O. Monoglyceride-based cubosomes stabilized by Laponite: Separating the effects of stabilizer, pH and temperature. Colloids Surf A Physicochem Eng Asp. 2010;358(1-3):50-56. doi: 10.1016/j.colsurfa.2010.01.021

 

  1. Ahmed LM, Hassanein KMA, Mohamed FA, Elfaham TH. Formulation and evaluation of simvastatin cubosomal nanoparticles for assessing its wound healing effect. Sci Rep. 2023;13(1):17941. doi: 10.1038/s41598-023-44304-2

 

  1. Palma AS, Casadei BR, Lotierzo MC, de Castro RD, Barbosa LRS. A short review on the applicability and use of cubosomes as nanocarriers. Biophys Rev. 2023;15(4):553-567. doi: 10.1007/s12551-023-01089-y

 

  1. Huang J, Peng T, Li Y, et al. Ocular cubosome drug delivery system for timolol maleate: Preparation, characterization, cytotoxicity, ex vivo, and in vivo evaluation. AAPS PharmSciTech. 2017;18(8):2919-2926. doi: 10.1208/s12249-017-0763-8

 

  1. Kamble SN, Subhedar R, Chougule NB. A comprehensive review on cubosomes. Int J Pharm Sci. 2024;2:1728-1739. doi: 10.5281/zenodo.11388371

 

 

  1. Ramteke KH, Joshi SA, Dhole SN. Solid lipid nanoparticle: A review. IOSR J Pharm. 2012;2:34-44.
  2. Sosnik A, Seremeta KP. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv Colloid Interface Sci. 2015;223:40-54. doi: 10.1016/j.cis.2015.05.003

 

  1. von Halling Laier C, Gibson B, van de Weert M, et al. Spray dried cubosomes with ovalbumin and Quil-A as a nanoparticulate dry powder vaccine formulation. Int J Pharm. 2018;550(1-2):35-44. doi: 10.1016/j.ijpharm.2018.08.036

 

  1. Mondal SK, Chakraborty S, Manna S, Mandal SM. Antimicrobial nanoparticles: Current landscape and future challenges. RSC Pharm. 2024;1(3):388-402. doi: 10.1039/d4pm00032c

 

  1. Laxminarayan R, Duse A, Wattal C, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013;13(12):1057-1098. doi: 10.1016/S1473-3099(13)70318-9

 

  1. Mba IE, Nweze EI. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: Research progress, challenges, and prospects. World J Microbiol Biotechnol. 2021;37(6):108. doi: 10.1007/s11274-021-03070-x

 

  1. Bazán Henostroza MA, Diniz Tavares G, Nishitani Yukuyama M, et al. Antibiotic-loaded lipid-based nanocarrier: A promising strategy to overcome bacterial infection. Int J Pharm. 2022;621:121782. doi: 10.1016/j.ijpharm.2022.121782

 

  1. Alharbi WS, Hosny KM. Development and optimization of ocular in situ gels loaded with ciprofloxacin cubic liquid crystalline nanoparticles. J Drug Deliv Sci Technol. 2020;57:101710. doi: 10.1016/j.jddst.2020.101710

 

  1. Nasr M, Saber S, Bazeed AY, et al. Advantages of cubosomal formulation for gatifloxacin delivery in the treatment of bacterial keratitis: In vitro and in vivo approach using clinical isolate of methicillin-resistant Staphylococcus aureus. Materials (Basel). 2022;15(9):3374. doi: 10.3390/ma15093374

 

  1. Iyer BAN, Vasantha PV. Development and characterization of moxifloxacin hydrochloride cubogel for enhanced ocular drug delivery. Int J Pharm Investig. 2024;14(2):472-481. doi: 10.5530/ijpi.14.2.57

 

  1. Jain A. Topical delivery of erythromycin through cubosomes for acne. Pharm Nanotechnol. 2018;6:38-47. doi: 10.2174/2211738506666180209100222

 

  1. Zaker H, Taymouri S, Mostafavi A. Formulation and physicochemical characterization of azithromycin-loaded cubosomes. Res Pharm Sci. 2023;18(1):49-58. doi: 10.4103/1735-5362.363595

 

  1. Ramalheiro A, Paris JL, Silva BFB, Pires LR. Rapidly dissolving microneedles for the delivery of cubosome-like liquid crystalline nanoparticles with sustained release of rapamycin. Int J Pharm. 2020;591:119942. doi: 10.1016/j.ijpharm.2020.119942

 

  1. Le Tiec C, Barrail A, Goujard C, Taburet AM. Clinical pharmacokinetics and summary of efficacy and tolerability of atazanavir. Clin Pharmacokinet. 2005;44(10):1035-1050. doi: 10.2165/00003088-200544100-00003

 

  1. Guedes MDV, Marques MS, Berlitz SJ, et al. Lamivudine and zidovudine-loaded nanostructures: Green chemistry preparation for pediatric oral administration. Nanomaterials (Basel). 2023;13(4):770. doi: 10.3390/nano13040770

 

  1. Anderson PL, Rower JE. Zidovudine and lamivudine for HIV infection. Clin Med Rev Ther. 2010;2:a2004.

 

  1. Branham ML, Moyo T, Govender T. Preparation and solid-state characterization of ball milled saquinavir mesylate for solubility enhancement. Eur J Pharm Biopharm. 2012;80(1):194-202. doi: 10.1016/j.ejpb.2011.08.005

 

  1. Khoshdooz S, Khoshdooz P, Bonyad R, Bonyad A, Sheidaei S, Nosrati R. Cubosomes-based hydrogels; A promising advancement for drug delivery. Int J Pharm. 2025;674:125510. doi: 10.1016/J.IJPHARM.2025.125510

 

  1. Gawarkar-Patil P, Mahajan B, Pawar A, Dhapte-Pawar V. Cubosomes: Evolving platform for intranasal drug delivery of neurotherapeutics. Future J Pharm Sci. 2024;10(1):1-16. doi: 10.1186/S43094-024-00665-7

 

  1. Chettupalli AK, Ananthula M, Amarachinta PR, Bakshi V, Yata VK. Design, formulation, in-vitro and ex-vivo evaluation of atazanavir loaded cubosomal gel. Biointerface Res Appl Chem. 2021;11(4):12037-12054. doi: 10.33263/BRIAC114.1203712054

 

  1. Hosny KM. Nanosized cubosomal thermogelling dispersion loaded with saquinavir mesylate to improve its bioavailability: Preparation, optimization, in vitro and in vivo evaluation. Int J Nanomedicine. 2020;15:5113-5129. doi: 10.2147/IJN.S261855

 

  1. Avachat AM, Parpani SS. Formulation and development of bicontinuous nanostructured liquid crystalline particles of efavirenz. Colloids Surf B Biointerfaces. 2015;126:87-97. doi: 10.1016/j.colsurfb.2014.12.014

 

  1. Miranda I, Misra B, Manjunath MC, Nayak G, Likhitha U, Nayak UY. Responsive nano-structured cubosomes: Advancements and therapeutic applications. Adv Pharm Bull. 2025;15(2):284-292. doi: 10.34172/APB.025.43330

 

  1. Leu JSL, Teoh JJX, Ling ALQ, et al. Recent advances in the development of liquid crystalline nanoparticles as drug delivery systems. Pharmaceutics. 2023;15(5):1421. doi: 10.3390/pharmaceutics15051421

 

  1. Prajapati V, Jain A, Jain R, Sahu S, Kohli DV. Treatment of cutaneous candidiasis through fluconazole encapsulated cubosomes. Drug Deliv Transl Res. 2014;4(5-6):400-408. doi: 10.1007/s13346-014-0202-2

 

  1. Said M, Aboelwafa AA, Elshafeey AH, Elsayed I. Central composite optimization of ocular mucoadhesive cubosomes for enhanced bioavailability and controlled delivery of voriconazole. J Drug Deliv Sci Technol. 2021;61:102075. doi: 10.1016/j.jddst.2020.102075

 

  1. Nitika N, Khan I, Sultana Y. Formulation, development and optimization of itraconazole cubosomal gel for the treatment of candidiasis. Int J Pharm Anal Acta. 2020;3(1):15-19.

 

  1. Kazi M, Dehghan MH. Development of inhalable cubosome nanoparticles of Nystatin for effective management of invasive pulmonary aspergillosis. İstanbul J Pharm. 2020;50(3):224-237. doi: 10.26650/IstanbulJPharm.2020.0006

 

  1. Ka Khalifa M, Khalifa MK. Miconazole nitrate based cubosome hydrogels for topical application. Int J Drug Deliv. 2015;7:1-12.

 

  1. Omar S, Ismail A, Hassanin K, Hamdy S. Formulation and evaluation of cubosomes as skin retentive system for topical delivery of clotrimazole. J Adv Pharm Res. 2019;3(2):68-82. doi: 10.21608/aprh.2019.9839.1079

 

  1. Purohit AA, Chavan DU, Marques SM, et al. Formulation and evaluation of a novel cubosomal emulgel for topical delivery of luliconazole. Tenside Surfactants Deterg. 2022;59(5):373-382. doi: 10.1515/TSD-2022-2442/XML

 

  1. Nath AG, Vaiphei KK, Kumar A, et al. Dual drug loaded topical cubosomal gel against Candida albicans: An in vitro and in vivo proof of concept. AAPS PharmSciTech. 2025;26(3):77. doi: 10.1208/S12249-025-03070-2

 

  1. Karami Z, Hamidi M. Cubosomes: Remarkable drug delivery potential. Drug Discov Today. 2016;21(5):789-801. doi: 10.1016/j.drudis.2016.01.004

 

  1. Zeng L, Ke Y, Zheng C, et al. Remote loading of hydrophilic drug into cubosomes by transmembrane pH-gradient and characterization of drug-loaded cubosomes prepared by different method. J Pharm Sci. 2023;112(4):1119-1129. doi: 10.1016/j.xphs.2022.12.024

 

  1. Barriga HMG, Holme MN, Stevens MM. Cubosomen: Die nächste generation intelligenter lipid‐nanopartikel? Angew Chem. 2019;131(10):2984-3006. doi: 10.1002/ange.201804067

 

  1. Yang Z, Tan Y, Chen M, et al. Development of amphotericin B-loaded cubosomes through the SolEmuls technology for enhancing the oral bioavailability. AAPS PharmSciTech. 2012;13(4):1483-1491. doi: 10.1208/S12249-012-9876-2/METRICS

 

  1. Chauhan R. Formulation and evaluation of butenafine hydrochloride loaded cubosomal gel. Int J Pharm Sci Res. 2023;14(11):5441. doi: 10.13040/IJPSR.0975-8232.14(11).5441-50

 

  1. Abdalla KF, Kamoun EA, El Maghraby GM. Optimization of the entrapment efficiency and release of ambroxol hydrochloride alginate beads. J Appl Pharm Sci. 2015;5(4):13-19. doi: 10.7324/JAPS.2015.50403

 

  1. Tauseef A, Hisam F, Hussain T, et al. Nanomicrobiology: Emerging trends in microbial synthesis of nanomaterials and their applications. J Clust Sci. 2023;34(2):639-664. doi: 10.1007/S10876-022-02256-Z

 

  1. Stone NRH, Bicanic T, Salim R, Hope W. Liposomal amphotericin B (AmBisome®): A review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs. 2016;76(4):485. doi: 10.1007/S40265-016-0538-7

 

  1. Khan O, Chaudary N. The use of amikacin liposome inhalation suspension (Arikayce) in the treatment of refractory nontuberculous mycobacterial lung disease in adults. Drug Des Devel Ther. 2020;14:2287. doi: 10.2147/dddt.s146111

 

  1. ACTICOAT Antimicrobial Barrier Dressings. Smith+Nephew USA. Available from: https://www.smith-nephew.com/en-us/health-care-professionals/products/advanced-wound-management/acticoat-global?utm_source=chatgpt.com [Last accessed on 2025 Apr 13].

 

  1. Dey S, Mohanty DL, Divya N, et al. A critical review on zinc oxide nanoparticles: Synthesis, properties and biomedical applications. Intell Pharm. 2025;3(1):53-70. doi: 10.1016/J.IPHA.2024.08.004

 

  1. Rajesh S, Gangadoo S, Nguyen H, et al. Application of fluconazole-loaded pH-sensitive lipid nanoparticles for enhanced antifungal therapy. ACS Appl Mater Interfaces. 2022;14(29):32845-32854. doi: 10.1021/ACSAMI.2C05165

 

  1. Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623-633. doi: 10.1038/nrmicro2415

 

  1. Lakic B, Beh C, Sarkar S, et al. Cubosome lipid nanocarriers for delivery of ultra-short antimicrobial peptides. J Colloid Interface Sci. 2025;677:1080-1097. doi: 10.1016/J.JCIS.2024.07.232

 

  1. Ahsan A, Thomas N, Barnes TJ, et al. Lipid nanocarriers-enabled delivery of antibiotics and antimicrobial adjuvants to overcome bacterial biofilms. Pharmaceutics. 2024;16(3):396. doi: 10.3390/PHARMACEUTICS16030396

 

  1. Rizwan SB, Assmus D, Boehnke A, et al. Preparation of phytantriol cubosomes by solvent precursor dilution for the delivery of protein vaccines. Eur J Pharm Biopharm. 2011;79(1):15-22. doi: 10.1016/J.EJPB.2010.12.034

 

  1. Lee D, Seo Y, Khan MS, et al. Use of nanoscale materials for the effective prevention and extermination of bacterial biofilms. Biotechnol Bioprocess Eng. 2018;23(1):1-10. doi: 10.1007/S12257-017-0348-0/METRICS

 

  1. Liposome Drug Products: Chemistry, Manufacturing, and Controls; Human Pharmacokinetics and Bioavailability; and Labeling Documentation. FDA. Available from: https://www.fda.gov/regulatory-information/ search-fda-guidance-documents/liposome-drug-products-chemistry-manufacturing-and-controls-human-pharmacokinetics-and [Last accessed on 2025 Apr 16].

 

  1. Comments Invited on Draft Reflection Paper on Data Requirements for Iron-Based Nanocolloidal Products Developed with Reference to an Innovator Medicine. European Medicines Agency (EMA). Available from: https://www.ema. europa.eu/en/news/comments-invited-draft-reflection-paper-data-requirements-iron-based-nanocolloidal-products-developed-reference-innovator-medicine [Last accessed on 2025 Apr 16].

 

  1. Singh S, Sachan K, Verma S, Singh N, Singh PK. Cubosomes: An emerging and promising drug delivery system for enhancing cancer therapy. Curr Pharm Biotechnol. 2024;25(6):757-771. doi: 10.2174/0113892010257937231025065352

 

  1. Chountoulesi M, Pispas S, Tseti IK, Demetzos C. Lyotropic liquid crystalline nanostructures as drug delivery systems and vaccine platforms. Pharmaceuticals (Basel). 2022;15(4):429. doi: 10.3390/PH15040429

 

  1. Spicer P. Cubosome processing: Industrial nanoparticle technology development. Chem Eng Res Des. 2005;83(11 A):1283-1286. doi: 10.1205/cherd.05087

 

  1. Prow TW, Grice JE, Lin LL, et al. Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev. 2011;63(6):470-491. doi: 10.1016/J.ADDR.2011.01.012

 

  1. Freitas C, Müller RH. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLNTM) dispersions. Int J Pharm. 1998;168(2):221-229. doi: 10.1016/S0378-5173(98)00092-1

 

  1. Azmi IDM, Moghimi SM, Yaghmur A. Cubosomes and hexosomes as versatile platforms for drug delivery. Ther Deliv. 2015;6(12):1347-1364. doi: 10.4155/TDE.15.81
Share
Back to top