Cellular mechanisms of osteoporosis: A comprehensive perspective on ferroptosis, cuproptosis and lipid metabolism abnormalities
Osteoporosis is a prevalent skeletal disorder characterised by reduced bone mineral density and compromised bone microarchitecture, leading to increased bone fragility and increased risk of fracture. Recent studies have implicated ferroptosis, cuproptosis, and dysregulated lipid metabolism as pivotal factors in the pathogenesis of osteoporosis. Ferroptosis is an iron-dependent form of cell death that disrupts the balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption by promoting lipid peroxidation and inducing cellular injury. Cuproptosis, associated with disruptions in copper homeostasis, influences bone cell integrity through oxidative stress and inflammatory responses, thereby impacting bone density. Aberrant lipid metabolism may exacerbate osteoporosis by disrupting bone-fat homeostasis, oxidative stress, and inflammatory responses. This review synthesizes the interplay between cuproptosis, ferroptosis, and lipid metabolism, elucidates the cellular mechanisms underlying osteoporosis, and accordingly provides novel therapeutic targets and intervention strategies, potentially enhancing osteoporosis prevention and treatment.
- Ensrud KE, Crandall CJ. Osteoporosis. Ann Intern Med. 2024;177: ITC1-ITC16. doi: 10.7326/AITC202401160
- Salari N, Ghasemi H, Mohammadi L, et al. The global prevalence of osteoporosis in the world: A comprehensive systematic review and meta-analysis. J Orthop Surg Res. 2021;16:609. doi: 10.1186/s13018-021-02772-0
- Xiao PL, Cui AY, Hsu CJ, et al. Global, regional prevalence, and risk factors of osteoporosis according to the World Health Organization diagnostic criteria: A systematic review and meta-analysis. Osteoporos Int. 2022;33:2137-2153. doi: 10.1007/s00198-022-06454-3
- Adler RA. Update on rare adverse events from osteoporosis therapy and bisphosphonate drug holidays. Endocrinol Metab Clin North Am. 2021;50:193-203. doi: 10.1016/j.ecl.2021.03.003
- Wang L, You X, Zhang L, Zhang C, Zou W. Mechanical regulation of bone remodeling. Bone Res. 2022;10:16. doi: 10.1038/s41413-022-00190-4
- Reid IR, Billington EO. Drug therapy for osteoporosis in older adults. Lancet. 2022;399:1080-1092. doi: 10.1016/S0140-6736(21)02646-5
- Jörg DJ, Fuertinger DH, Cherif A, et al. Modeling osteoporosis to design and optimize pharmacological therapies comprising multiple drug types. Elife. 2022;11:e76228. doi: 10.7554/eLife.76228
- Starling S. Gene linked to adverse effects of osteoporosis drug. Nat Rev Endocrinol. 2020;16:402-403. doi: 10.1038/s41574-020-0378-0
- Stockwell BR, Jiang X, Gu W. Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol. 2020;30:478-490. doi: 10.1016/j.tcb.2020.02.009
- Fang X, Ardehali H, Min J, Wang F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol. 2023;20:7-23. doi: 10.1038/s41569-022-00735-4
- Jiang X, Stockwell BR, Conrad M. Ferroptosis: Mechanisms biology and role in disease. Nat Rev Mol Cell Biol. 2021;22:266-282.
- Chen L, Min J, Wang F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther. 2022;7:378. doi: 10.1038/s41392-022-01229-y
- Wang D, Tian Z, Zhang P, et al. The molecular mechanisms of cuproptosis and its relevance to cardiovascular disease. Biomed Pharmacother. 2023;163:114830. doi: 10.1016/j.biopha.2023.114830
- Chen L, Chen XW, Huang X, Song BL, Wang Y, Wang Y. Regulation of glucose and lipid metabolism in health and disease. Sci China Life Sci. 2019;62:1420-1458. doi: 10.1007/s11427-019-1563-3
- Ebeling PR, Nguyen HH, Aleksova J, Vincent AJ, Wong P, Milat F. Secondary osteoporosis. Endocr Rev. 2022;43:240-313. doi: 10.1210/endrev/bnab028
- Ou YJ, Lee JI, Huang SP, Chen SC, Geng JH, Su CH. Association between menopause, postmenopausal hormone therapy and metabolic syndrome. J Clin Med. 2023;12:4435. doi: 10.3390/jcm12134435
- Lingvay I, Sumithran P, Cohen RV, Le Roux CW. Obesity management as a primary treatment goal for type 2 diabetes: Time to reframe the conversation. Lancet. 2022;399:394-405. doi: 10.1016/S0140-6736(21)01919-X
- Zhang AMY, Wellberg EA, Kopp JL, Johnson JD. Hyperinsulinemia in obesity, inflammation and cancer. Diabetes Metab J. 2021;45:285-311. doi: 10.4093/dmj.2020.0250
- Weivoda MM, Bradley EW. Macrophages and bone remodeling. J Bone Miner Res. 2023;38:359-369. doi: 10.1002/jbmr.4773
- Maheshwari S, Singh A, Verma A. Ferroptosis: A frontier in osteoporosis. Horm Metab Res. 2024;56:625-632. doi: 10.1055/a-2230-2664
- Liu P, Wang W, Li Z, et al. Ferroptosis: A new regulatory mechanism in osteoporosis. Oxid Med Cell Longev. 2022;2022:2634431. doi: 10.1155/2022/2634431
- Tian B, Li X, Li W, et al. CRYAB suppresses ferroptosis and promotes osteogenic differentiation of human bone marrow stem cells via binding and stabilizing FTH1. Aging (Albany NY). 2024;16:8965-8979. doi: 10.18632/aging.205851
- Lu H, Zheng Y, Wang D. ATF3 affects osteogenic differentiation in inflammatory hPDLSCs by mediating ferroptosis via regulating the Nrf2/HO-1 signaling pathway. Tissue Cell. 2024;89:102447.
- Sun F, Zhou JL, Liu ZL, Jiang ZW, Peng H. Dexamethasone induces ferroptosis via P53/SLC7A11/GPX4 pathway in glucocorticoid-induced osteonecrosis of the femoral head. Biochem Biophys Res Commun. 2022;602:149-155. doi: 10.1016/j.bbrc.2022.02.112
- Luo C, Xu W, Tang X, et al. Canonical Wnt signaling works downstream of iron overload to prevent ferroptosis from damaging osteoblast differentiation. Free Radic Biol Med. 2022;188:337-350. doi: 10.1016/j.freeradbiomed.2022.06.236
- Lin B, Deng X, Xu P, et al. Structural characterization and anti-osteoporosis effect of an arabinomannan from Anemarrhena asphodeloides Bge. Int J Biol Macromol. 2023;231:123324. doi: 10.1016/j.ijbiomac.2023.123324
- Li M, Pan Z, He Q, et al. Arctiin attenuates iron overload-induced osteoporosis by regulating the PI3K/Akt pathway. Int J Mol Med. 2023;52:108. doi: 10.3892/ijmm.2023.5311
- Stockwell BR. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 2022;185:2401-2421. doi: 10.1016/j.cell.2022.06.003
- Jiang L, Song X, Yan L, Liu Y, Qiao X, Zhang W. Molecular insights into the interplay between type 2 diabetes mellitus and osteoporosis: Implications for endocrine health. Front Endocrinol (Lausanne). 2024;15:1483512. doi: 10.3389/fendo.2024.1483512
- Wang X, Ma H, Sun J, et al. Mitochondrial ferritin deficiency promotes osteoblastic ferroptosis via mitophagy in type 2 diabetic osteoporosis. Biol Trace Elem Res. 2022;200:298-307. doi: 10.1007/s12011-021-02627-z
- Ma HD, Shi L, Li HT, Wang XD, Yang MW. Polycytosine RNA-binding protein 1 regulates osteoblast function via a ferroptosis pathway in type 2 diabetic osteoporosis. World J Diabetes. 2024;15:977-987. doi: 10.4239/wjd.v15.i5.977
- Zhang Z, Ji C, Wang YN, et al. Maresin1 suppresses high-glucose-induced ferroptosis in osteoblasts via NRF2 activation in type 2 diabetic osteoporosis. Cells. 2022;11:2560. doi: 10.3390/cells11162560
- Jin C, Tan K, Yao Z, et al. A novel anti-osteoporosis mechanism of VK2: Interfering with ferroptosis via AMPK/SIRT1 pathway in type 2 diabetic osteoporosis. J Agric Food Chem. 2023;71:2745-2761. doi: 10.1021/acs.jafc.2c05632
- Lu J, Yang J, Zheng Y, Chen X, Fang S. Extracellular vesicles from endothelial progenitor cells prevent steroid-induced osteoporosis by suppressing the ferroptotic pathway in mouse osteoblasts based on bioinformatics evidence. Sci Rep. 2019;9:16130. doi: 10.1038/s41598-019-52513-x
- Martiniakova M, Biro R, Penzes N, et al. Links among obesity, type 2 diabetes mellitus, and osteoporosis: Bone as a target. Int J Mol Sci. 2024;25:4827. doi: 10.3390/ijms25094827
- He J, Li Z, Xia P, et al. Ferroptosis and ferritinophagy in diabetes complications. Mol Metab. 2022;60:101470. doi: 10.1016/j.molmet.2022.101470
- Zhang C, Li H, Li J, Hu J, Yang K, Tao L. Oxidative stress: A common pathological state in a high-risk population for osteoporosis. Biomed Pharmacother. 2023;163:114834. doi: 10.1016/j.biopha.2023.114834
- Yang K, Cao F, Xue Y, Tao L, Zhu Y. Three classes of antioxidant defense systems and the development of postmenopausal osteoporosis. Front Physiol. 2022;13:840293. doi: 10.3389/fphys.2022.840293
- Sun H, Xu J, Wang Y, et al. Bone microenvironment regulative hydrogels with ROS scavenging and prolonged oxygen-generating for enhancing bone repair. Bioact Mater. 2023;24:477-496. doi: 10.1016/j.bioactmat.2022.12.021
- Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019;575:688-692. doi: 10.1038/s41586-019-1705-2
- Xu P, Lin B, Deng X, Huang K, Zhang Y, Wang N. VDR activation attenuates osteoblastic ferroptosis and senescence by stimulating the Nrf2/GPX4 pathway in age-related osteoporosis. Free Radic Biol Med. 2022;193:720-735. doi: 10.1016/j.freeradbiomed.2022.11.013
- Deng X, Lin B, Wang F, Xu P, Wang N. Mangiferin attenuates osteoporosis by inhibiting osteoblastic ferroptosis through Keap1/Nrf2/ SLC7A11/GPX4 pathway. Phytomedicine. 2024;124:155282. doi: 10.1016/j.phymed.2023.155282
- Xu CY, Xu C, Xu YN, et al. Poliumoside protects against type 2 diabetes-related osteoporosis by suppressing ferroptosis via activation of the Nrf2/GPX4 pathway. Phytomedicine. 2024;125:155342. doi: 10.1016/j.phymed.2024.155342
- Lin Y, Shen X, Ke Y, et al. Activation of osteoblast ferroptosis via the METTL3/ASK1-p38 signaling pathway in high glucose and high fat (HGHF)-induced diabetic bone loss. FASEB J. 2022;36:e22147. doi: 10.1096/fj.202101610R
- Chen X, Liu C, Yu R, et al. Interaction between ferroptosis and TNF-α: Impact in obesity-related osteoporosis. FASEB J. 2023;37:e22947. doi: 10.1096/fj.202201958R
- Ransy C, Vaz C, Lombès A, Bouillaud F. Use of H2O2 to cause oxidative stress the catalase issue. Int J Mol Sci. 2020;21:9149. doi: 10.3390/ijms21239149
- Jiang Z, Wang H, Qi G, Jiang C, Chen K, Yan Z. Iron overload-induced ferroptosis of osteoblasts inhibits osteogenesis and promotes osteoporosis: An in vitro and in vivo study. IUBMB Life. 2022;74:1052-1069. doi: 10.1002/iub.2656
- Wang YF, Chang YY, Zhang XM, et al. Salidroside protects against osteoporosis in ovariectomized rats by inhibiting oxidative stress and promoting osteogenesis via Nrf2 activation. Phytomedicine. 2022;99:154020. doi: 10.1016/j.phymed.2022.154020
- Xiang S, Zhao L, Tang C, et al. Icariin inhibits osteoblast ferroptosis via Nrf2/HO-1 signaling and enhances healing of osteoporotic fractures. Eur J Pharmacol. 2024;965:176244. doi: 10.1016/j.ejphar.2023.176244
- Da W, Tao L, Zhu Y. The role of osteoclast energy metabolism in the occurrence and development of osteoporosis. Front Endocrinol (Lausanne). 2021;12:675385. doi: 10.3389/fendo.2021.675385
- Cao Z, Xue Y, Wang J. Screening diagnostic markers of osteoporosis based on ferroptosis of osteoblast and osteoclast. Aging (Albany NY). 2023;15:9391-9407. doi: 10.18632/aging.204945
- Jiang Z, Qi G, He X, et al. Ferroptosis in osteocytes as a target for protection against postmenopausal osteoporosis. Adv Sci (Weinh). 2024;11:e2307388. doi: 10.1002/advs.202307388
- Zhang J, Zhang L, Yao G, Zhao H, Wu S. NRF2 is essential for iron-overload stimulated osteoclast differentiation through regulation of redox and iron homeostasis. Cell Biol Toxicol. 2023;39:3305-3321. doi: 10.1007/s10565-023-09834-5
- Deng L, He S, Guo N, Tian W, Zhang W, Luo L. Molecular mechanisms of ferroptosis and relevance to inflammation. Inflamm Res. 2023;72:281-299. doi: 10.1007/s00011-022-01672-1
- Győri DS, Mócsai A. Osteoclast signal transduction during bone metastasis formation. Front Cell Dev Biol. 2020;8:507. doi: 10.3389/fcell.2020.00507
- Tang Y, Su S, Yu R, et al. Unraveling ferroptosis in osteogenic lineages: Implications for dysregulated bone remodeling during periodontitis progression. Cell Death Discov. 2024;10:195. doi: 10.1038/s41420-024-01969-6
- Liao R, Feng Z, Li W, et al. Interleukin-1 induces receptor activator of nuclear factor-κB ligand-independent osteoclast differentiation in RAW264.7 cells. Exp Ther Med. 2021;21:640. doi: 10.3892/etm.2021.10072
- Kudo O, Sabokbar A, Pocock A, Itonaga I, Fujikawa Y, Athanasou NA. Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone. 2003;32:1-7. doi: 10.1016/s8756-3282(02)00915-8
- Wu L, Guo Q, Yang J, Ni B. Tumor necrosis factor alpha promotes osteoclast formation via PI3K/Akt pathway-mediated blimp1 expression upregulation. J Cell Biochem. 2017;118:1308-1315. doi: 10.1002/jcb.25672
- Zha L, He L, Liang Y, et al. TNF-α contributes to postmenopausal osteoporosis by synergistically promoting RANKL-induced osteoclast formation. Biomed Pharmacother. 2018;102:369-374. doi: 10.1016/j.biopha.2018.03.080
- Marahleh A, Kitaura H, Ohori F, et al. TNF-α directly enhances osteocyte RANKL expression and promotes osteoclast formation. Front Immunol. 2019;10:2925. doi: 10.3389/fimmu.2019.02925
- Yoshitake F, Itoh S, Narita H, Ishihara K, Ebisu S. Interleukin-6 directly inhibits osteoclast differentiation by suppressing receptor activator of NF-kappaB signaling pathways. J Biol Chem. 2008;283:11535-11540. doi: 10.1074/jbc.m607999200
- Chang PY, Wu HK, Chen YH, et al. Interleukin-6 transiently promotes proliferation of osteoclast precursors and stimulates the production of inflammatory mediators. Mol Biol Rep. 2022;49:3927-3937. doi: 10.1007/s11033-022-07243-1
- Horn N, Wittung-Stafshede P. ATP7A-regulated enzyme metalation and trafficking in the Menkes disease puzzle. Biomedicines. 2021;9:391. doi: 10.3390/biomedicines9040391
- Kim D, Choi J, Han KM, et al. Impaired osteogenesis in Menkes disease-derived induced pluripotent stem cells. Stem Cell Res Ther. 2015;6:160. doi: 10.1186/s13287-015-0147-5
- Roberts EA, Schilsky ML. Current and emerging issues in Wilson’s disease. N Engl J Med. 2023;389:922-938. doi: 10.1056/NEJMra1903585
- Chenbhanich J, Thongprayoon C, Atsawarungruangkit A, Phupitakphol T, Cheungpasitporn W. Osteoporosis and bone mineral density in patients with Wilson’s disease: A systematic review and meta-analysis. Osteoporos Int. 2018;29:315-322. doi: 10.1007/s00198-017-4295-6
- Teschke R, Eickhoff A. Wilson disease: Copper-mediated cuproptosis iron-related ferroptosis and clinical highlights with comprehensive and critical analysis update. Int J Mol Sci. 2024;25:4753. doi: 10.3390/ijms25094753
- Xue Q, Yan D, Chen X, et al. Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy. 2023;19:1982-1996. doi: 10.1080/15548627.2023.2165323
- Li P, Sun Q, Bai S, Wang H, Zhao L. Combination of the cuproptosis inducer disulfiram and anti-PD-L1 abolishes NSCLC resistance by ATP7B to regulate the HIF-1 signaling pathway. Int J Mol Med. 2024;53:19.
- Qi Y, Wang H, Chen X, Zhu Y. The role of TGF-β1/Smad3 signaling pathway and oxidative stress in the inhibition of osteoblast mineralization by copper chloride. Environ Toxicol Pharmacol. 2021;84:103613. doi: 10.1016/j.etap.2021.103613
- Lu Y, Xu X, Yang C, et al. Copper modified cobalt-chromium particles for attenuating wear particle induced-inflammation and osteoclastogenesis. Biomater Adv. 2023;147:213315. doi: 10.1016/j.bioadv.2023.213315
- Wu H, Yang S, Xiao J, et al. Facile synthesis of multi-functional nano-composites by precise loading of Cu2+ onto MgO nano-particles for enhanced osteoblast differentiation inhibited osteoclast formation and effective bacterial killing. Mater Sci Eng C Mater Biol Appl. 2021;130:112442. doi: 10.1016/j.msec.2021.112442
- Bernhardt A, Schamel M, Gbureck U, Gelinsky M. Osteoclastic differentiation and resorption is modulated by bioactive metal ions Co2+, Cu2+ and Cr3+ incorporated into calcium phosphate bone cements. PLoS One. 2017;12:e0182109. doi: 10.1371/journal.pone.0182109
- Bernhardt A, Bacova J, Gbureck U, Gelinsky M. Influence of Cu2+ on osteoclast formation and activity in vitro. Int J Mol Sci. 2021;22:2451. doi: 10.3390/ijms22052451
- Nojiri H, Saita Y, Morikawa D, et al. Cytoplasmic superoxide causes bone fragility owing to low-turnover osteoporosis and impaired collagen cross-linking. J Bone Miner Res. 2011;26:2682-2694. doi: 10.1002/jbmr.489
- Dialynaki D, Stavropoulou A, Laskou M, Alexandraki D. The essential liaison of two copper proteins: The Cu-sensing transcription factor Mac1 and the Cu/Zn superoxide dismutase Sod1 in Saccharomyces cerevisiae. Curr Genet. 2023;69:41-53. doi: 10.1007/s00294-022-01258-8
- Qin Y, Liu Y, Xiang X, et al. Cuproptosis correlates with immunosuppressive tumor microenvironment based on pan-cancer multiomics and single-cell sequencing analysis. Mol Cancer. 2023;22:59. doi: 10.1186/s12943-023-01752-8
- Tong X, Tang R, Xiao M, et al. Targeting cell death pathways for cancer therapy: Recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol. 2022;15:174. doi: 10.1186/s13045-022-01392-3
- Zhang P, Chen H, Zhang Y, et al. Dry and wet experiments reveal diagnostic clustering and immune landscapes of cuproptosis patterns in patients with ankylosing spondylitis. Int Immunopharmacol. 2024;127:111326. doi: 10.1016/j.intimp.2023.111326
- Chen J, Sun Q, Wang Y, Yin W. Revealing the key role of cuproptosis in osteoporosis via the bioinformatic analysis and experimental validation of cuproptosis-related genes. Mamm Genome. 2024;35:414-431. doi: 10.1007/s00335-024-10049-0
- Chen T, Gao Z, Wang Y, et al. Identification and immunological role of cuproptosis in osteoporosis. Heliyon. 2024;10:e26759. doi: 10.1016/j.heliyon.2024.e26759
- Ambrosi TH, Marecic O, McArdle A, et al. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature. 2021;597:256-262. doi: 10.1038/s41586-021-03795-7
- Michalski MN, McCauley LK. Macrophages and skeletal health. Pharmacol Ther. 2017;174:43-54. doi: 10.1016/j.pharmthera.2017.02.017
- Yang J, Qin H, Chai Y, et al. Molecular mechanisms of osteogenesis and antibacterial activity of Cu-bearing Ti alloy in a bone defect model with infection in vivo. J Orthop Translat. 2021;27:77-89. doi: 10.1016/j.jot.2020.10.004
- Arredondo M, Núñez MT. Iron and copper metabolism. Mol Aspects Med. 2005;26:313-327. doi: 10.1016/j.mam.2005.07.010
- Dequeker J, Geusens P. Osteoporosis and arthritis. Ann Rheum Dis. 1990;49:276-280. doi: 10.1136/ard.49.5.276
- Zhao J, Guo S, Schrodi SJ, He D. Cuproptosis and cuproptosis-related genes in rheumatoid arthritis: Implication, prospects, and perspectives. Front Immunol. 2022;13:930278. doi: 10.3389/fimmu.2022.930278
- Li D, Gao Z, Li Q, Liu X, Liu H. Cuproptosis-a potential target for the treatment of osteoporosis. Front Endocrinol (Lausanne). 2023;14:1135181. doi: 10.3389/fendo.2023.1135181
- Srivastava S, Kumar N, Thakur RS, Roy P. Role of vanadium (V) in the differentiation of C3H10t1/2 cells towards osteoblast lineage: A comparative analysis with other trace elements. Biol Trace Elem Res. 2013;152:135-142. doi: 10.1007/s12011-013-9602-2
- Barrera G, Pizzimenti S, Dianzani MU. Lipid peroxidation: Control of cell, proliferation cell differentiation and cell death. Mol Aspects Med. 2008;29:1-8. doi: 10.1016/j.mam.2007.09.012
- He YJ, Liu XY, Xing L, Wan X, Chang X, Jiang HL. Fenton reaction-independent ferroptosis therapy via glutathione and iron redox couple sequentially triggered lipid peroxide generator. Biomaterials. 2020;241:119911. doi: 10.1016/j.biomaterials.2020.119911
- Zheng J, Conrad M. The metabolic underpinnings of ferroptosis. Cell Metab. 2020;32:920-937. doi: 10.1016/j.cmet.2020.10.011
- Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña E. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA lipids and proteins) and induced pathologies. Int J Mol Sci. 2021;22:4642. doi: 10.3390/ijms22094642
- Sharma R, Callaway D, Vanegas D, et al. Caspase-2 maintains bone homeostasis by inducing apoptosis of oxidatively-damaged osteoclasts. PLoS One. 2014;9:e93696. doi: 10.1371/journal.pone.0093696
- Chen X, Han D, Liu T, et al. Asiatic acid improves high-fat-diet-induced osteoporosis in mice via regulating SIRT1/FOXO1 signaling and inhibiting oxidative stress. Histol Histopathol. 2022;37:769-777.
- Tao H, Ge G, Liang X, et al. ROS signaling cascades: Dual regulations for osteoclast and osteoblast. Acta Biochim Biophys Sin (Shanghai). 2020;52:1055-1062. doi: 10.14670/HH-18-446
- Halade GV, Rahman MM, Williams PJ, Fernandes G. High fat diet-induced animal model of age-associated obesity and osteoporosis. J Nutr Biochem. 2010;21:1162-1169. doi: 10.1016/j.jnutbio.2009.10.002
- Rodríguez JP, Astudillo P, Ríos S, Pino AM. Involvement of adipogenic potential of human bone marrow mesenchymal stem cells (MSCs) in osteoporosis. Curr Stem Cell Res Ther. 2008;3:208-218. doi: 10.2174/157488808785740325
- Sanbe T, Tomofuji T, Ekuni D, et al. Vitamin C intake inhibits serum lipid peroxidation and osteoclast differentiation on alveolar bone in rats fed on a high-cholesterol diet. Arch Oral Biol. 2009;54:235-240. doi: 10.1016/j.archoralbio.2008.11.001
- Ścibior A, Gołębiowska D, Adamczyk A, Kurus J, Staniszewska M, Sadok I. Evaluation of lipid peroxidation and antioxidant defense mechanisms in the bone of rats in conditions of separate and combined administration of vanadium (V) and magnesium (Mg). Chem Biol Interact. 2018;284:112-125. doi: 10.1016/j.cbi.2018.02.016
- Tseng YH. Adipose tissue in communication: Within and without. Nat Rev Endocrinol. 2023;19:70-71. doi: 10.1038/s41574-022-00789-x
- Kojta I, Chacińska M, Błachnio-Zabielska A. Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance. Nutrients. 2020;12:1305. doi: 10.3390/nu12051305
- Funcke JB, Scherer PE. Beyond adiponectin and leptin: Adipose tissue-derived mediators of inter-organ communication. J Lipid Res. 2019;60:1648-1684. doi: 10.1194/jlr.R094060
- Karsenty G. Convergence between bone and energy homeostases: Leptin regulation of bone mass. Cell Metab. 2006;4:341-348. doi: 10.1016/j.cmet.2006.10.008
- Martin A, De Vittoris R, David V, et al. Leptin modulates both resorption and formation while preventing disuse-induced bone loss in tail-suspended female rats. Endocrinology. 2005;146:3652-3659. doi: 10.1210/en.2004-1509
- Elefteriou F, Ahn JD, Takeda S, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434:514-520. doi: 10.1038/nature03398
- Loid P, Hauta-Alus H, Mäkitie O, Magnusson P, Mäkitie RE. Lipocalin-2 is associated with FGF23 in WNT1 and PLS3 osteoporosis. Front Endocrinol (Lausanne). 2022;13:954730. doi: 10.3389/fendo.2022.954730
- Lim WH, Wong G, Lim EM, et al. Circulating lipocalin 2 levels predict fracture-related hospitalizations in elderly women: A prospective cohort study. J Bone Miner Res. 2015;30:2078-2085. doi: 10.1002/jbmr.2546
- Puzio I, Tymicki G, Pawłowska M, Bieńko M, Radzki RP. Nesfatin-1 prevents negative changes in bone in conditions of developing osteopenia. Ann Agric Environ Med. 2020;27:66-75. doi: 10.26444/aaem/105981
- Chen L, Shi X, Xie J, et al. Apelin-13 induces mitophagy in bone marrow mesenchymal stem cells to suppress intracellular oxidative stress and ameliorate osteoporosis by activation of AMPK signaling pathway. Free Radic Biol Med. 2021;163:356-368. doi: 10.1016/j.freeradbiomed.2020.12.235
- Luo J, Liu W, Feng F, Chen L. Apelin/APJ system: A novel therapeutic target for locomotor system diseases. Eur J Pharmacol. 2021;906:174286. doi: 10.1016/j.ejphar.2021.174286
- Wang F, Wang PX, Wu XL, et al. Deficiency of adiponectin protects against ovariectomy-induced osteoporosis in mice. PLoS One. 2013;8:e68497. doi: 10.1371/journal.pone.0068497
- Shu L, Beier E, Sheu T, et al. High-fat diet causes bone loss in young mice by promoting osteoclastogenesis through alteration of the bone marrow environment. Calcif Tissue Int. 2015;96:313-323. doi: 10.1007/s00223-015-9954-z
- Zhang K, Wang C, Chen Y, et al. Preservation of high-fat diet-induced femoral trabecular bone loss through genetic target of TNF-α. Endocrine. 2015;50:239-249. doi: 10.1007/s12020-015-0554-5
- Saburi M, Yamada H, Wada N, et al. Maternal high-fat diet promotes abdominal aortic aneurysm expansion in adult offspring by epigenetic regulation of IRF8-mediated osteoclast-like macrophage differentiation. Cells. 2021;10:2224. doi: 10.3390/cells10092224
- Liang W, Wei T, Hu L, et al. An integrated multi-omics analysis reveals osteokines involved in global regulation. Cell Metab. 2024;36:1144-1163.e7. doi: 10.1016/j.cmet.2024.03.006
- Stavre Z, Kim JM, Yang YS, et al. Schnurri-3 inhibition suppresses bone and joint damage in models of rheumatoid arthritis. Proc Natl Acad Sci U S A. 2023;120:e2218019120. doi: 10.1073/pnas.2218019120
- Li Z, Shi B, Li N, et al. Bone controls browning of white adipose tissue and protects from diet-induced obesity through Schnurri-3-regulated SLIT2 secretion. Nat Commun. 2024;15:6697. doi: 10.1038/s41467-024-51155-6
- Haslam DW, James WP. Obesity. Lancet. 2005;366:1197-1209. doi: 10.1016/S0140-6736(05)67483-1
- Pagnotti GM, Styner M, Uzer G, et al. Combating osteoporosis and obesity with exercise: Leveraging cell mechanosensitivity. Nat Rev Endocrinol. 2019;15:339-355. doi: 10.1038/s41574-019-0170-1
- Li Y. Association between obesity and bone mineral density in middle-aged adults. J Orthop Surg Res. 2022;17:268. doi: 10.1186/s13018-022-03161-x
- Li J, Chen X, Lu L, Yu X. The relationship between bone marrow adipose tissue and bone metabolism in postmenopausal osteoporosis. Cytokine Growth Factor Rev. 2020;52:88-98. doi: 10.1016/j.cytogfr.2020.02.003
- Schwartz AV, Sigurdsson S, Hue TF, et al. Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J Clin Endocrinol Metab. 2013;98:2294-2300. doi: 10.1210/jc.2012-3949
- Liu HF, Meng DF, Yu P, De JC, Li HY. Obesity and risk of fracture in postmenopausal women: A meta-analysis of cohort studies. Ann Med. 2023;55:2203515. doi: 10.1080/07853890.2023.2203515
- Pedersen BK, Febbraio MA. Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8:457-465. doi: 10.1038/nrendo.2012.49
- Oliveira MC, Vullings J, Van de Loo FAJ. Osteoporosis and osteoarthritis are two sides of the same coin paid for obesity. Nutrition. 2020;70:110486. doi: 10.1016/j.nut.2019.04.001
- Cândido FG, Bressan J. Vitamin D: Link between osteoporosis, obesity, and diabetes? Int J Mol Sci. 2014;15:6569-6591. doi: 10.3390/ijms15046569
- Albaik M, Khan JA, Sindi I, Akesson KE, McGuigan FEA. Bone mass in Saudi women aged 20-40 years: The association with obesity and vitamin D deficiency. Arch Osteoporos. 2022;17:123. doi: 10.1007/s11657-022-01164-z
- Di Filippo L, De Lorenzo R, Giustina A, Rovere-Querini P, Conte C. Vitamin D in osteosarcopenic obesity. Nutrients. 2022;14:1816. doi: 10.3390/nu14091816
- Fassio A, Idolazzi L, Rossini M, et al. The obesity paradox and osteoporosis. Eat Weight Disord. 2018;23:293-302. doi: 10.1007/s40519-018-0505-2
- Iyer A, Fairlie DP, Prins JB, Hammock BD, Brown L. Inflammatory lipid mediators in adipocyte function and obesity. Nat Rev Endocrinol. 2010;6:71-82. doi: 10.1038/nrendo.2009.264
- Mazitova AM, Márquez-Sánchez AC, Koltsova EK. Fat and inflammation: Adipocyte-myeloid cell crosstalk in atherosclerosis. Front Immunol. 2023;14:1238664. doi: 10.3389/fimmu.2023.1238664
- Feng T, Zhao X, Gu P, et al. Adipocyte-derived lactate is a signalling metabolite that potentiates adipose macrophage inflammation via targeting PHD2. Nat Commun. 2022;13:5208. doi: 10.1038/s41467-022-32871-3
- Liu BN, Liu XT, Liang ZH, Wang JH. Gut microbiota in obesity. World J Gastroenterol. 2021;27:3837-3850. doi: 10.3748/wjg.v27.i25.3837
- Cao DJ, Hill JA. Copper futures: Ceruloplasmin and heart failure. Circ Res. 2014;114:1678-1680. doi: 10.1161/CIRCRESAHA.114.304091
- Tsang T, Davis CI, Brady DC. Copper biology. Curr Biol. 2021;31:R421-R427. doi: 10.1016/j.cub.2021.03.054
- Blades B, Ayton S, Hung YH, Bush AI, La Fontaine S. Copper and lipid metabolism: A reciprocal relationship. Biochim Biophys Acta Gen Subj. 2021;1865:129979. doi: 10.1016/j.bbagen.2021.129979
- Zhong CC, Zhao T, Hogstrand C, Chen F, Song CC, Luo Z. Copper (Cu) induced changes of lipid metabolism through oxidative stress-mediated autophagy and Nrf2/PPARγ pathways. J Nutr Biochem. 2022;100:108883. doi: 10.1016/j.jnutbio.2021.108883
- Ahmed U, Latham PS, Oates PS. Interactions between hepatic iron and lipid metabolism with possible relevance to steatohepatitis. World J Gastroenterol. 2012;18:4651-4658. doi: 10.3748/wjg.v18.i34.4651
- Li Y, Qin M, Zhong W, et al. RAGE promotes dysregulation of iron and lipid metabolism in alcoholic liver disease. Redox Biol. 2023;59:102559.
- Zhou J, Liu C, Francis M, et al. The causal effects of blood iron and copper on lipid metabolism diseases: Evidence from phenome-wide Mendelian randomization study. Nutrients. 2020;12:3174. doi: 10.3390/nu12103174
- Gulec S, Collins JF. Molecular mediators governing iron-copper interactions. Annu Rev Nutr. 2014;34:95-116. doi: 10.1146/annurev-nutr-071812-161215
- Zerounian NR, Linder MC. Effects of copper and ceruloplasmin on iron transport in the Caco 2 cell intestinal model. J Nutr Biochem. 2002;13:138-148. doi: 10.1016/s0955-2863(01)00205-4
- Matak P, Zumerle S, Mastrogiannaki M, et al. Copper deficiency leads to anemia, duodenal hypoxia, upregulation of HIF-2α and altered expression of iron absorption genes in mice. PLoS One. 2013;8:e59538. doi: 10.1371/journal.pone.0059538
- Klevay LM. Iron overload can induce mild copper deficiency. J Trace Elem Med Biol. 2001;14:237-240. doi: 10.1016/S0946-672X(01)80009-2
- Sokol RJ, Devereaux MW, Traber MG, Shikes RH. Copper toxicity and lipid peroxidation in isolated rat hepatocytes: Effect of vitamin E. Pediatr Res. 1989;25:55-62. doi: 10.1203/00006450-198901000-00014
- Filipe PM, Fernandes AC, Manso CF. Effects of zinc on copper-induced and spontaneous lipid peroxidation. Biol Trace Elem Res. 1995;47:51-56. doi: 10.1007/BF02790100
- Kardos J, Héja L, Simon Á, Jablonkai I, Kovács R, Jemnitz K. Copper signalling: causes and consequences. Cell Commun Signal. 2018;16:71. doi: 10.1186/s12964-018-0277-3
