ORIGINAL RESEARCH

Recombinant human bone morphogenetic protein-2–engineered piezoplatform synergistically promotes bone regeneration through bone morphogenetic protein receptor activation

Lijie Mao1,2 Dong Zhang1 Zehao Shen1 Xinqing Wang1 Chen Lai3 Fangping Chen1,4* Changsheng Liu1,4*
Show Less
1 Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, China
2 Shanghai Tenth People’s Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, China
3 Shenzhen Key Laboratory of Human Tissue Regeneration and Repair, PKU–HKUST ShenZhen–HongKong Institution, Shenzhen, Guangdong, China
4 Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
Submitted: 25 April 2025 | Revised: 23 October 2025 | Accepted: 26 October 2025 | Published: 18 December 2025
© 2025 by the Author(s). Licensee Biomaterials Translational, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0) (https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en)
Abstract

Bone morphogenetic protein-2 (BMP-2) is a potent cytokine that promotes bone formation in orthopedic procedures. However, the delivery of recombinant human BMP-2 (rhBMP-2) with sustained release kinetics, while maximizing osteogenic potential, remains a challenge. In this study, we constructed a novel rhBMP-2–engineered piezoplatform for sustained release of rhBMP-2 and synergistic enhancement of osteoinductive activity. The piezoelectric signals are capable of initiating rapid biomineralization and promoting the early adhesion, proliferation, and osteogenic differentiation of bone marrow stromal cells (BMSCs), as well as enabling efficient immobilization and sustained release of rhBMP-2 through electrostatic interactions. Notably, piezoelectric stimulation synergizing with rhBMP-2 enhances osteogenesis-related protein production. This is achieved by amplifying the expression of BMP-2 receptors (Bmpr1a and Bmpr2) in BMSCs by approximately three-fold, which in turn reinforces the regenerative capacity of rhBMP-2. The rat femur defect model further confirms the osteogenic efficacy of the rhBMP-2–engineered piezoplatform. These findings are expected to advance the development of biopiezoelectric implants incorporating growth factor therapy for tissue engineering.

Keywords
Bone morphogenetic protein receptors
Bone regeneration
Piezoelectric stimulation
Recombinant human bone morphogenetic protein-2
Funding
This study was supported by the National Natural Science Foundation of China (32471407, 32171342), the National Key Research and Development Program of China (2023YFC2413600), the Shanghai Pujiang Program (16PJD015), the Joint Fund for Equipment Pre-research of the Ministry of Education (6141A02022618), and the IER Foundation 2021 (IERF202103).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Zhang Q, Liu Y, Li J, Wang J, Liu C. Recapitulation of growth factor-enriched microenvironment via BMP receptor activating hydrogel. Bioact Mater. 2023;20:638-650. doi: 10.1016/j.bioactmat.2022.06.012

 

  1. Wang CK, Ho ML, Wang GJ, et al. Controlled-release of rhBMP-2 carriers in the regeneration of osteonecrotic bone. Biomaterials. 2009;30:4178-4186. doi: 10.1016/j.biomaterials.2009.04.029

 

  1. Lee HY, Kim DS, Hwang GY, et al. Multi-modulation of immune-inflammatory response using bioactive molecule-integrated PLGA composite for spinal fusion. Mater Today Bio. 2023;19:100611. doi: 10.1016/j.mtbio.2023.100611

 

  1. Krishnan L, Priddy LB, Esancy C, et al. Delivery vehicle effects on bone regeneration and heterotopic ossification induced by high dose BMP-2. Acta Biomater. 2017;49:101-112. doi: 10.1016/j.actbio.2016.12.012

 

  1. Tian X, Vater C, Raina DB, et al. Co-delivery of rhBMP-2 and zoledronic acid using calcium sulfate/hydroxyapatite carrier as a bioactive bone substitute to enhance and accelerate spinal fusion. Bioact Mater. 2024;36:256-271. doi: 10.1016/j.bioactmat.2024.02.034

 

  1. Liu W, Liu C, Liu C, et al. Surface chemical modification of poly(phthalazinone ether nitrile ketone) through rhBMP-2 and antimicrobial peptide conjugation for enhanced osteogenic and antibacterial activities in vitro and in vivo. Chem Eng J. 2021;424:130321. doi: 10.1016/j.cej.2021.130321

 

  1. Chen X, Tan B, Bao Z, et al. Enhanced bone regeneration via spatiotemporal and controlled delivery of a genetically engineered BMP-2 in a composite hydrogel. Biomaterials. 2021;277:121117. doi: 10.1016/j.biomaterials.2021.121117

 

  1. Yu Y, Chen R, Yuan Y, Wang J, Liu C. Affinity-selected polysaccharide for rhBMP-2-induced osteogenesis via BMP receptor activation. Appl Mater Today. 2020;20:100681. doi: 10.1016/j.apmt.2020.100681

 

  1. Wei H, Cui J, Lin K, Xie J, Wang X. Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Res. 2022;10(1):17. doi: 10.1038/s41413-021-00180-y

 

  1. Li Y, Xiao Y, Liu C. The horizon of materiobiology: A perspective on material-guided cell behaviors and tissue engineering. Chem Rev. 2017;117(5):4376. doi: 10.1021/acs.chemrev.6b00654

 

  1. Zhang Y, Khanbareh H, Dunn S, et al. High efficiency water splitting using ultrasound coupled to a BaTiO3 nanofluid. Adv Sci (Weinh). 2022;9(9):2105248. doi: 10.1002/advs.202105248

 

  1. Zhou X, Wu S, Li C, et al. Piezophototronic effect in enhancing charge carrier separation and transfer in ZnO/BaTiO3 heterostructures for high-efficiency catalytic oxidation. Nano Energy. 2019;66:104127. doi: 10.1016/j.nanoen.2019.104127

 

  1. Xu Q, Gao X, Zhao S, et al. Construction of bio-piezoelectric platforms: From structures and synthesis to applications. Adv Mater. 2023;3(27):2008452. doi: 10.1002/adma.202008452

 

  1. Mao L, Bai L, Wang X, et al. Enhanced cell osteogenesis and osteoimmunology regulated by piezoelectric biomaterials with controllable surface potential and charges. ACS Appl Mater Inter. 2022;14(39):44111-44124. doi: 10.1021/acsami.2c11131

 

  1. Wu H, Dong H, Tang Z, et al. Electrical stimulation of piezoelectric BaTiO3 coated Ti6Al4V scaffolds promotes anti-inflammatory polarization of macrophages and bone repair via MAPK/JNK inhibition and OXPHOS activation. Biomaterials. 2023;293:121990. doi: 10.1016/j.biomaterials.2022.121990

 

  1. MaoL, Yin Y, Zhang L, et al. Regulation of inflammatory response and osteogenesis to citrate-based biomaterials through incorporation of alkaline fragments. Adv Healthc Mater. 2022;11(4):2101590. doi: 10.1002/adhm.202101590

 

  1. De Wildt BW, Van der Meijden R, Bartels PA, et al. Bioinspired silk fibroin mineralization for advanced in vitro bone remodeling models. Adv Funct Mater. 2022;32(41):2206992. doi: 10.1002/adfm.202206992

 

  1. Gooding S, Olechnowicz SW, Morris EV, et al. Transcriptomic profiling of the myeloma bone-lining niche reveals BMP signalling inhibition to improve bone disease. Nat Commun. 2019;10(1):4533. doi: 10.1038/s41467-019-12296-1

 

  1. Liu Y, Ma Y, Zhang J, et al. MBG-modified β-TCP scaffold promotes mesenchymal stem cells adhesion and osteogenic differentiation via a FAK/MAPK signaling pathway. ACS Appl Mater Inter. 2017;9(36):30283-30296. doi: 10.1021/acsami.7b02466

 

  1. Caballero AC, Fernández JF, Villegas M, et al. Intermediate phase development in phosphorus-doped barium titanate. J Am Ceram Soc. 2000;83(6):1499-1505. doi: 10.1111/j.1151-2916.2000.tb01417.x

 

  1. Khare D, Basu B, Dubey AK. Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications. Biomaterials. 2020;258:120280. doi: 10.1016/j.biomaterials.2020.120280

 

  1. Polley C, Distler T, Detsch R, et al. 3D printing of piezoelectric barium titanate-hydroxyapatite scaffolds with interconnected porosity for bone tissue engineering. Materials (Basel). 2020;13:1773. doi: 10.3390/ma13071773

 

  1. Shao CS, Chen LJ, Tang RM, Zhang B, Tang JJ, Ma WN. Polarized hydroxyapatite/BaTiO3 scaffolds with bio-inspired porous structure for enhanced bone penetration. Rare Met. 2022;41(1):67-77. doi: 10.1007/s12598-021-01798-x

 

  1. Kim HM, Himeno T, Kokubo T, Nakamura T. Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials. 2005;26(21):4366-4373. doi: 10.1016/j.biomaterials.2004.11.022

 

  1. Metwally S, Stachewicz U. Surface potential and charges impact on cell responses on biomaterials interfaces for medical applications. Mater Sci Eng C. 2019;104:109883. doi: 10.1016/j.msec.2019.109883

 

  1. Santoni BL, Niggli L, Dolder S, et al. Effect of minor amounts of β-calcium pyrophosphate and hydroxyapatite on the physico-chemical properties and osteoclastic resorption of β-tricalcium phosphate cylinders. Bioact Mater. 2022;10:222-235. doi: 10.1016/j.bioactmat.2021.09.003

 

  1. Kapat K, Shubhra QT, Zhou M, Leeuwenburgh S. Piezoelectric nano‐biomaterials for biomedicine and tissue regeneration. Adv Funct Mater. 2020;30(44):1909045. doi: 10.1002/adfm.201909045

 

  1. Zhou HX, Pang X. Electrostatic interactions in protein structure, folding, binding, and condensation. Chem Rev. 2018;118(4):1691-1741. doi: 10.1021/acs.chemrev.7b00305

 

  1. Yu X, Lin F, Li P, et al. Porous scaffolds with enzyme-responsive Kartogenin release for recruiting stem cells and promoting cartilage regeneration. Chem Eng J. 2022;447:137454. doi: 10.1016/j.cej.2022.137454

 

  1. Lee SS, Hsu EL, Mendoza M, et al. Gel scaffolds of BMP-2-binding peptide amphiphile nanofibers for spinal arthrodesis. Adv Healthc Mater. 2015;4(1):131-141. doi: 10.1002/adhm.201400129

 

  1. Xiang H, Yang Q, Gao Y, et al. Cocrystal strategy toward multifunctional 3D-printing scaffolds enables NIR-activated photonic osteosarcoma hyperthermia and enhanced bone defect regeneration. Adv Funct Mater. 2020;30(25):1909938. doi: 10.1002/adfm.201909938

 

  1. Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater. 2019;84:16-33. doi: 10.1016/j.actbio.2018.11.039

 

  1. Cui L, Zhang J, Zou J, et al. Electroactive composite scaffold with locally expressed osteoinductive factor for synergistic bone repair upon electrical stimulation. Biomaterials. 2020;230:119617. doi: 10.1016/j.biomaterials.2019.119617

 

  1. Huang RL, Chen G, Wang W, et al. Synergy between IL-6 and soluble IL-6 receptor enhances bone morphogenetic protein-2/absorbable collagen sponge-induced bone regeneration via regulation of BMPRIA distribution and degradation. Biomaterials. 2015;67:308-322. doi: 10.1016/j.ebiom.2016.09.016

 

  1. Cervantes M, Lal A, Marsh AM, Fung EB. Assessing bone quality using trabecular bone score in patients with hemoglobinopathies. Blood. 2016;128(22):3629. doi: 10.1182/blood.V128.22.3629.3629
Share
Back to top