Cite this article
3
Download
9
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ORIGINAL RESEARCH

Anti-cancer potency and structural insights of synthesized metformin–phenolic acid hybrids through molecular docking and dynamics simulations

Biswajit Banerjee1 Tripti Sharma1,2 Arijit Mondal3*
Show Less
1 Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha “O” Anusandhan, Bhubaneswar, Odisha, India
2 Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Mumbai, Maharashtra, India
3 Department of Pharmaceutical Chemistry, Anand College of Education, Paschim Medinipur, West Bengal, India
Submitted: 21 May 2025 | Revised: 16 October 2025 | Accepted: 17 October 2025 | Published: 19 December 2025
© 2025 by the Author(s). Licensee Biomaterials Translational, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0) (https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en)
Abstract

Cancer remains a major global cause of death, driving the continuous search for innovative and effective treatments. In this context, we synthesized a series of 10 new hybrid compounds (M1–M10) by combining metformin (MET), a widely used anti-diabetic drug with emerging anti-cancer properties, and 10 different phenolic acids (A1–A10), known for their antioxidant and anti-cancer effects. To investigate their potential, we selected two target enzymes implicated in cancer progression—arachidonate 5-lipoxygenase (Protein Data Bank ID: 7TTL) and matrix metalloproteinase 9 (MMP9; PDB ID: 1GKC)—for molecular docking using AutoDock 4.2. Based on drug-likeness predictions and docking results, we further performed 100-nanosecond molecular dynamics simulations in GROMACS 2022 on four complexes—MMP9–A3, MMP9–M3, MMP9–MET, and MMP9–marimastat—to assess their stability and interactions at the atomic level. In comparison with individual phenolic acids (−6 to −8 kcal/mol), MET (−6 to −8 kcal/mol), and the reference inhibitor marimastat (−5 kcal/mol), the synthesized hybrids showed greater binding affinities, ranging from −7 to −10 kcal/mol, according to molecular docking studies. Molecular dynamics simulations, evaluated through parameters, such as root-mean-square deviation, root-mean-square fluctuation, radius of gyration, and hydrogen bond interaction profiles, demonstrated that the MMP9–M3 complex showed superior stability, higher drug-likeness, and lower predicted toxicity compared with the other studied complexes. Overall, the results indicate that the synthesized hybrids, especially M3, are the most promising candidates in the series. In conclusion, the design of hybrid compounds appears to be a practical approach for discovering novel phytochemical-based anti-cancer agents. In addition, the use of bioinformatics tools is crucial for streamlining the identification of the most promising lead compounds and optimizing experimental outcomes. 

Keywords
Anti-cancer hybrid agents
Metformin
Phenolic acids
Molecular docking and dynamic simulation
Drug-likeness profile
Funding
This study was funded by Siksha ‘O’ Anusandhan, Bhubaneswar, Odisha, India, through the doctoral fellowship awarded to Mr. Biswajit Banerjee (Ref. No. (Acad) Regr/4266/SOADU).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. WHO-Global Cancer Observatory-2024. Available from: https://gco.iarc.fr/ en [Last accessed on 2025 May 20].

 

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17-48. doi: 10.3322/caac.21763

 

  1. Yang Q, Xu D, Yang Y, Lu S, Wang D, Wang L. Global, regional, and national burden of gastric cancer in adolescents and young adults, 1990- 2019: A systematic analysis for the global burden of disease study 2019. Am J Gastroenterol. 2024;119(3):454-467. doi: 10.14309/ajg.0000000000002551

 

  1. Garner WB, Smith BD, Ludmir EB, et al. Predicting future cancer incidence by age, race, ethnicity, and sex. J Geriatr Oncol. 2023;14(1):101393. doi: 10.1016/j.jgo.2022.10.008

 

  1. Elmore LW, Greer SF, Daniels EC, et al. Blueprint for cancer research: Critical gaps and opportunities. CA Cancer J Clin. 2021;71(2):107-139. doi: 10.3322/caac.21652

 

  1. Jacquemin V, Antoine M, Dom G, Detours V, Maenhaut C, Dumont JE. Dynamic cancer cell heterogeneity: Diagnostic and therapeutic implications. Cancers (Basel). 2022;14(2):280. doi: 10.3390/cancers14020280

 

  1. Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct Target Ther. 2020;5(1):28. doi: 10.1038/s41392-020-0134-x

 

  1. Zhong L, Li Y, Xiong L, et al. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct Target Ther. 2021;6(1):201. doi: 10.1038/s41392-021-00572-w

 

  1. Naeem A, Hu P, Yang M, et al. Natural products as anti cancer agents: Current status and future perspectives. Molecules. 2022;27(23):8367. doi: 10.3390/molecules27238367

 

  1. Huang M, Lu JJ, Ding J. Natural products in cancer therapy: Past, present and future. Nat Prod Bioprospect. 2021;11(1):5-13. doi: 10.1007/s13659-020-00293-7

 

  1. Grover P, Thakur K, Bhardwaj M, Mehta L, Raina SN, Rajpal VR. Phytotherapeutics in cancer: From potential drug candidates to clinical translation. Curr Top Med Chem. 2024;24:1050-1074. doi: 10.2174/0115680266282518231231075311

 

  1. Anantharaju PG, Gowda PC, Vimalambike MG, Madhunapantula SV. An overview on the role of dietary phenolics for the treatment of cancers. Nutr J. 2016;15(1):99. doi: 10.1186/s12937-016-0217-2

 

  1. Kumar N, Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol Rep (Amst). 2019;24:e00370. doi: 10.1016/j.btre.2019.e00370

 

  1. Abotaleb M, Liskova A, Kubatka P, Büsselberg D. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules. 2020;10(2):221. doi: 10.3390/biom10020221

 

  1. Stielow M, Witczyńska A, Kubryń N, Fijałkowski Ł, Nowaczyk J, Nowaczyk A. The bioavailability of drugs: The current state of knowledge. Molecules. 2023;28(24):8038. doi: 10.3390/molecules28248038

 

  1. Swain SS, Paidesetty SK, Padhy RN, Hussain T. Isoniazid-phytochemical conjugation: A new approach for potent and less toxic anti-TB drug development. Chem Biol Drug Des. 2020;96(2):714-730. doi: 10.1111/cbdd.13685

 

  1. Micale N, Molonia MS, Citarella A, et al. Natural product-based hybrids as potential candidates for the treatment of cancer: Focus on curcumin and resveratrol. Molecules. 2021;26(15):4665. doi: 10.3390/molecules26154665

 

  1. Sflakidou E, Leonidis G, Foroglou E, Siokatas C, Sarli V. Recent advances in natural product-based hybrids as anti-cancer agents. Molecules. 2022;27(19):6632. doi: 10.3390/molecules27196632

 

  1. Swain SS, Sahoo A, Singh SR, Sahoo J, Paidesetty SK. Synthesis, spectroscopic analysis, and computational-based investigations on ‘azo-coumarin-Co(II)-galangin’ hybrids exhibit multipotential activities. J Biomol Struct Dyn. 2024;43:7336-7347. doi: 10.1080/07391102.2024.2326666

 

  1. Nankar R, Prabhakar PK, Doble M. Hybrid drug combination: Combination of ferulic acid and metformin as anti-diabetic therapy. Phytomedicine. 2017;37:10-13. doi: 10.1016/j.phymed.2017.10.015

 

  1. Markowicz-Piasecka M, Huttunen KM, Broncel M, Sikora J. Sulfenamide and sulfonamide derivatives of metformin - A new option to improve endothelial function and plasma haemostasis. Sci Rep. 2019;9(1):6573. doi: 10.1038/s41598-019-43083-z

 

  1. Masadeh MM, Alzoubi KH, Masadeh MM, Aburashed ZO. Metformin as a potential adjuvant antimicrobial agent against multidrug-resistant bacteria. Clin Pharmacol. 2021;13:83-90. doi: 10.2147/CPAA.S297903

 

  1. Podhorecka M, Ibanez B, Dmoszyńska A. Metformin ts potential anti-cancer and anti-aging effects. Postepy Hig Med Dosw (Online). 2017;71(0):170-175. doi: 10.5604/01.3001.0010.3801

 

  1. Jiang T, Chen L, Huang Y, et al. Metformin and docosahexaenoic acid hybrid micelles for premetastatic niche modulation and tumour metastasis suppression. Nano Lett. 2019;19(6):3548-3562. doi: 10.1021/acs.nanolett.9b00495

 

  1. Bashraheel SS, Kheraldine H, Khalaf S, Moustafa AA. Metformin and HER2-positive breast cancer: Mechanisms and therapeutic implications. Biomed Pharmacother. 2023;162:114676. doi: 10.1016/j.biopha.2023.114676

 

  1. Gong L, Goswami S, Giacomini KM, Altman RB, Klein TE. Metformin pathways: Pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics. 2012;22(11):820-827. doi: 10.1097/FPC.0b013e3283559b22

 

  1. Rusanov DA, Zou J, Babak MV. Biological properties of transition metal complexes with metformin and its analogues. Pharmaceuticals (Basel). 2022;15(4):453. doi: 10.3390/ph15040453

 

  1. Banerjee B, Sharma T, Banerjee S, Banerjee S, Mondal A. Synthesis and anticancer activity of metforminphenolic acid conjugates. Chem Biodivers. 2025;22(6):e202403199. doi: 10.1002/cbdv.202403199

 

  1. Oyedemi SO, Eze K, Aiyegoro OA, et al. Computational, chemical profiling and biochemical evaluation of antidiabetic potential of Parkia biglobosa stem bark extract in type 2 model of rats. J Biomol Struct Dyn. 2022;40(20):9948-9961. doi: 10.1080/07391102.2021.1938228

 

  1. Sahoo A, Fuloria S, Swain SS, et al. Potential of marine terpenoids against SARS-CoV-2: An in-silico drug development approach. Biomedicines. 2021;9(11):1505. doi: 10.3390/biomedicines9111505

 

  1. Ramorobi LM, Matowane GR, Mashele SS, et al. Bioactive synergism between zinc mineral and p-coumaric acid: A multi-mode glycemic control and antioxidative study. J Food Biochem. 2022;46(10):e14360. doi: 10.1111/jfbc.14360

 

  1. Swain SS, Singh SR, Sahoo A, Panda PK, Hussain T, Pati S. Integrated bioinformatics-cheminformatics approach toward locating pseudo-potential antiviral marine alkaloids against SARS-CoV-2-Mpro. Proteins. 2022a;90(9):1617-1633. doi: 10.1002/prot.26341

 

  1. Sahoo A, Swain SS, Paital B, Panda M. Combinatorial approach of vitamin C derivative and anti-HIV drug-darunavir against SARS-CoV-2. Front Biosci (Landmark Ed). 2022;27(1):10. doi: 10.31083/j.fbl2701010

 

  1. Swain SS, Pati S, Hussain T. Quinoline heterocyclic containing plant and marine candidates against drug-resistant Mycobacterium tuberculosis: A systematic drug-ability investigation. Eur J Med Chem. 2022;232:114173. doi: 10.1016/j.ejmech.2022.114173

 

  1. Mudedla SK, Braka A, Wu S. Quantum-based machine learning and AI models to generate force field parameters for drug-like small molecules. Front Mol Biosci. 2022;9:1002535. doi: 10.3389/fmolb.2022.1002535

 

  1. Sadybekov AV, Katritch V. Computational approaches streamlining drug discovery. Nature. 2023;616(7958):673-685. doi: 10.1038/s41586-023-05905-z

 

  1. Zhong F, Xing J, Li X, et al. Artificial intelligence in drug design. Sci China Life Sci. 2018;61(10):1191-1204. doi: 10.1007/s11427-018-9342-2

 

  1. Jiménez-Luna J, Grisoni F, Weskamp N, Schneider G. Artificial intelligence in drug discovery: Recent advances and future perspectives. Expert Opin Drug Discov. 2021;16(9):949-959. doi: 10.1080/17460441.2021.1909567
Share
Back to top