Cite this article
9
Download
79
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ORIGINAL RESEARCH

Mechanical optimization of three-dimensionally printed Voronoi-based lattice structures for polylactic acid biomedical scaffolds

Shyam Navin1 Srinibash Panda1 Subhadip Chattaraj1 Udayan Mishra1 Bharatish Achutrao1* Sivakumar Solaiachari1 Jinka Ranganayakulu1
Show Less
1 Department of Mechanical Engineering, RV College of Engineering, Bengaluru, Karnataka, India
Submitted: 20 June 2025 | Revised: 14 November 2025 | Accepted: 20 November 2025 | Published: 18 December 2025
© 2025 by the Author(s). Licensee Biomaterials Translational, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0) (https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en)
Abstract

The recent expansion of the global market for bioresorbable implants reflects a clear need for advanced, cost-effective, and patient-specific scaffold solutions. In this context, three-dimensionally printed lattice structures offer significant potential, particularly those that mimic the complex geometry of trabecular bone. Among these, Voronoi-based scaffolds have garnered interest for their irregular, interconnected architecture, which facilitates biological integration while providing tunable mechanical properties. This study examines the impact of Voronoi geometric parameters, including point spacing, strut thickness, and infill density, on the mechanical properties of polylactic acid (PLA) scaffolds. Response surface methodology was adopted to correlate the geometrical factors with mechanical properties. Teaching-learning-based optimization was employed to further refine scaffold geometry beyond the discrete parameter levels explored experimentally. The results indicated that strut thickness had a significant effect on compressive and flexural strength, while point spacing was the dominant factor for impact strength. Infill density played a supportive but less significant role. The optimized scaffold configuration achieved compressive and flexural strengths of 39.24 MPa and 34.03 MPa, respectively, along with an impact strength of 11.59 mJ. Porosity values ranged from approximately 35–66%, aligning well with biomedical standards for bone scaffolds. These findings demonstrate that optimized Voronoi-based PLA lattice scaffolds can achieve mechanically robust and biologically relevant architectures, highlighting their strong potential for use in next-generation bioresorbable implant applications.

Keywords
Voronoi structure
Scaffolds
Three-dimensional printing
Teaching-learning-based optimization
Response surface
Mechanical properties
Funding
None.
Conflict of interest
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
References
  1. Bahraminasab M. Challenges on optimization of 3D-printed bone scaffolds. Biomed Eng Online. 2020;19(1):69. doi: 10.1186/s12938-020-00810-2

 

  1. Bakhtiari H, Nouri A, Tolouei-Rad M. Fatigue performance of 3d-printed poly-lactic-acid bone scaffolds with triply periodic minimal surface and voronoi pore structures. Polymers (Basel). 2024;16(15):2145. doi: 10.3390/polym16152145

 

  1. Varma MV, Kandasubramanian B, Ibrahim SM. 3D printed scaffolds for biomedical applications. Mater Chem Phys. 2020;255:123642. doi: 10.1016/j.matchemphys.2020.123642

 

  1. Dong S, Nash RJ, Li Y. Mechanical response of 3D printed irregular sutural tessellations with Voronoi tile patterns under tension. Eng Fract Mech. 2024;307:110262. doi: 10.1016/j.engfracmech.2024.110262

 

  1. Wang Y, Wu Z, Ma C, et al. Osseointegration of an innovative functionally gradient biomimetic scaffold based on voronoi-tessellation for the design of orthopaedic implants. Mater Technol. 2025;40(1):2481637. doi: 10.1080/10667857.2025.2481637

 

  1. Li J, Yang Y, Sun Z, et al. Integrated evaluation of biomechanical and biological properties of the biomimetic structural bone scaffold: Biomechanics, simulation analysis, and osteogenesis. Mater Today Bio. 2024;24:100934. doi: 10.1016/j.mtbio.2023.100934

 

  1. Kanwar S, Vijayavenkataraman S. Design of 3D printed scaffolds for bone tissue engineering: A review. Bioprinting. 2021;24:e00167. doi: 10.1016/j.bprint.2021.e00167

 

  1. Thompson M, Sarvestani HY, Sohrabi-Kashani A, et al. Machine Learning- Optimized Stochastic Voronoi Lattices for Enhanced Mechanical Performance. [Preprint]; 2025. doi: 10.2139/ssrn.5180066

 

  1. Martínez J, Hornus S, Song H, Lefebvre S. Polyhedral voronoi diagrams for additive manufacturing. ACM Trans Graph. 2018;37(4):1-15. doi: 10.1145/3197517.3201343

 

  1. Öncel AC, Yaman U. Generation of optimized Voronoi based interior structures for improved mechanical properties. Procedia Manuf. 2019;38:42-51. doi: 10.1016/j.promfg.2020.01.006

 

  1. Silva C, Pais AI, Caldas G, Gouveia BPPA, Alves JL, Belinha J. Study on 3D printing of gyroid-based structures for superior structural behaviour. Prog Addit Manuf. 2021;6(4):689-703. doi: 10.1007/s40964-021-00191-5

 

  1. Ahmed AMRM, Mahdi E, Oosterhuis K, Dean A, Cabibihan JJ. Mechanical and energy absorption properties of 3D-printed honeycomb structures with Voronoi tessellations. Front Mech Eng. 2023;9:1204893. doi: 10.3389/fmech.2023.1204893

 

  1. Efstathiadis A, Symeonidou I, Tsongas K, Tzimtzimis EK, Tzetzis D. Parametric design and mechanical characterization of 3D-printed PLA composite biomimetic voronoi lattices inspired by the stereom of sea urchins. J Compos Sci. 2022;7(1):3. doi: 10.3390/jcs7010003

 

  1. Hsueh MH, Lai CJ, Wang SH, et al. Effect of printing parameters on the thermal and mechanical properties of 3D-printed PLA and PETG, using fused deposition modeling. Polymers (Basel). 2021;13(11):1758. doi: 10.3390/polym13111758

 

  1. Du Y, Liang H, Xie D, et al. Design and statistical analysis of irregular porous scaffolds for orthopedic reconstruction based on voronoi tessellation and fabricated via selective laser melting (SLM). Mater Chem Phys. 2020;239:121968. doi: 10.1016/j.matchemphys.2019.121968

 

  1. Wang G, Shen L, Zhao J, et al. Design and compressive behavior of controllable irregular porous scaffolds: Based on voronoi-tessellation and for additive manufacturing. ACS Biomater Sci Eng. 2018;4(2):719-727. doi: 10.1021/acsbiomaterials.7b00916

 

  1. Lei HY, Li JR, Xu ZJ, Wang QH. Parametric design of Voronoi-based lattice porous structures. Mater Des. 2020;191:108607. doi: 10.1016/j.matdes.2020.108607

 

  1. Fantini M, Curto M, Crescenzio FD. A method to design biomimetic scaffolds for bone tissue engineering based on Voronoi lattices. Virtual Phys Prototyp. 2016;11(2):77-90. doi: 10.1080/17452759.2016.1172301

 

  1. Tung CC, Lai YY, Chen YZ, Lin CC, Chen PY. Optimization of mechanical properties of bio-inspired Voronoi structures by genetic algorithm. J Mater Res Technol. 2023;26:3813-3829. doi: 10.1016/j.jmrt.2023.08.210

 

  1. Xu Q, Hai J, Shan C, Li H. Mechanical and permeability properties of radial-gradient bone scaffolds developed by voronoi tessellation for bone tissue engineering. J Shanghai Jiaotong Univ Sci. 2025;30(3):433-445. doi: 10.1007/s12204-024-2770-8

 

  1. Liu T, Guessasma S, Zhu J, Zhang W. Designing cellular structures for additive manufacturing using voronoi-monte carlo approach. Polymers (Basel). 2019;11(7):1158. doi: 10.3390/polym11071158

 

  1. Winarso R, Slamet S, Wibowo R, et al. Optimization of 3D printed voronoi microarchitecture bone scaffold using taguchi-grey relational analysis. Bioprinting. 2025;47:e00402. doi: 10.1016/j.bprint.2025.e00402

 

  1. Hooshmand-Ahoor Z, Tarantino MG, Danas K. Mechanically-grown morphogenesis of Voronoi-type materials: Computer design, 3D-printing and experiments. Mech Mater. 2022;173:104432. doi: 10.1016/j.mechmat.2022.104432

 

  1. Sharma N, Ostas D, Rotar H, Brantner P, Thieringer FM. Design and additive manufacturing of a biomimetic customized cranial implant based on voronoi diagram. Front Physiol. 2021;12:647923. doi: 10.3389/fphys.2021.647923

 

  1. Fantini M, Curto M. Interactive design and manufacturing of a Voronoi-based biomimetic bone scaffold for morphological characterization. Int J Interact Des Manuf. 2018;12(2):585-596. doi: 10.1007/s12008-017-0416-x

 

  1. An J, Teoh JEM, Suntornnond R, Chua CK. Design and 3D printing of scaffolds and tissues. Engineering. 2015;1(2):261-268. doi: 10.15302/J-ENG-2015061

 

  1. Dewey MJ, Chang RSH, Nosatov AV, et al. Generative design approach to combine architected Voronoi foams with porous collagen scaffolds to create a tunable composite biomaterial. Acta Biomater. 2023;172:249-259. doi: 10.1016/j.actbio.2023.10.005

 

  1. Gür Y, Benlikaya R, Çelik S. An investigation from raw components to composite: 3D printed Voronoi lattice core structured sandwich composite with woven glass fiber-epoxy outer layer. Eng Res Express. 2025;7(1):015522. doi: 10.1088/2631-8695/ada729

 

  1. Nguyen TL, Staiger MP, Dias GJ, Woodfield TBF. A novel manufacturing route for fabrication of topologically-ordered porous magnesium scaffolds. Adv Eng Mater. 2011;13(9):872-881. doi: 10.1002/adem.201100029

 

  1. Zhou Y, Isaksson P, Persson C. An improved trabecular bone model based on Voronoi tessellation. J Mech Behav Biomed Mater. 2023;148:106172. doi: 10.1016/j.jmbbm.2023.106172

 

  1. Müller M, Šleger V, Kolář V, Hromasová M, Piš D, Mishra RK. Low-cycle fatigue behavior of 3D-printed PLA reinforced with natural filler. Polymers (Basel). 2022;14(7):1301. doi: 10.3390/polym14071301

 

  1. Chen J, Zhao Y, Ruan R, et al. Bone morphogenetic protein-2- derived peptide-conjugated nanozyme-integrated photoenhanced hybrid hydrogel for cascade-regulated bone regeneration. ACS Nano. 2025;19(15):14707-14726. doi: 10.1021/acsnano.4c13690

 

  1. Zhang J, Tong D, Song H, et al. Osteoimmunity-regulating biomimetically hierarchical scaffold for augmented bone regeneration. Adv Mater. 2022;34(36):2202044. doi: 10.1002/adma.202202044

 

  1. Germain L, Fuentes CA, Van Vuure AW, Des Rieux A, Dupont-Gillain C. 3D-printed biodegradable gyroid scaffolds for tissue engineering applications. Mater Des. 2018;151:113-122. doi: 10.1016/j.matdes.2018.04.037

 

  1. Hasan M, Alhelal A, Ali D. Bending strength Of PLA- zirconia bone fracture fixation plate with voronoi and regular architecture. Ceram Silikaty. 2025;69:341-348. doi: 10.13168/cs.2025.0018

 

  1. Cronau J, Engstler F. Energy absorption of 3D printed stochastic lattice structures under impact loading - design parameters, manufacturing, and testing. Prog Addit Manuf. 2025;10(5):3145-3156. doi: 10.1007/s40964-025-01094-5

 

  1. Han C, Wang Y, Wang Z, et al. Enhancing mechanical properties of additively manufactured voronoi-based architected metamaterials via a lattice-inspired design strategy. Int J Mach Tools Manuf. 2024;202:104199. doi: 10.1016/j.ijmachtools.2024.104199

 

  1. Singh H, Tuffaha M, Tripathi S, et al. 3D printed metamaterials: Properties, fabrication, and drug delivery applications. Adv Drug Deliv Rev. 2025;224:115636. doi: 10.1016/j.addr.2025.115636

 

  1. Rao AP, Bharatish A, Solaiachari S, Kumar SM. Enhancing laser cut quality of copper thin foils for lithium-ion batteries through pre-cooling and teaching-learning-based optimization. SAE Int J Mater Manuf. 2025;19(1):1-15. doi: 10.4271/05-19-01-0004

 

  1. Ghazlan A, Nguyen T, Ngo T, Linforth S, Le VT. Performance of a 3D printed cellular structure inspired by bone. Thin-Walled Struct. 2020;151:106713. doi: 10.1016/j.tws.2020.106713

 

  1. Abbasi N, Hamlet S, Love RM, Nguyen NT. Porous scaffolds for bone regeneration. J Sci Adv Mater Dev. 2020;5(1):1-9. doi: 10.1016/j.jsamd.2020.01.007

 

  1. Setiawati R, Utomo DN, Rantam FA, Ifran NN, Budhiparama NC. Early graft tunnel healing after anterior cruciate ligament reconstruction with intratunnel injection of bone marrow mesenchymal stem cells and vascular endothelial growth factor. Orthop J Sports Med. 2017;5(6):2325967117708548. doi: 10.1177/2325967117708548
Share
Back to top