Hydroxyethyl starch and its derivatives as nanocarriers for delivery of diagnostic and therapeutic agents towards cancers
Many types of drugs and agents used for cancer diagnosis and therapy often have low bioavailability and insufficient efficacy, as well as causing various side effects due to their nonspecific delivery. Nanocarriers with purposely-designed compositions and structures have shown varying degrees of abilities to deliver these compounds towards cancers in passive or active manners. Despite the availability of a variety of materials for the construction of nanocarriers, natural polymers with good biocompatibility and biodegradability are preferable for such usage because of their high in vivo safety as well as easy removal of degradation products. Among the natural polymers intended for building nanocarriers, hydroxyethyl starch and its derivatives have gained tremendous attention in the field of drug delivery in the form of nanomedicines over the last decade. There is growing optimism that ever more hydroxyethyl starch-based nanomedicines will be a significant addition to the armoury currently used for cancer diagnosis and therapy.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
1. Aslam, M. Naveed, S. Ahmed, A. Abbas, Z. Gull, I. Athar, M. Side effects of chemotherapy in cancer patients and evaluation of patients opinion about starvation based differential chemotherapy. J Cancer Ther. 2014, 5, 817-822.
2. Volk-Draper, L. Hall, K. Griggs, C. Rajput, S. Kohio, P. DeNardo, D. Ran, S. Paclitaxel therapy promotes breast cancer metastasis in a TLR4-dependent manner. Cancer Res. 2014, 74, 5421-5434.
3. Wang, A. Z. Langer, R. Farokhzad, O. C. Nanoparticle delivery of cancer drugs. Annu Rev Med. 2012, 63, 185-198.
4. Fang, R. Liu, M. Jiang, L. Design of nanoparticle systems by controllable assembly and temporal/spatial regulation. Adv Funct Mater. 2020, 30, 1903351.
5. Harada, A. Kataoka, K. Supramolecular assemblies of block copolymers in aqueous media as nanocontainers relevant to biological applications. Prog Polym Sci. 2006, 31, 949-982.
6. Tao, R. Gao, M. Liu, F. Guo, X. Fan, A. Ding, D. Kong, D. Wang, Z. Zhao, Y. Alleviating the liver toxicity of chemotherapy via pH-responsive hepatoprotective prodrug micelles. ACS Appl Mater Interfaces. 2018, 10, 21836-21846.
7. Wang, Y. Wang, X. Deng, F. Zheng, N. Liang, Y. Zhang, H. He, B. Dai, W. Wang, X. Zhang, Q. The effect of linkers on the self-assembling and anti-tumor efficacy of disulfide-linked doxorubicin drug-drug conjugate nanoparticles. J Control Release. 2018, 279, 136-146.
8. An, X. Zhu, A. Luo, H. Ke, H. Chen, H. Zhao, Y. Rational design of multi-stimuli-responsive nanoparticles for precise cancer therapy. ACS Nano. 2016, 10, 5947-5958.
9. Meng, X. Gao, M. Deng, J. Lu, D. Fan, A. Ding, D. Kong, D. Wang, Z. Zhao, Y. Self-immolative micellar drug delivery: The linker matters. Nano Res. 2018, 11, 6177-6189.
10. Blanco, E. Shen, H. Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015, 33, 941-951.
11. Deng, C. Jiang, Y. Cheng, R. Meng, F. Zhong, Z. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: Promises, progress and prospects. Nano Today. 2012, 7, 467-480.
12. Liu, Z. Jiao, Y. Wang, Y. Zhou, C. Zhang, Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008, 60, 1650-1662.
13. Goodarzi, N. Varshochian, R. Kamalinia, G. Atyabi, F. Dinarvand, R. A review of polysaccharide cytotoxic drug conjugates for cancer therapy. Carbohydr Polym. 2013, 92, 1280-1293.
14. Westphal, M. James, M. F. Kozek-Langenecker, S. Stocker, R. Guidet, B. Van Aken, H. Hydroxyethyl starches: different products--different effects. Anesthesiology. 2009, 111, 187-202.
15. Li, D. Ding, J. Zhuang, X. Chen, L. Chen, X. Drug binding rate regulates the properties of polysaccharide prodrugs. J Mater Chem B. 2016, 4, 5167-5177.
16. Paleos, C. M. Sideratou, Z. Tsiourvas, D. Drug delivery systems based on hydroxyethyl starch. Bioconjug Chem. 2017, 28, 1611-1624.
17. Goszczyński, T. M. Filip-Psurska, B. Kempińska, K. Wietrzyk, J. Boratyński, J. Hydroxyethyl starch as an effective methotrexate carrier in anticancer therapy. Pharmacol Res Perspect. 2014, 2, e00047.
18. Xie, F. Pollet, E. Halley, P. J. Avérous, L. Starch-based nano-biocomposites. Prog Polym Sci. 2013, 38, 1590-1628.
19. Chen, Q. Yu, H. Wang, L. ul Abdin, Z. Chen, Y. Wang, J. Zhou, W. Yang, X. Khan, R. U. Zhang, H. Chen, X. Recent progress in chemical modification of starch and its applications. RSC Adv. 2015, 5, 67459-67474.
20. Glover, P. A. Rudloff, E. Kirby, R. Hydroxyethyl starch: a review of pharmacokinetics, pharmacodynamics, current products, and potential clinical risks, benefits, and use. J Vet Emerg Crit Care (San Antonio). 2014, 24, 642-661.
21. Li, W. Xiao, X. Zhang, W. Zheng, J. Luo, Q. Ouyang, S. Zhang, G. Compositional, morphological, structural and physicochemical properties of starches from seven naked barley cultivars grown in China. Food Res Int. 2014, 58, 7-14.
22. Ai, Y. Jane, J. L. Gelatinization and rheological properties of starch. Starke. 2015, 67, 213-224.
23. Gosch, C. I. Haase, T. Wolf, B. A. Kulicke, W. M. Molar mass distribution and size of hydroxyethyl starch fractions obtained by continuous polymer fractionation. Starke. 2002, 54, 375-384.
24. Boldt, J. Modern rapidly degradable hydroxyethyl starches: current concepts. Anesth Analg. 2009, 108, 1574-1582.
25. Metcalf, W. Papadopoulos, A. Tufaro, R. Barth, A. A clinical physiologic study of hydroxyethyl starch. Surg Gynecol Obstet. 1970, 131, 255-267.
26. Besheer, A. Hause, G. Kressler, J. Mäder, K. Hydrophobically modified hydroxyethyl starch: synthesis, characterization, and aqueous self-assembly into nano-sized polymeric micelles and vesicles. Biomacromolecules. 2007, 8, 359-367.
27. Yu, C. Zhou, Q. Xiao, F. Li, Y. Hu, H. Wan, Y. Li, Z. Yang, X. Enhancing doxorubicin delivery toward tumor by hydroxyethyl starch-g-polylactide partner nanocarriers. ACS Appl Mater Interfaces. 2017, 9, 10481-10493.
28. Li, Y. Wu, Y. Chen, J. Wan, J. Xiao, C. Guan, J. Song, X. Li, S. Zhang, M. Cui, H. Li, T. Yang, X. Li, Z. Yang, X. A simple glutathione-responsive turn-on theranostic nanoparticle for dual-modal imaging and chemo-photothermal combination therapy. Nano Lett. 2019, 19, 5806-5817.
29. Li, Y. Hu, H. Zhou, Q. Ao, Y. Xiao, C. Wan, J. Wan, Y. Xu, H. Li, Z. Yang, X. α-Amylase- and redox-responsive nanoparticles for tumor-targeted drug delivery. ACS Appl Mater Interfaces. 2017, 9, 19215-19230.
30. Hu, H. Li, Y. Zhou, Q. Ao, Y. Yu, C. Wan, Y. Xu, H. Li, Z. Yang, X. Redox-sensitive hydroxyethyl starch-doxorubicin conjugate for tumor targeted drug delivery. ACS Appl Mater Interfaces. 2016, 8, 30833-30844.
31. Hu, H. Wan, J. Huang, X. Tang, Y. Xiao, C. Xu, H. Yang, X. Li, Z. iRGD-decorated reduction-responsive nanoclusters for targeted drug delivery. Nanoscale. 2018, 10, 10514-10527.
32. Xiao, C. Hu, H. Yang, H. Li, S. Zhou, H. Ruan, J. Zhu, Y. Yang, X. Li, Z. Colloidal hydroxyethyl starch for tumor-targeted platinum delivery. Nanoscale Adv. 2019, 1, 1002-1012.
33. Wu, H. Hu, H. Wan, J. Li, Y. Wu, Y. Tang, Y. Xiao, C. Xu, H. Yang, X. Li, Z. Hydroxyethyl starch stabilized polydopamine nanoparticles for cancer chemotherapy. Chem Eng J. 2018, 349, 129-145.
34. Liu, Q. Yang, X. Xu, H. Pan, K. Yang, Y. Novel nanomicelles originating from hydroxyethyl starch-g-polylactide and their release behavior of docetaxel modulated by the PLA chain length. Eur Polym J. 2013, 49, 3522-3529.
35. Zhou, Q. Li, Y. Zhu, Y. Yu, C. Jia, H. Bao, B. Hu, H. Xiao, C. Zhang, J. Zeng, X. Wan, Y. Xu, H. Li, Z. Yang, X. Co-delivery nanoparticle to overcome metastasis promoted by insufficient chemotherapy. J Control Release. 2018, 275, 67-77.
36. Larson, N. Ghandehari, H. Polymeric conjugates for drug delivery. Chem Mater. 2012, 24, 840-853.
37. Zhou, P. Li, Z. Chau, Y. Synthesis, characterization, and in vivo evaluation of poly(ethylene oxide-co-glycidol)-platinate conjugate. Eur J Pharm Sci. 2010, 41, 464-472.
38. Lipinski, C. Poor aqueous solubility-an industry wide problem in drug discovery. Am Pharm Rev. 2002, 5, 82-85.
39. Zhu, C. Liu, L. Yang, Q. Lv, F. Wang, S. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem Rev. 2012, 112, 4687-4735.
40. Luo, Q. Wang, P. Miao, Y. He, H. Tang, X. A novel 5-fluorouracil prodrug using hydroxyethyl starch as a macromolecular carrier for sustained release. Carbohydr Polym. 2012, 87, 2642-2647.
41. Zhou, Z. Ma, X. Jin, E. Tang, J. Sui, M. Shen, Y. Van Kirk, E. A. Murdoch, W. J. Radosz, M. Linear-dendritic drug conjugates forming long-circulating nanorods for cancer-drug delivery. Biomaterials. 2013, 34, 5722-5735.
42. Jana, S. Mandlekar, S. Marathe, P. Prodrug design to improve pharmacokinetic and drug delivery properties: challenges to the discovery scientists. Curr Med Chem. 2010, 17, 3874-3908.
43. Dong, Z. Li, Q. Guo, D. Shu, Y. Polli, J. E. Synthesis and evaluation of bile acid-ribavirin conjugates as prodrugs to target the liver. J Pharm Sci. 2015, 104, 2864-2876.
44. Lelieveldt, L. Kristyanto, H. Pruijn, G. J. M. Scherer, H. U. Toes, R. E. M. Bonger, K. M. Sequential prodrug strategy to target and eliminate ACPA-selective autoreactive B cells. Mol Pharm. 2018, 15, 5565-5573.
45. Li, D. Feng, X. Chen, L. Ding, J. Chen, X. One-step synthesis of targeted acid-labile polysaccharide prodrug for efficiently intracellular drug delivery. ACS Biomater Sci Eng. 2018, 4, 539-546.
46. Zhao, K. Li, D. Xu, W. Ding, J. Jiang, W. Li, M. Wang, C. Chen, X. Targeted hydroxyethyl starch prodrug for inhibiting the growth and metastasis of prostate cancer. Biomaterials. 2017, 116, 82-94.
47. Matsumura, Y. Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986, 46, 6387-6392.
48. Zhou, Q. Shao, S. Wang, J. Xu, C. Xiang, J. Piao, Y. Zhou, Z. Yu, Q. Tang, J. Liu, X. Gan, Z. Mo, R. Gu, Z. Shen, Y. Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy. Nat Nanotechnol. 2019, 14, 799-809.
49. Li, G. Li, Y. Tang, Y. Zhang, Y. Zhang, Y. Yin, T. Xu, H. Cai, C. Tang, X. Hydroxyethyl starch conjugates for improving the stability, pharmacokinetic behavior and antitumor activity of 10-hydroxy camptothecin. Int J Pharm. 2014, 471, 234-244.
50. Li, G. Zhao, M. Zhao, L. Well-defined hydroxyethyl starch-10-hydroxy camptothecin super macromolecule conjugate: cytotoxicity, pharmacodynamics research, tissue distribution test and intravenous injection safety assessment. Drug Deliv. 2016, 23, 2860-2868.
51. Zhu, Y. Yao, X. Chen, X. Chen, L. pH-sensitive hydroxyethyl starch–doxorubicin conjugates as antitumor prodrugs with enhanced anticancer efficacy. J Appl Polym Sci. 2015, 132, 42778.
52. Sleightholm, R. Yang, B. Yu, F. Xie, Y. Oupický, D. Chloroquine-modified hydroxyethyl starch as a polymeric drug for cancer therapy. Biomacromolecules. 2017, 18, 2247-2257.
53. Kuppusamy, P. Li, H. Ilangovan, G. Cardounel, A. J. Zweier, J. L. Yamada, K. Krishna, M. C. Mitchell, J. B. Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res. 2002, 62, 307-312.
54. Liu, S. V. Liu, S. Pinski, J. Luteinizing hormone-releasing hormone receptor targeted agents for prostate cancer. Expert Opin Investig Drugs. 2011, 20, 769-778.
55. Kunath, K. von Harpe, A. Fischer, D. Kissel, T. Galactose-PEI-DNA complexes for targeted gene delivery: degree of substitution affects complex size and transfection efficiency. J Control Release. 2003, 88, 159-172.
56. Li, Y. Liu, G. Ma, J. Lin, J. Lin, H. Su, G. Chen, D. Ye, S. Chen, X. Zhu, X. Hou, Z. Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy. J Control Release. 2017, 258, 95-107.
57. Yu, C. Liu, C. Wang, S. Li, Z. Hu, H. Wan, Y. Yang, X. Hydroxyethyl starch-based nanoparticles featured with redox-sensitivity and chemo-photothermal therapy for synergized tumor eradication. Cancers (Basel). 2019, 11, 207.
58. Hu, H. Xiao, C. Wu, H. Li, Y. Zhou, Q. Tang, Y. Yu, C. Yang, X. Li, Z. Nanocolloidosomes with selective drug release for active tumor-targeted imaging-guided photothermal/chemo combination therapy. ACS Appl Mater Interfaces. 2017, 9, 42225-42238.
59. Veronese, F. M. Peptide and protein PEGylation: a review of problems and solutions. Biomaterials. 2001, 22, 405-417.
60. Nichols, J. W. Bae, Y. H. Odyssey of a cancer nanoparticle: from injection site to site of action. Nano Today. 2012, 7, 606-618.
61. Lemarchand, C. Gref, R. Couvreur, P. Polysaccharide-decorated nanoparticles. Eur J Pharm Biopharm. 2004, 58, 327-341.
62. Baier, G. Baumann, D. Siebert, J. M. Musyanovych, A. Mailänder, V. Landfester, K. Suppressing unspecific cell uptake for targeted delivery using hydroxyethyl starch nanocapsules. Biomacromolecules. 2012, 13, 2704-2715.
63. Noga, M. Edinger, D. Kläger, R. Wegner, S. V. Spatz, J. P. Wagner, E. Winter, G. Besheer, A. The effect of molar mass and degree of hydroxyethylation on the controlled shielding and deshielding of hydroxyethyl starch-coated polyplexes. Biomaterials. 2013, 34, 2530-2538.
64. Liebner, R. Mathaes, R. Meyer, M. Hey, T. Winter, G. Besheer, A. Protein HESylation for half-life extension: synthesis, characterization and pharmacokinetics of HESylated anakinra. Eur J Pharm Biopharm. 2014, 87, 378-385.
65. Liu, Y. Ai, K. Lu, L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev. 2014, 114, 5057-5115.
66. Hu, H. Chen, J. Yang, H. Huang, X. Wu, H. Wu, Y. Li, F. Yi, Y. Xiao, C. Li, Y. Tang, Y. Li, Z. Zhang, B. Yang, X. Potentiating photodynamic therapy of ICG-loaded nanoparticles by depleting GSH with PEITC. Nanoscale. 2019, 11, 6384-6393.
67. Jong, K. Ju, B. Zhang, S. Synthesis of pH-responsive N-acetyl-cysteine modified starch derivatives for oral delivery. J Biomater Sci Polym Ed. 2017, 28, 1525-1537.
68. Besheer, A. Vogel, J. Glanz, D. Kressler, J. Groth, T. Mäder, K. Characterization of PLGA nanospheres stabilized with amphiphilic polymers: hydrophobically modified hydroxyethyl starch vs pluronics. Mol Pharm. 2009, 6, 407-415.
69. Chen, S. Wu, J. Tang, Q. Xu, C. Huang, Y. Huang, D. Luo, F. Wu, Y. Yan, F. Weng, Z. Wang, S. Nano-micelles based on hydroxyethyl starch-curcumin conjugates for improved stability, antioxidant and anticancer activity of curcumin. Carbohydr Polym. 2020, 228, 115398.
70. Naksuriya, O. Okonogi, S. Schiffelers, R. M. Hennink, W. E. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 2014, 35, 3365-3383.
71. Serban, D. Leng, J. Cheresh, D. H-ras regulates angiogenesis and vascular permeability by activation of distinct downstream effectors. Circ Res. 2008, 102, 1350-1358.
72. Li, G. Zhao, L. Sorafenib-loaded hydroxyethyl starch-TG100-115 micelles for the treatment of liver cancer based on synergistic treatment. Drug Deliv. 2019, 26, 756-764.
73. Kang, B. Okwieka, P. Schöttler, S. Seifert, O. Kontermann, R. E. Pfizenmaier, K. Musyanovych, A. Meyer, R. Diken, M. Sahin, U. Mailänder, V. Wurm, F. R. Landfester, K. Tailoring the stealth properties of biocompatible polysaccharide nanocontainers. Biomaterials. 2015, 49, 125-134.