Nanoparticles and their effects on differentiation of mesenchymal stem cells
Over the past decades, advancements in nanoscience and nanotechnology have resulted in numerous nanomedicine platforms. Various nanoparticles, which exhibit many unique properties, play increasingly important roles in the field of biomedicine to realize the potential of nanomedicine. Due to the capacity of self-renewal and multilineage mesenchymal differentiation, mesenchymal stem cells (MSCs) have been widely used in the area of regenerative medicine and in clinical applications due to their potential to differentiate into various lineages. There are several factors that impact the differentiation of MSCs into different lineages. Many types of biomaterials such as polymers, ceramics, and metals are commonly applied in tissue engineering and regenerative therapies, and they are continuously refined over time. In recent years, along with the rapid development of nanotechnology and nanomedicine, nanoparticles have been playing more and more important roles in the fields of biomedicine and bioengineering. The combined use of nanoparticles and MSCs in biomedicine requires greater knowledge of the effects of nanoparticles on MSCs. This review focuses on the effects of four inorganic or metallic nanoparticles (hydroxyapatite, silica, silver, and calcium carbonate), which are widely used as biomaterials, on the osteogenic and adipogenic differentiation of MSCs. In this review, the cytotoxicity of these four nanoparticles, their effects on osteogenic/adipogenic differentiation of MSCs and the signalling pathways or transcription factors involved are summarized. In addition, the chemical composition, size, shape, surface area, surface charge and surface chemistry of nanoparticles, have been reported to impact cellular behaviours. In this review, we particularly emphasize the influence of their size on cellular responses. We envision our review will provide a theoretical basis for the combined application of MSCs and nanoparticles in biomedicine.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
1. Kabir, W. Di Bella, C. Jo, I. Gould, D. Choong, P. F. M. Human stem cell based tissue engineering for in vivo cartilage repair: a systematic review. Tissue Eng Part B Rev. 2020. doi: 10.1089/ten.TEB.2020.0155.
2. Tsiapalis, D. O’Driscoll, L. Mesenchymal stem cell derived extracellular vesicles for tissue engineering and regenerative medicine applications. Cells. 2020, 9, 991.
3. Macrin, D. Joseph, J. P. Pillai, A. A. Devi, A. Eminent sources of adult mesenchymal stem cells and their therapeutic imminence. Stem Cell Rev Rep. 2017, 13, 741-756.
4. Maqsood, M. Kang, M. Wu, X. Chen, J. Teng, L. Qiu, L. Adult mesenchymal stem cells and their exosomes: Sources, characteristics, and application in regenerative medicine. Life Sci. 2020, 256, 118002.
5. Mushahary, D. Spittler, A. Kasper, C. Weber, V. Charwat, V. Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A. 2018, 93, 19-31.
6. Amjadi-Moheb, F. Akhavan-Niaki, H. Wnt signaling pathway in osteoporosis: Epigenetic regulation, interaction with other signaling pathways, and therapeutic promises. J Cell Physiol. 2019. doi: 10.1002/jcp.28207.
7. Pakvasa, M. Alverdy, A. Mostafa, S. Wang, E. Fu, L. Li, A. Oliveira, L. Athiviraham, A. Lee, M. J. Wolf, J. M. He, T. C. Ameer, G. A. Reid, R. R. Neural EGF-like protein 1 (NELL-1): Signaling crosstalk in mesenchymal stem cells and applications in regenerative medicine. Genes Dis. 2017, 4, 127-137.
8. Wang, C. Shan, S. Wang, C. Wang, J. Li, J. Hu, G. Dai, K. Li, Q. Zhang, X. Mechanical stimulation promote the osteogenic differentiation of bone marrow stromal cells through epigenetic regulation of Sonic Hedgehog. Exp Cell Res. 2017, 352, 346-356.
9. Gomathi, K. Akshaya, N. Srinaath, N. Moorthi, A. Selvamurugan, N. Regulation of Runx2 by post-translational modifications in osteoblast differentiation. Life Sci. 2020, 245, 117389.
10. Yang, X. Li, Y. Liu, X. Huang, Q. Zhang, R. Feng, Q. Incorporation of silica nanoparticles to PLGA electrospun fibers for osteogenic differentiation of human osteoblast-like cells. Regen Biomater. 2018, 5, 229-238.
11. Zan, X. Sitasuwan, P. Feng, S. Wang, Q. Effect of roughness on in situ biomineralized CaP-collagen coating on the osteogenesis of mesenchymal stem cells. Langmuir. 2016, 32, 1808-1817.
12. Carvalho, M. S. Cabral, J. M. da Silva, C. L. Vashishth, D. Synergistic effect of extracellularly supplemented osteopontin and osteocalcin on stem cell proliferation, osteogenic differentiation, and angiogenic properties. J Cell Biochem. 2019, 120, 6555-6569.
13. Li, Y. Jin, D. Xie, W. Wen, L. Chen, W. Xu, J. Ding, J. Ren, D. PPAR-γ and Wnt regulate the differentiation of MSCs into adipocytes and osteoblasts respectively. Curr Stem Cell Res Ther. 2018, 13, 185-192.
14. Smith, A. Yu, X. Yin, L. Diazinon exposure activated transcriptional factors CCAAT-enhancer-binding proteins α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) and induced adipogenesis in 3T3-L1 preadipocytes. Pestic Biochem Physiol. 2018, 150, 48-58.
15. Ghadge, A. A. Khaire, A. A. Kuvalekar, A. A. Adiponectin: A potential therapeutic target for metabolic syndrome. Cytokine Growth Factor Rev. 2018, 39, 151-158.
16. Tautzenberger, A. Kovtun, A. Ignatius, A. Nanoparticles and their potential for application in bone. Int J Nanomedicine. 2012, 7, 4545-4557.
17. Khan, I. Saeed, K. Khan, I. Nanoparticles: Properties, applications and toxicities. Arab J Chem. 2019, 12, 908-931.
18. Li, Y. Li, N. Pan, W. Yu, Z. Yang, L. Tang, B. Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery. ACS Appl Mater Interfaces. 2017, 9, 2123-2129.
19. Epple, M. Ganesan, K. Heumann, R. Klesing, J. Kovtun, A. Neumann, S. Sokolova, V. Application of calcium phosphate nanoparticles in biomedicine. J Mater Chem. 2010, 20, 18-23.
20. Surmeneva, M. Lapanje, A. Chudinova, E. Ivanova, A. Koptyug, A. Loza, K. Prymak, O. Epple, M. Ennen-Roth, F. Ulbricht, M. Rijavec, T. Surmenev, R. Decreased bacterial colonization of additively manufactured Ti6Al4V metallic scaffolds with immobilized silver and calcium phosphate nanoparticles. Appl Surf Sci. 2019, 480, 822-829.
21. Chen, W. Tian, B. Lei, Y. Ke, Q. F. Zhu, Z. A. Guo, Y. P. Hydroxyapatite coatings with oriented nanoplate and nanorod arrays: Fabrication, morphology, cytocompatibility and osteogenic differentiation. Mater Sci Eng C Mater Biol Appl. 2016, 67, 395-408.
22. Li, J. Li, J. J. Zhang, J. Wang, X. Kawazoe, N. Chen, G. Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells. Nanoscale. 2016, 8, 7992-8007.
23. Li, J. Mao, H. Kawazoe, N. Chen, G. Insight into the interactions between nanoparticles and cells. Biomater Sci. 2017, 5, 173-189.
24. Li, J. J. Kawazoe, N. Chen, G. Gold nanoparticles with different charge and moiety induce differential cell response on mesenchymal stem cell osteogenesis. Biomaterials. 2015, 54, 226-236.
25. Huang, Y. Zhou, G. Zheng, L. Liu, H. Niu, X. Fan, Y. Micro-/nano-sized hydroxyapatite directs differentiation of rat bone marrow derived mesenchymal stem cells towards an osteoblast lineage. Nanoscale. 2012, 4, 2484-2490.
26. Chen, L. McCrate, J. M. Lee, J. C. Li, H. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology. 2011, 22, 105708.
27. Zhang, M. Chen, X. Li, C. Shen, X. Charge-reversal nanocarriers: An emerging paradigm for smart cancer nanomedicine. J Control Release. 2020, 319, 46-62.
28. Cheng, H. Chawla, A. Yang, Y. Li, Y. Zhang, J. Jang, H. L. Khademhosseini, A. Development of nanomaterials for bone-targeted drug delivery. Drug Discov Today. 2017, 22, 1336-1350.
29. Machado, T. R. Leite, I. S. Inada, N. M. Li, M. S. da Silva, J. S. Andrés, J. Beltrán-Mir, H. Cordoncillo, E. Longo, E. Designing biocompatible and multicolor fluorescent hydroxyapatite nanoparticles for cell-imaging applications. Mater Today Chem. 2019, 14, 100211.
30. Wang, C. Jeong, K. J. Kim, J. Kang, S. W. Kang, J. Han, I. H. Lee, I. W. Oh, S. J. Lee, J. Emission-tunable probes using terbium(III)-doped self-activated luminescent hydroxyapatite for in vitro bioimaging. J Colloid Interface Sci. 2021, 581, 21-30.
31. Ghorbani, F. Nojehdehian, H. Zamanian, A. Physicochemical and mechanical properties of freeze cast hydroxyapatite-gelatin scaffolds with dexamethasone loaded PLGA microspheres for hard tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2016, 69, 208-220.
32. Cheng, A. Schwartz, Z. Kahn, A. Li, X. Shao, Z. Sun, M. Ao, Y. Boyan, B. D. Chen, H. Advances in porous scaffold design for bone and cartilage tissue engineering and regeneration. Tissue Eng Part B Rev. 2019, 25, 14-29.
33. Müller, K. H. Motskin, M. Philpott, A. J. Routh, A. F. Shanahan, C. M. Duer, M. J. Skepper, J. N. The effect of particle agglomeration on the formation of a surface-connected compartment induced by hydroxyapatite nanoparticles in human monocyte-derived macrophages. Biomaterials. 2014, 35, 1074-1088.
34. Motskin, M. Wright, D. M. Muller, K. Kyle, N. Gard, T. G. Porter, A. E. Skepper, J. N. Hydroxyapatite nano and microparticles: correlation of particle properties with cytotoxicity and biostability. Biomaterials. 2009, 30, 3307-3317.
35. Meena, R. Kesari, K. K. Rani, M. Paulraj, R. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human breast cancer cells (MCF-7). J Nanopart Res. 2012, 14, 712.
36. Zhao, X. Ng, S. Heng, B. C. Guo, J. Ma, L. Tan, T. T. Ng, K. W. Loo, S. C. Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent. Arch Toxicol. 2013, 87, 1037-1052.
37. Yang, X. Li, Y. Liu, X. Zhang, R. Feng, Q. In vitro uptake of hydroxyapatite nanoparticles and their effect on osteogenic differentiation of human mesenchymal stem cells. Stem Cells Int. 2018, 2018, 2036176.
38. Yang, X. Li, Y. Huang, Q. Liu, X. Zhang, R. Feng, Q. The effect of hydroxyapatite nanoparticles on adipogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A. 2018, 106, 1822-1831.
39. Remya, N. S. Syama, S. Gayathri, V. Varma, H. K. Mohanan, P. V. An in vitro study on the interaction of hydroxyapatite nanoparticles and bone marrow mesenchymal stem cells for assessing the toxicological behaviour. Colloids Surf B Biointerfaces. 2014, 117, 389-397.
40. Liu, Z. Xiao, Y. Chen, W. Wang, Y. Wang, B. Wang, G. Xu, X. Tang, R. Calcium phosphate nanoparticles primarily induce cell necrosis through lysosomal rupture: the origination of material cytotoxicity. J Mater Chem B. 2014, 2, 3480-3489.
41. Liu, Y. Wang, G. Cai, Y. Ji, H. Zhou, G. Zhao, X. Tang, R. Zhang, M. In vitro effects of nanophase hydroxyapatite particles on proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells. J Biomed Mater Res A. 2009, 90, 1083-1091.
42. Wang, J. Yang, G. Wang, Y. Du, Y. Liu, H. Zhu, Y. Mao, C. Zhang, S. Chimeric protein template-induced shape control of bone mineral nanoparticles and its impact on mesenchymal stem cell fate. Biomacromolecules. 2015, 16, 1987-1996.
43. Zakaria, S. M. Sharif Zein, S. H. Othman, M. R. Yang, F. Jansen, J. A. Nanophase hydroxyapatite as a biomaterial in advanced hard tissue engineering: a review. Tissue Eng Part B Rev. 2013, 19, 431-441.
44. Lock, J. Liu, H. Nanomaterials enhance osteogenic differentiation of human mesenchymal stem cells similar to a short peptide of BMP-7. Int J Nanomedicine. 2011, 6, 2769-2777.
45. Yao, X. Ji, H. J. Liu, Y. K. Cai, Y. Zhao, X. Tang, R. Zhang, M. Hydroxyapatite conditioned medium enhance the osteogenic differentiation of mesenchymal stem cells. Minerva Biotecnologica. 2010, 22, 9-15.
46. Habibovic, P. Barralet, J. E. Bioinorganics and biomaterials: bone repair. Acta Biomater. 2011, 7, 3013-3026.
47. Agell, N. Bachs, O. Rocamora, N. Villalonga, P. Modulation of the Ras/Raf/MEK/ERK pathway by Ca(2+), and calmodulin. Cell Signal. 2002, 14, 649-654.
48. Liu, Y. K. Lu, Q. Z. Pei, R. Ji, H. J. Zhou, G. S. Zhao, X. L. Tang, R. K. Zhang, M. The effect of extracellular calcium and inorganic phosphate on the growth and osteogenic differentiation of mesenchymal stem cells in vitro: implication for bone tissue engineering. Biomed Mater. 2009, 4, 025004.
49. Kohn, D. H. Sarmadi, M. Helman, J. I. Krebsbach, P. H. Effects of pH on human bone marrow stromal cells in vitro: implications for tissue engineering of bone. J Biomed Mater Res. 2002, 60, 292-299.
50. Iijima, K. Suzuki, R. Iizuka, A. Ueno-Yokohata, H. Kiyokawa, N. Hashizume, M. Surface functionalization of tissue culture polystyrene plates with hydroxyapatite under body fluid conditions and its effect on differentiation behaviors of mesenchymal stem cells. Colloids Surf B Biointerfaces. 2016, 147, 351-359.
51. Lee, J. S. Kim, T. W. Park, S. Kim, B. S. Im, G. I. Cho, K. S. Kim, C. S. Reduction of adipose tissue formation by the controlled release of BMP-2 using a hydroxyapatite-coated collagen carrier system for sinus-augmentation/extraction-socket grafting. Materials (Basel). 2015, 8, 7634-7649.
52. Liu, H. Xu, G. W. Wang, Y. F. Zhao, H. S. Xiong, S. Wu, Y. Heng, B. C. An, C. R. Zhu, G. H. Xie, D. H. Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop. Biomaterials. 2015, 49, 103-112.
53. Zhang, Z. Wang, J. Lü, X. An integrated study of natural hydroxyapatite-induced osteogenic differentiation of mesenchymal stem cells using transcriptomics, proteomics and microRNA analyses. Biomed Mater. 2014, 9, 045005.
54. Kozielski, K. L. Rui, Y. Green, J. J. Non-viral nucleic acid containing nanoparticles as cancer therapeutics. Expert Opin Drug Deliv. 2016, 13, 1475-1487.
55. Li, Y. Hei, M. Xu, Y. Qian, X. Zhu, W. Ammonium salt modified mesoporous silica nanoparticles for dual intracellular-responsive gene delivery. Int J Pharm. 2016, 511, 689-702.
56. Gao, Y. Wang, Y. Fu, A. Shi, W. Yeo, D. Luo, K. Q. Ow, H. Xu, C. Tracking mesenchymal stem cell tumor-homing using fluorescent silica nanoparticles. J Mater Chem B. 2015, 3, 1245-1253.
57. Tang, L. Cheng, J. Nonporous Silica Nanoparticles for Nanomedicine Application. Nano Today. 2013, 8, 290-312.
58. Fruijtier-Pölloth, C. The toxicological mode of action and the safety of synthetic amorphous silica-a nanostructured material. Toxicology. 2012, 294, 61-79.
59. Napierska, D. Thomassen, L. C. Lison, D. Martens, J. A. Hoet, P. H. The nanosilica hazard: another variable entity. Part Fibre Toxicol. 2010, 7, 39.
60. Yu, T. Malugin, A. Ghandehari, H. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano. 2011, 5, 5717-5728.
61. Yu, T. Greish, K. McGill, L. D. Ray, A. Ghandehari, H. Influence of geometry, porosity, and surface characteristics of silica nanoparticles on acute toxicity: their vasculature effect and tolerance threshold. ACS Nano. 2012, 6, 2289-2301.
62. Chang, J. S. Chang, K. L. Hwang, D. F. Kong, Z. L. In vitro cytotoxicity of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ Sci Technol. 2007, 41, 2064-2068.
63. Kim, I. Y. Joachim, E. Choi, H. Kim, K. Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine. 2015, 11, 1407-1416.
64. Ema, M. Kobayashi, N. Naya, M. Hanai, S. Nakanishi, J. Reproductive and developmental toxicity studies of manufactured nanomaterials. Reprod Toxicol. 2010, 30, 343-352.
65. Eom, H. J. Choi, J. Oxidative stress of silica nanoparticles in human bronchial epithelial cell, Beas-2B. Toxicol In Vitro. 2009, 23, 1326-1332.
66. Marquis, B. J. Love, S. A. Braun, K. L. Haynes, C. L. Analytical methods to assess nanoparticle toxicity. Analyst. 2009, 134, 425-439.
67. Ha, S. W. Sikorski, J. A. Weitzmann, M. N. Beck, G. R. Jr. Bio-active engineered 50 nm silica nanoparticles with bone anabolic activity: therapeutic index, effective concentration, and cytotoxicity profile in vitro. Toxicol In Vitro. 2014, 28, 354-364.
68. Yang, X. Li, Y. Liu, X. Huang, Q. He, W. Zhang, R. Feng, Q. Benayahu, D. The stimulatory effect of silica nanoparticles on osteogenic differentiation of human mesenchymal stem cells. Biomed Mater. 2016, 12, 015001.
69. Shi, M. Zhou, Y. Shao, J. Chen, Z. Song, B. Chang, J. Wu, C. Xiao, Y. Stimulation of osteogenesis and angiogenesis of hBMSCs by delivering Si ions and functional drug from mesoporous silica nanospheres. Acta Biomater. 2015, 21, 178-189.
70. Kim, K. J. Joe, Y. A. Kim, M. K. Lee, S. J. Ryu, Y. H. Cho, D. W. Rhie, J. W. Silica nanoparticles increase human adipose tissue-derived stem cell proliferation through ERK1/2 activation. Int J Nanomedicine. 2015, 10, 2261-2272.
71. Huang, D. M. Chung, T. H. Hung, Y. Lu, F. Wu, S. H. Mou, C. Y. Yao, M. Chen, Y. C. Internalization of mesoporous silica nanoparticles induces transient but not sufficient osteogenic signals in human mesenchymal stem cells. Toxicol Appl Pharmacol. 2008, 231, 208-215.
72. Riggs, B. L. Khosla, S. Melton, L. J. 3rd. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev. 2002, 23, 279-302.
73. Beck, G. R., Jr. Ha, S. W. Camalier, C. E. Yamaguchi, M. Li, Y. Lee, J. K. Weitzmann, M. N. Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo. Nanomedicine. 2012, 8, 793-803.
74. Yang, W. Yao, C. Cui, Z. Luo, D. Lee, I. S. Yao, J. Chen, C. Kong, X. Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells. Int J Mol Sci. 2016, 17, 639.
75. Pauksch, L. Hartmann, S. Rohnke, M. Szalay, G. Alt, V. Schnettler, R. Lips, K. S. Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts. Acta Biomater. 2014, 10, 439-449.
76. Samberg, M. E. Loboa, E. G. Oldenburg, S. J. Monteiro-Riviere, N. A. Silver nanoparticles do not influence stem cell differentiation but cause minimal toxicity. Nanomedicine (Lond). 2012, 7, 1197-1209.
77. Liu, X. He, W. Fang, Z. Kienzle, A. Feng, Q. Influence of silver nanoparticles on osteogenic differentiation of human mesenchymal stem cells. J Biomed Nanotechnol. 2014, 10, 1277-1285.
78. Schwarz, K. Milne, D. B. Growth-promoting effects of silicon in rats. Nature. 1972, 239, 333-334.
79. Carlisle, E. M. Silicon: a possible factor in bone calcification. Science. 1970, 167, 279-280.
80. Reffitt, D. M. Ogston, N. Jugdaohsingh, R. Cheung, H. F. Evans, B. A. Thompson, R. P. Powell, J. J. Hampson, G. N. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003, 32, 127-135.
81. Zhou, Y. Wu, C. Xiao, Y. The stimulation of proliferation and differentiation of periodontal ligament cells by the ionic products from Ca7Si2P2O16 bioceramics. Acta Biomater. 2012, 8, 2307-2316.
82. Han, P. Wu, C. Xiao, Y. The effect of silicate ions on proliferation, osteogenic differentiation and cell signalling pathways (WNT and SHH) of bone marrow stromal cells. Biomater Sci. 2013, 1, 379-392.
83. Gu, H. Guo, F. Zhou, X. Gong, L. Zhang, Y. Zhai, W. Chen, L. Cen, L. Yin, S. Chang, J. Cui, L. The stimulation of osteogenic differentiation of human adipose-derived stem cells by ionic products from akermanite dissolution via activation of the ERK pathway. Biomaterials. 2011, 32, 7023-7033.
84. Li, J. Wei, L. Sun, J. Guan, G. Effect of ionic products of dicalcium silicate coating on osteoblast differentiation and collagen production via TGF-β1 pathway. J Biomater Appl. 2013, 27, 595-604.
85. Titushkin, I. Cho, M. Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells. Biophys J. 2007, 93, 3693-3702.
86. Son, M. J. Kim, W. K. Kwak, M. Oh, K. J. Chang, W. S. Min, J. K. Lee, S. C. Song, N. W. Bae, K. H. Silica nanoparticles inhibit brown adipocyte differentiation via regulation of p38 phosphorylation. Nanotechnology. 2015, 26, 435101.
87. Yang, X. Liu, X. Li, Y. Huang, Q. He, W. Zhang, R. Feng, Q. Benayahu, D. The negative effect of silica nanoparticles on adipogenic differentiation of human mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl. 2017, 81, 341-348.
88. Rai, M. Yadav, A. Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009, 27, 76-83.
89. Singh, R. Shedbalkar, U. U. Wadhwani, S. A. Chopade, B. A. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol. 2015, 99, 4579-4593.
90. Prashob, P. K. J. Multi-functional silver nanoparticles for drug delivery: A review. Int J Curr Res Rev. 2017, 9, 1-5.
91. Hasan, A. Waibhaw, G. Saxena, V. Pandey, L. M. Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Int J Biol Macromol. 2018, 111, 923-934.
92. Wiley, B. Sun, Y. Mayers, B. Xia, Y. Shape-controlled synthesis of metal nanostructures: the case of silver. Chemistry. 2005, 11, 454-463.
93. Roh, J. Umh, H. N. Sim, J. Park, S. Yi, J. Kim, Y. Dispersion stability of citrate- and PVP-AgNPs in biological media for cytotoxicity test. Korean J Chem Eng. 2013, 30, 671-674.
94. Kalbáčová, M. Verdánová, M. Mravec, F. Halasová, T. Pekař, M. Effect of CTAB and CTAB in the presence of hyaluronan on selected human cell types. Colloids Surf Physicochem Eng Aspects. 2014, 460, 204-208.
95. Yasun, E. Li, C. Barut, I. Janvier, D. Qiu, L. Cui, C. Tan, W. BSA modification to reduce CTAB induced nonspecificity and cytotoxicity of aptamer-conjugated gold nanorods. Nanoscale. 2015, 7, 10240-10248.
96. Connor, E. E. Mwamuka, J. Gole, A. Murphy, C. J. Wyatt, M. D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005, 1, 325-327.
97. Egorova, E. M. Kaba, S. I. The effect of surfactant micellization on the cytotoxicity of silver nanoparticles stabilized with aerosol-OT. Toxicol In Vitro. 2019, 57, 244-254.
98. He, W. Liu, X. Kienzle, A. Müller, W. E. Feng, Q. In vitro uptake of silver nanoparticles and their toxicity in human mesenchymal stem cells derived from bone marrow. J Nanosci Nanotechnol. 2016, 16, 219-228.
99. Park, M. V. Neigh, A. M. Vermeulen, J. P. de la Fonteyne, L. J. Verharen, H. W. Briedé, J. J. van Loveren, H. de Jong, W. H. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials. 2011, 32, 9810-9817.
100. Hussain, S. M. Hess, K. L. Gearhart, J. M. Geiss, K. T. Schlager, J. J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro. 2005, 19, 975-983.
101. Braydich-Stolle, L. Hussain, S. Schlager, J. J. Hofmann, M. C. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci. 2005, 88, 412-419.
102. Greulich, C. Diendorf, J. Gessmann, J. Simon, T. Habijan, T. Eggeler, G. Schildhauer, T. A. Epple, M. Köller, M. Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles. Acta Biomater. 2011, 7, 3505-3514.
103. Sengstock, C. Diendorf, J. Epple, M. Schildhauer, T. A. Köller, M. Effect of silver nanoparticles on human mesenchymal stem cell differentiation. Beilstein J Nanotechnol. 2014, 5, 2058-2069.
104. Qin, H. Zhu, C. An, Z. Jiang, Y. Zhao, Y. Wang, J. Liu, X. Hui, B. Zhang, X. Wang, Y. Silver nanoparticles promote osteogenic differentiation of human urine-derived stem cells at noncytotoxic concentrations. Int J Nanomedicine. 2014, 9, 2469-2478.
105. Mahmood, M. Li, Z. Casciano, D. Khodakovskaya, M. V. Chen, T. Karmakar, A. Dervishi, E. Xu, Y. Mustafa, T. Watanabe, F. Fejleh, A. Whitlow, M. Al-Adami, M. Ghosh, A. Biris, A. S. Nanostructural materials increase mineralization in bone cells and affect gene expression through miRNA regulation. J Cell Mol Med. 2011, 15, 2297-2306.
106. He, W. Kienzle, A. Liu, X. Müller, W. E. G. Feng, Q. In vitro effect of 30 nm silver nanoparticles on adipogenic differentiation of human mesenchymal stem cells. J Biomed Nanotechnol. 2016, 12, 525-535.
107. He, W. Kienzle, A. Liu, X. Müller, W. E. G. Feng, Q. In vitro 30 nm silver nanoparticles promote chondrogenesis of human mesenchymal stem cells. RSC Adv. 2015, 5, 49809-49818.
108. Zhang, X. F. Shen, W. Gurunathan, S. Silver nanoparticle-mediated cellular responses in various cell lines: An in vitro model. Int J Mol Sci. 2016, 17, 1603.
109. Riaz Ahmed, K. B. Nagy, A. M. Brown, R. P. Zhang, Q. Malghan, S. G. Goering, P. L. Silver nanoparticles: Significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol In Vitro. 2017, 38, 179-192.
110. Dizaj, S. M. Barzegar-Jalali, M. Zarrintan, M. H. Adibkia, K. Lotfipour, F. Calcium carbonate nanoparticles; potential in bone and tooth disorders. Pharm Sci. 2015, 20, 175-182.
111. He, F. Zhang, J. Yang, F. Zhu, J. Tian, X. Chen, X. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials. Mater Sci Eng C Mater Biol Appl. 2015, 50, 257-265.
112. Yang, H. Wang, Y. Liang, T. Deng, Y. Qi, X. Jiang, H. Wu, Y. Gao, H. Hierarchical porous calcium carbonate microspheres as drug delivery vector. Prog Nat Sci Mater Int. 2017, 27, 674-677.
113. Horie, M. Nishio, K. Kato, H. Endoh, S. Fujita, K. Nakamura, A. Kinugasa, S. Hagihara, Y. Yoshida, Y. Iwahashi, H. Evaluation of cellular influences caused by calcium carbonate nanoparticles. Chem Biol Interact. 2014, 210, 64-76.
114. Palmqvist, N. G. M. Nedelec, J. M. Seisenbaeva, G. A. Kessler, V. G. Controlling nucleation and growth of nano-CaCO(3) via CO(2) sequestration by a calcium alkoxide solution to produce nanocomposites for drug delivery applications. Acta Biomater. 2017, 57, 426-434.
115. Donatan, S. Yashchenok, A. Khan, N. Parakhonskiy, B. Cocquyt, M. Pinchasik, B. E. Khalenkow, D. Möhwald, H. Konrad, M. Skirtach, A. Loading capacity versus enzyme activity in anisotropic and spherical calcium carbonate microparticles. ACS Appl Mater Interfaces. 2016, 8, 14284-14292.
116. Gross-Aviv, T. Vago, R. The role of aragonite matrix surface chemistry on the chondrogenic differentiation of mesenchymal stem cells. Biomaterials. 2009, 30, 770-779.
117. Kong, X. Xu, S. Wang, X. Cui, F. Yao, J. Calcium carbonate microparticles used as a gene vector for delivering p53 gene into cancer cells. J Biomed Mater Res A. 2012, 100, 2312-2318.
118. Huang, S. Chen, J. C. Hsu, C. W. Chang, W. H. Effects of nano calcium carbonate and nano calcium citrate on toxicity in ICR mice and on bone mineral density in an ovariectomized mice model. Nanotechnology. 2009, 20, 375102.
119. Vuola, J. Göransson, H. Böhling, T. Asko-Seljavaara, S. Bone marrow induced osteogenesis in hydroxyapatite and calcium carbonate implants. Biomaterials. 1996, 17, 1761-1766.
120. Ohgushi, H. Okumura, M. Yoshikawa, T. Inoue, K. Senpuku, N. Tamai, S. Shors, E. C. Bone formation process in porous calcium carbonate and hydroxyapatite. J Biomed Mater Res. 1992, 26, 885-895.
121. Sethmann, I. Luft, C. Kleebe, H. J. Development of phosphatized calcium carbonate biominerals as bioactive bone graft substitute materials, Part I: Incorporation of magnesium and strontium ions. J Funct Biomater. 2018, 9, 69.
122. Matta, C. Szűcs-Somogyi, C. Kon, E. Robinson, D. Neufeld, T. Altschuler, N. Berta, A. Hangody, L. Veréb, Z. Zákány, R. Osteogenic differentiation of human bone marrow-derived mesenchymal stem cells is enhanced by an aragonite scaffold. Differentiation. 2019, 107, 24-34.
123. Fujihara, K. Kotaki, M. Ramakrishna, S. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nanofibers. Biomaterials. 2005, 26, 4139-4147.
124. Li, X. Yang, X. Liu, X. He, W. Huang, Q. Li, S. Feng, Q. Calcium carbonate nanoparticles promote osteogenesis compared to adipogenesis in human bone-marrow mesenchymal stem cells. Prog Nat Sci Mater Int. 2018, 28, 598-608.
125. Shiwaku, Y. Tsuchiya, K. Xiao, L. Suzuki, O. Effect of calcium phosphate phases affecting the crosstalk between osteoblasts and osteoclasts in vitro. J Biomed Mater Res A. 2019, 107, 1001-1013.
126. Park, J. W. Hanawa, T. Chung, J. H. The relative effects of Ca and Mg ions on MSC osteogenesis in the surface modification of microrough Ti implants. Int J Nanomedicine. 2019, 14, 5697-5711.