·
REVIEW
·

From the microspheres to scaffolds: advances in polymer microsphere scaffolds for bone regeneration applications

Shuhao Yang1,2 Haoming Wu5 Chao Peng3 Jian He6 Zhengguang Pu3 Zhidong Lin7 Jun Wang1,2 Yingkun Hu1,2 Qiao Su8 Bingnan Zhou9 Xin Yong10 Hai Lan3,* Ning Hu1,2,* Xulin Hu3,4,*
Show Less
1 Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
2 Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
3 Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan Province, China
4 Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
5 School of Preclinical Medicine of Chengdu University, Chengdu University, Chengdu, Sichuan Province, China
6 College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan Province, China
7 The Second Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
8 West China School of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
9 School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
10 Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan Province, China
Submitted: 10 July 2024 | Revised: 22 August 2024 | Accepted: 13 September 2024 | Published: 28 September 2024
Copyright © 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

The treatment and repair of bone tissue damage and loss due to infection, tumours, and trauma are major challenges in clinical practice. Artificial bone scaffolds offer a safer, simpler, and more feasible alternative to bone transplantation, serving to fill bone defects and promote bone tissue regeneration. Ideally, these scaffolds should possess osteoconductive, osteoinductive, and osseointegrative properties. However, the current first-generation implants, represented by titanium alloys, have shown poor bone-implant integration performance and cannot meet the requirements for bone tissue repair. This has led to increased research on second and third generation artificial bone scaffolds, which focus on loading bioactive molecules and cells. Polymer microspheres, known for their high specific surface areas at the micro- and nanoscale, exhibit excellent cell and drug delivery behaviours. Additionally, with their unique rigid structure, microsphere scaffolds can be constructed using methods such as thermal sintering, injection, and microsphere encapsulation. These scaffolds not only ensure the excellent cell drug loading performance of microspheres but also exhibit spatial modulation behaviour, aiding in bone repair within a three-dimensional network structure. This article provides a summary and discussion of the use of polymer microsphere scaffolds for bone repair, focusing on the mechanisms of bone tissue repair and the current status of clinical bone grafts, aimed at advancing research in bone repair.

References
  1. oons, G. L.; Diba, M.; Mikos, A. G. Materials design for bone-tissue engineering. Nat Rev Mater. 2020, 5, 584-603.
  2. ose, S.; Sarkar, N. Natural medicinal compounds in bone tissue engineering. Trends Biotechnol. 2020, 38, 404-417.doi: S0167-7799(19)30275-6 pmid: 31882304
  3. olmes, D. Non-union bone fracture: a quicker fix. Nature. 2017, 550, S193.
  4. eng, P.; Zhao, R.; Tang, W.; Yang, F.; Tian, H.; Peng, S.; Pan, H.; Shuai, C. Structural and functional adaptive artificial bone: materials, fabrications, and properties. Adv Funct Mater. 2023, 33, 2214726.
  5. ancedda, R.; Giannoni, P.; Mastrogiacomo, M. A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials. 2007, 28, 4240-4250.doi: 10.1016/j.biomaterials.2007.06.023 pmid: 17644173
  6. u, G.; Xu, Y.; Liu, Q.; Chen, M.; Sun, H.; Wang, P.; Li, X.; Wang, Y.; Li, X.; Hui, X.; Luo, E.; Liu, J.; Jiang, Q.; Liang, J.; Fan, Y.; Sun, Y.; Zhang, X. An instantly fixable and self-adaptive scaffold for skull regeneration by autologous stem cell recruitment and angiogenesis. Nat Commun. 2022, 13, 2499.doi: 10.1038/s41467-022-30243-5 pmid: 35523800
  7. in, L.; Yang, S.; Zhao, C.; Yang, J.; Li, F.; Xu, Z.; Yang, Y.; Zhou, H.; Li, K.; Xiong, C.; Huang, W.; Hu, N.; Hu, X. Prospects and challenges for the application of tissue engineering technologies in the treatment of bone infections. Bone Res. 2024, 12, 28.doi: 10.1038/s41413-024-00332-w pmid: 38744863
  8. enkel, J.; Woodruff, M. A.; Epari, D. R.; Steck, R.; Glatt, V.; Dickinson, I. C.; Choong, P. F.; Schuetz, M. A.; Hutmacher, D. W. Bone regeneration based on tissue engineering conceptions - a 21st century perspective. Bone Res. 2013, 1, 216-248.doi: 10.4248/BR201303002 pmid: 26273505
  9. ahale, M. M.; Saudagar, R. B. Microsphere: a review. J Drug Deliv Ther. 2019, 9(3-s), 854-856.
  10. upta, V.; Khan, Y.; Berkland, C. J.; Laurencin, C. T.; Detamore, M. S. Microsphere-based scaffolds in regenerative engineering. Annu Rev Biomed Eng. 2017, 19, 135-161.doi: 10.1146/annurev-bioeng-071516-044712 pmid: 28633566
  11. uang, W.; Li, X.; Shi, X.; Lai, C. Microsphere based scaffolds for bone regenerative applications. Biomater Sci. 2014, 2, 1145-1153.
  12. hi, X.; Su, K.; Varshney, R. R.; Wang, Y.; Wang, D. A. Sintered microsphere scaffolds for controlled release and tissue engineering. Pharm Res. 2011, 28, 1224-1228.
  13. eng, C.; Tong, Z.; He, Q.; Zhu, H.; Wang, L.; Zhang, X.; Wei, W. Mesenchymal stem cells-hydrogel microspheres system for bone regeneration in calvarial defects. Gels. 2022, 8, 275.
  14. ahil, K.; Akanksha, M.; Premjeet, S.; Bilandi, A.; Kapoor, B. Microsphere: a review. Int J Res Pharm Chem. 2011, 1, 1184-1198.
  15. reitas, S.; Merkle, H. P.; Gander, B. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J Control Release. 2005, 102, 313-332.
  16. ise, D. L. Microsphere preparation by solvent evaporation method. In Handbook of pharmaceutical controlled release technology. CRC Press: 2000; pp 329-343.
  17. andelli, M. A.; Romagnoli, M.; Monti, A.; Gozzi, M.; Guerra, P.; Rivasi, F.; Forni, F. Microwave-treated gelatin microspheres as drug delivery system. J Control Release. 2004, 96, 67-84.
  18. yen, N. T. T.; Hamid, Z. A. A.; Tram, N. X. T.; Ahmad, N. Fabrication of alginate microspheres for drug delivery: A review. Int J Biol Macromol. 2020, 153, 1035-1046.doi: S0141-8130(19)36498-0 pmid: 31794824
  19. echet, M. A.; Demina, A.; Römling, L.; Gómez Bonilla, J. S.; Lanyi, F. J.; Schubert, D. W.; Bück, A.; Peukert, W.; Schmidt, J. Development of poly(L-lactide) (PLLA) microspheres precipitated from triacetin for application in powder bed fusion of polymers. Addit Manuf. 2020, 32, 100966.
  20. u, Y.; Zhang, B.; Sun, R.; Liu, W.; Zhu, Q.; Zhang, X.; Wang, R.; Chen, C. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application. Drug Deliv. 2021, 28, 1397-1418.doi: 10.1080/10717544.2021.1938756 pmid: 34184949
  21. i, J.; Zheng, H.; Xu, E. Y.; Moehwald, M.; Chen, L.; Zhang, X.; Mao, S. Inhalable PLGA microspheres: Tunable lung retention and systemic exposure via polyethylene glycol modification. Acta Biomater. 2021, 123, 325-334.doi: 10.1016/j.actbio.2020.12.061 pmid: 33454386
  22. chott, N. G.; Friend, N. E.; Stegemann, J. P. Coupling osteogenesis and vasculogenesis in engineered orthopedic tissues. Tissue Eng Part B Rev. 2021, 27, 199-214.
  23. o-Shui-Ling, A.; Bolander, J.; Rustom, L. E.; Johnson, A. W.; Luyten, F. P.; Picart, C. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018, 180, 143-162.doi: S0142-9612(18)30494-0 pmid: 30036727
  24. larke, B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008, 3 Suppl 3, S131-139.
  25. uck, D. W.,2nd; Dumanian, G. A. Bone biology and physiology: Part I. The fundamentals. Plast Reconstr Surg. 2012, 129, 1314-1320.doi: 10.1097/PRS.0b013e31824eca94 pmid: 22634648
  26. mith, J. K. Osteoclasts and Microgravity. Life (Basel). 2020, 10, 207.
  27. owin, S. C.; Cardoso, L. Blood and interstitial flow in the hierarchical pore space architecture of bone tissue. J Biomech. 2015, 48, 842-854.doi: 10.1016/j.jbiomech.2014.12.013 pmid: 25666410
  28. owin, S. C. Mechanosensation and fluid transport in living bone. J Musculoskelet Neuronal Interact. 2002, 2, 256-260.pmid: 15758447
  29. epsen, K. J. Systems analysis of bone. Wiley Interdiscip Rev Syst Biol Med. 2009, 1, 73-88.
  30. ai, J.; Rabie, A. B. VEGF: an essential mediator of both angiogenesis and endochondral ossification. J Dent Res. 2007, 86, 937-950.doi: 10.1177/154405910708601006 pmid: 17890669
  31. uang, B.; Wang, W.; Li, Q.; Wang, Z.; Yan, B.; Zhang, Z.; Wang, L.; Huang, M.; Jia, C.; Lu, J.; Liu, S.; Chen, H.; Li, M.; Cai, D.; Jiang, Y.; Jin, D.; Bai, X. Osteoblasts secrete Cxcl9 to regulate angiogenesis in bone. Nat Commun. 2016, 7, 13885.doi: 10.1038/ncomms13885 pmid: 27966526
  32. ilipowska, J.; Tomaszewski, K. A.; Niedźwiedzki, Ł.; Walocha, J. A.; Niedźwiedzki, T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis. 2017, 20, 291-302.doi: 10.1007/s10456-017-9541-1 pmid: 28194536
  33. owney, P. A.; Siegel, M. I. Bone biology and the clinical implications for osteoporosis. Phys Ther. 2006, 86, 77-91.doi: 10.1093/ptj/86.1.77 pmid: 16386064
  34. amoulis, P. D.; Hauschka, P. V. Nitric oxide acts in conjunction with proinflammatory cytokines to promote cell death in osteoblasts. J Bone Miner Res. 1997, 12, 412-422.pmid: 9076584
  35. hin, C. S.; Lecanda, F.; Sheikh, S.; Weitzmann, L.; Cheng, S. L.; Civitelli, R. Relative abundance of different cadherins defines differentiation of mesenchymal precursors into osteogenic, myogenic, or adipogenic pathways. J Cell Biochem. 2000, 78, 566-577.pmid: 10861854
  36. oosi, S.; Behravan, N.; Behravan, J. Nonunion fractures, mesenchymal stem cells and bone tissue engineering. J Biomed Mater Res A. 2018, 106, 2552-2562.doi: 10.1002/jbm.a.36433 pmid: 29689623
  37. iuffi, S.; Zonefrati, R.; Brandi, M. L. Adipose stem cells for bone tissue repair. Clin Cases Miner Bone Metab. 2017, 14, 217-226.
  38. atta, H. K.; Ng, W. F.; Walker, J. A.; Tuck, S. P.; Varanasi, S. S. The cell biology of bone metabolism. J Clin Pathol. 2008, 61, 577-587.doi: 10.1136/jcp.2007.048868 pmid: 18441154
  39. oble, B. S.; Stevens, H.; Loveridge, N.; Reeve, J. Identification of apoptotic changes in osteocytes in normal and pathological human bone. Bone. 1997, 20, 273-282.pmid: 9071479
  40. oyle, W. J.; Simonet, W. S.; Lacey, D. L. Osteoclast differentiation and activation. Nature. 2003, 423, 337-342.
  41. eitelbaum, S. L.; Ross, F. P. Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003, 4, 638-649.doi: 10.1038/nrg1122 pmid: 12897775
  42. ohen, M. M., Jr. The new bone biology: pathologic, molecular, and clinical correlates. Am J Med Genet A. 2006, 140, 2646-2706.pmid: 17103447
  43. ehr, B.; Leucht, P.; Longaker, M. T.; Quarto, N. Fgf-9 is required for angiogenesis and osteogenesis in long bone repair. Proc Natl Acad Sci U S A. 2010, 107, 11853-11858.
  44. ehr, B.; Panetta, N. J.; Longaker, M. T.; Quarto, N. Different endogenous threshold levels of fibroblast growth factor-ligands determine the healing potential of frontal and parietal bones. Bone. 2010, 47, 281-294.doi: 10.1016/j.bone.2010.05.008 pmid: 20472108
  45. ang, S.; Li, M.; Zhang, W.; Hua, H.; Wang, N.; Zhao, J.; Ge, J.; Jiang, X.; Zhang, Z.; Ye, D.; Yang, C. Growth differentiation factor 15 promotes blood vessel growth by stimulating cell cycle progression in repair of critical-sized calvarial defect. Sci Rep. 2017, 7, 9027.doi: 10.1038/s41598-017-09210-4 pmid: 28831101
  46. akeuchi, T.; Yoshida, H.; Tanaka, S. Role of interleukin-6 in bone destruction and bone repair in rheumatoid arthritis. Autoimmun Rev. 2021, 20, 102884.
  47. ader, F.; Roy, S. Tgf-β superfamily and limb regeneration: Tgf-β to start and Bmp to end. Dev Dyn. 2022, 251, 973-987.
  48. hang, N.; Lo, C. W.; Utsunomiya, T.; Maruyama, M.; Huang, E.; Rhee, C.; Gao, Q.; Yao, Z.; Goodman, S. B. PDGF-BB and IL-4 co-overexpression is a potential strategy to enhance mesenchymal stem cell-based bone regeneration. Stem Cell Res Ther. 2021, 12, 40.doi: 10.1186/s13287-020-02086-8 pmid: 33413614
  49. u, K.; Olsen, B. R. Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J Clin Invest. 2016, 126, 509-526.doi: 10.1172/JCI82585 pmid: 26731472
  50. hi, J.; Chi, S.; Xue, J.; Yang, J.; Li, F.; Liu, X. Emerging role and therapeutic implication of Wnt signaling pathways in autoimmune diseases. J Immunol Res. 2016, 2016, 9392132.
  51. rishnan, V.; Bryant, H. U.; Macdougald, O. A. Regulation of bone mass by Wnt signaling. J Clin Invest. 2006, 116, 1202-1209.doi: 10.1172/JCI28551 pmid: 16670761
  52. allhause, T. M.; Jiang, S.; Baranowsky, A.; Brandt, S.; Mertens, P. R.; Frosch, K. H.; Yorgan, T.; Keller, J. Relevance of Notch signaling for bone metabolism and regeneration. Int J Mol Sci. 2021, 22, 1325.
  53. hu, F.; Sweetwyne, M. T.; Hankenson, K. D. PKCδ is required for Jagged-1 induction of human mesenchymal stem cell osteogenic differentiation. Stem Cells. 2013, 31, 1181-1192.doi: 10.1002/stem.1353 pmid: 23404789
  54. ishowitz, M. I.; Zhu, F.; Sundararaghavan, H. G.; Ifkovits, J. L.; Burdick, J. A.; Hankenson, K. D. Jagged1 immobilization to an osteoconductive polymer activates the Notch signaling pathway and induces osteogenesis. J Biomed Mater Res A. 2014, 102, 1558-1567.doi: 10.1002/jbm.a.34825 pmid: 23775982
  55. arreira, A. C.; Lojudice, F. H.; Halcsik, E.; Navarro, R. D.; Sogayar, M. C.; Granjeiro, J. M. Bone morphogenetic proteins: facts, challenges, and future perspectives. J Dent Res. 2014, 93, 335-345.doi: 10.1177/0022034513518561 pmid: 24389809
  56. artini, M.; De Santis, M. C.; Braccini, L.; Gulluni, F.; Hirsch, E. PI3K/AKT signaling pathway and cancer: an updated review. Ann Med. 2014, 46, 372-383.doi: 10.3109/07853890.2014.912836 pmid: 24897931
  57. e, C.; Xiao, G.; Jiang, D.; Franceschi, R. T. Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol. 2007, 176, 709-718.doi: 10.1083/jcb.200610046 pmid: 17325210
  58. oore, D. C.; Ehrlich, M. G.; McAllister, S. C.; Machan, J. T.; Hart, C. E.; Voigt, C.; Lesieur-Brooks, A. M.; Weber, E. W. Recombinant human platelet-derived growth factor-BB augmentation of new-bone formation in a rat model of distraction osteogenesis. J Bone Joint Surg Am. 2009, 91, 1973-1984.doi: 10.2106/JBJS.H.00540 pmid: 19651957
  59. uo, Y.; Tang, C. Y.; Man, X. F.; Tang, H. N.; Tang, J.; Zhou, C. L.; Tan, S. W.; Wang, M.; Feng, Y. Z.; Zhou, H. D. Insulin-like growth factor-1 promotes osteogenic differentiation and collagen I alpha 2 synthesis via induction of mRNA-binding protein LARP6 expression. Dev Growth Differ. 2017, 59, 94-103.
  60. rnitz, D. M.; Marie, P. J. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 2002, 16, 1446-1465.
  61. arradas, A. M.; Fernandes, H. A.; Groen, N.; Chai, Y. C.; Schrooten, J.; van de Peppel, J.; van Leeuwen, J. P.; van Blitterswijk, C. A.; de Boer, J. A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials. 2012, 33, 3205-3215.doi: 10.1016/j.biomaterials.2012.01.020 pmid: 22285104
  62. cCarthy, C.; Camci-Unal, G. Low intensity pulsed ultrasound for bone tissue engineering. Micromachines. 2021, 12, 1488.
  63. hnert, S.; Histing, T.; Nüssler, A. K. Osteolectin(+) stromal cells: Mechanical stimulation improves bone regeneration and supports bacterial clearance after fracture. Signal Transduct Target Ther. 2021, 6, 257.
  64. huai, C.; Yang, W.; Peng, S.; Gao, C.; Guo, W.; Lai, Y.; Feng, P. Physical stimulations and their osteogenesis-inducing mechanisms. Int J Bioprint. 2018, 4, 138.
  65. chindeler, A.; McDonald, M. M.; Bokko, P.; Little, D. G. Bone remodeling during fracture repair: the cellular picture. Semin Cell Dev Biol. 2008, 19, 459-466.doi: 10.1016/j.semcdb.2008.07.004 pmid: 18692584
  66. ikavitsas, V. I.; Temenoff, J. S.; Mikos, A. G. Biomaterials and bone mechanotransduction. Biomaterials. 2001, 22, 2581-2593.pmid: 11519777
  67. nsari, M. Bone tissue regeneration: biology, strategies and interface studies. Prog Biomater. 2019, 8, 223-237.doi: 10.1007/s40204-019-00125-z pmid: 31768895
  68. imitriou, R.; Tsiridis, E.; Giannoudis, P. V. Current concepts of molecular aspects of bone healing. Injury. 2005, 36, 1392-1404.doi: 10.1016/j.injury.2005.07.019 pmid: 16102764
  69. ims, N. A.; Gooi, J. H. Bone remodeling: Multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol. 2008, 19, 444-451.doi: 10.1016/j.semcdb.2008.07.016 pmid: 18718546
  70. atsuo, K.; Irie, N. Osteoclast-osteoblast communication. Arch Biochem Biophys. 2008, 473, 201-209.doi: 10.1016/j.abb.2008.03.027 pmid: 18406338
  71. rost, H. M. Tetracycline-based histological analysis of bone remodeling. Calcif Tissue Res. 1969, 3, 211-237.pmid: 4894738
  72. auge, E. M.; Qvesel, D.; Eriksen, E. F.; Mosekilde, L.; Melsen, F. Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res. 2001, 16, 1575-1582.doi: 10.1359/jbmr.2001.16.9.1575 pmid: 11547826
  73. ndersen, T. L.; Sondergaard, T. E.; Skorzynska, K. E.; Dagnaes-Hansen, F.; Plesner, T. L.; Hauge, E. M.; Plesner, T.; Delaisse, J. M. A physical mechanism for coupling bone resorption and formation in adult human bone. Am J Pathol. 2009, 174, 239-247.doi: 10.2353/ajpath.2009.080627 pmid: 19095960
  74. allas, S. L.; Prideaux, M.; Bonewald, L. F. The osteocyte: an endocrine cell... and more. Endocr Rev. 2013, 34, 658-690.doi: 10.1210/er.2012-1026 pmid: 23612223
  75. i, J.; Lai, Y.; Li, M.; Chen, X.; Zhou, M.; Wang, W.; Li, J.; Cui, W.; Zhang, G.; Wang, K.; Liu, L.; Lin, Y. Repair of infected bone defect with Clindamycin-Tetrahedral DNA nanostructure Complex-loaded 3D bioprinted hybrid scaffold. Chem Eng J. 2022, 435, 134855.
  76. ee, J.; Byun, H.; Madhurakkat Perikamana, S. K.; Lee, S.; Shin, H. Current advances in immunomodulatory biomaterials for bone regeneration. Adv Healthc Mater. 2019, 8, e1801106.
  77. eorgeanu, V. A.; Gingu, O.; Antoniac, I. V.; Manolea, H. O. Current options and future perspectives on bone graft and biomaterials substitutes for bone repair, from clinical needs to advanced biomaterials research. Appl Sci. 2023, 13, 8471.
  78. eorgeanu, V. A.; Mămuleanu, M.; Ghiea, S.; Selișteanu, D. Malignant bone tumors diagnosis using magnetic resonance imaging based on deep learning algorithms. Medicina (Kaunas). 2022, 58, 636.
  79. han, S. N.; Cammisa, F. P., Jr.; Sandhu, H. S.; Diwan, A. D.; Girardi, F. P.; Lane, J. M. The biology of bone grafting. J Am Acad Orthop Surg. 2005, 13, 77-86.pmid: 15712985
  80. akes, D. A.; Cabanela, M. E. Impaction bone grafting for revision hip arthroplasty: biology and clinical applications. J Am Acad Orthop Surg. 2006, 14, 620-628.pmid: 17030595
  81. ing, Q.; Zhang, S.; Liu, X.; Zhao, Y.; Yang, J.; Chai, G.; Wang, N.; Ma, S.; Liu, W.; Ding, C. Hydrogel tissue bioengineered scaffolds in bone repair: a review. Molecules. 2023, 28, 7039.
  82. u, X.; Lin, Z.; He, J.; Zhou, M.; Yang, S.; Wang, Y.; Li, K. Recent progress in 3D printing degradable polylactic acid-based bone repair scaffold for the application of cancellous bone defect. MedComm Biomat Appl. 2022, 1, e14.
  83. zwed-Georgiou, A.; Płociński, P.; Kupikowska-Stobba, B.; Urbaniak, M. M.; Rusek-Wala, P.; Szustakiewicz, K.; Piszko, P.; Krupa, A.; Biernat, M.; Gazińska, M.; Kasprzak, M.; Nawrotek, K.; Mira, N. P.; Rudnicka, K. Bioactive materials for bone regeneration: biomolecules and delivery systems. ACS Biomater Sci Eng. 2023, 9, 5222-5254.
  84. eng, Y.; Zhuang, Y.; Liu, Y.; Le, H.; Li, D.; Zhang, M.; Liu, K.; Zhang, Y.; Zuo, J.; Ding, J. Bioinspired gradient scaffolds for osteochondral tissue engineering. Exploration (Beijing). 2023, 3, 20210043.
  85. i, X.; Li, L.; Wang, D.; Zhang, J.; Yi, K.; Su, Y.; Luo, J.; Deng, X.; Deng, F. Fabrication of polymeric microspheres for biomedical applications. Mater Horiz. 2024, 11, 2820-2855.
  86. ang, D.; Sun, Q.; Hokkanen, M. J.; Zhang, C.; Lin, F. Y.; Liu, Q.; Zhu, S. P.; Zhou, T.; Chang, Q.; He, B.; Zhou, Q.; Chen, L.; Wang, Z.; Ras, R. H. A.; Deng, X. Design of robust superhydrophobic surfaces. Nature. 2020, 582, 55-59.
  87. irillova, A.; Yeazel, T. R.; Asheghali, D.; Petersen, S. R.; Dort, S.; Gall, K.; Becker, M. L. Fabrication of biomedical scaffolds using biodegradable polymers. Chem Rev. 2021, 121, 11238-11304.doi: 10.1021/acs.chemrev.0c01200 pmid: 33856196
  88. ecker, M. L.; Burdick, J. A. Introduction: polymeric biomaterials. Chem Rev. 2021, 121, 10789-10791.doi: 10.1021/acs.chemrev.1c00354 pmid: 34547892
  89. alidas, V. K.; R, P.; K, S.; T.P, S.; A, S. R.; S, S. K.; Yeswanth Kumar, K. Study of synthesis and analysis of bio-inspired polymers-review. Mater Today Proc. 2021, 44, 3856-3860.
  90. hadde Gurunath, S.; Mali Hanmant, S.; Raut Indrayani, D.; Nitalikar Manoj, M.; Bhutkar Mangesh, A. A review on microspheres: types, method of preparation, characterization and application. Res J Pharm Technol. 2021, 11, 149-145.
  91. uan, L.; Su, M.; Qin, X.; Ruan, Q.; Lang, W.; Wu, M.; Chen, Y.; Lv, Q. Progress in the application of sustained-release drug microspheres in tissue engineering. Mater Today Bio. 2022, 16, 100394.
  92. hen, Z.; Lv, Z.; Zhang, Z.; Weitz, D. A.; Zhang, H.; Zhang, Y.; Cui, W. Advanced microfluidic devices for fabricating multi-structural hydrogel microsphere. Exploration (Beijing). 2021, 1, 20210036.
  93. chmitt, C. W. Around the globe: New concepts for polymer microsphere design. Queensland University of Technology: Brisbane. 2021.
  94. aradowska-Stolarz, A.; Wieckiewicz, M.; Owczarek, A.; Wezgowiec, J. Natural polymers for the maintenance of oral health: review of recent advances and perspectives. Int J Mol Sci. 2021, 22, 10337.
  95. uo, Z.; Arslan, M.; Li, Z.; Cen, S.; Shi, J.; Huang, X.; Xiao, J.; Zou, X. Application of protein in extrusion-based 3D food printing: current status and prospectus. Foods. 2022, 11, 1902.
  96. ie, T.; Wang, W.; Liu, X.; Wang, Y.; Li, K.; Song, X.; Zhang, J.; Yu, L.; He, Z. Sustained release systems for delivery of therapeutic peptide/protein. Biomacromolecules. 2021, 22, 2299-2324.doi: 10.1021/acs.biomac.1c00160 pmid: 33957752
  97. hen, T.; Sun, C.; Tian, X.; Jiang, X.; Zhang, M. Natural polysaccharide: modification and application. Paper Biomater. 2021, 6, 43-58.
  98. in, M.; Shi, J.; Zhu, W.; Yao, H.; Wang, D. A. Polysaccharide-based biomaterials in tissue engineering: a review. Tissue Eng Part B Rev. 2021, 27, 604-626.
  99. ang, P. B.; Davidson, M. G.; Edler, K. J.; Brown, S. Synthesis, properties, and applications of bio-based cyclic aliphatic polyesters. Biomacromolecules. 2021, 22, 3649-3667.doi: 10.1021/acs.biomac.1c00638 pmid: 34415743
  100. Zhang, Q.; Song, M.; Xu, Y.; Wang, W.; Wang, Z.; Zhang, L. Bio-based polyesters: Recent progress and future prospects. Prog Polym Sci. 2021, 120, 101430.
  101. Rosli, N. A.; Karamanlioglu, M.; Kargarzadeh, H.; Ahmad, I. Comprehensive exploration of natural degradation of poly(lactic acid) blends in various degradation media: a review. Int J Biol Macromol. 2021, 187, 732-741.doi: 10.1016/j.ijbiomac.2021.07.196 pmid: 34358596
  102. Qiao, L.; Deng, F.; Hu, X.; Huang, T.; An, J.; Pan, D.; Yan, J.; Liang, G.; He, J. Dual sustained-release PTMC/PCL porous microspheres for lipid-soluble drugs. Colloids Surf Physicochem Eng Aspects. 2022, 650, 129628.
  103. He, J.; Hu, X.; Cao, J.; Zhang, Y.; Xiao, J.; Peng, L.; Chen, D.; Xiong, C.; Zhang, L. Chitosan-coated hydroxyapatite and drug-loaded polytrimethylene carbonate/polylactic acid scaffold for enhancing bone regeneration. Carbohydr Polym. 2021, 253, 117198.
  104. Rocha, C. V.; Gonçalves, V.; da Silva, M. C.; Bañobre-López, M.; Gallo, J. PLGA-based composites for various biomedical applications. Int J Mol Sci. 2022, 23, 2034.
  105. Hu, X.; Zhao, W.; Zhang, Z.; Xie, J.; He, J.; Cao, J.; Li, Q.; Yan, Y.; Xiong, C.; Li, K. Novel 3D printed shape-memory PLLA-TMC/GA-TMC scaffolds for bone tissue engineering with the improved mechanical properties and degradability. Chin Chem Lett. 2023, 34, 107451.
  106. Seok, J. H.; Enomoto, Y.; Iwata, T. Synthesis and characterization of paramylon propionate-graft- poly(lactic acid) and paramylon propionate-graft-poly(ε-caprolactone). Polymer. 2021, 228, 123922.
  107. de Albuquerque, T. L.; Marques Júnior, J. E.; de Queiroz, L. P.; Ricardo, A. D. S.; Rocha, M. V. P. Polylactic acid production from biotechnological routes: a review. Int J Biol Macromol. 2021, 186, 933-951.doi: 10.1016/j.ijbiomac.2021.07.074 pmid: 34273343
  108. Ghosh, R.; Arun, Y.; Siman, P.; Domb, A. J. Synthesis of aliphatic polyanhydrides with controllable and reproducible molecular weight. Pharmaceutics. 2022, 14, 1403.
  109. Liu, Y.; Li, Y.; Shi, L. Controlled drug delivery systems in eradicating bacterial biofilm-associated infections. J Control Release. 2021, 329, 1102-1116.
  110. Hu, X. L.; Mi, S.; Lu, J. L.; Cao, J. F.; Xing, L. Y.; Lin, Z. D.; Chen, D. L.; Lu, Y.; He, J.; Xiong, C. D.; Li, Q. In vitro degradation behavior of shape memory PLLA-TMC random copolymers. Colloids Surf Physicochem Eng Aspects. 2021, 615, 126220.
  111. Mi, S.; Hu, X.; Lin, Z.; Huang, T.; Yang, H.; Lu, J.; Li, Q.; Xing, L.; He, J.; Xiong, C. Shape memory PLLA-TMC/CSH-dPA microsphere scaffolds with mechanical and bioactive enhancement for bone tissue engineering. Colloids Surf Physicochem Eng Aspects. 2021, 622, 126594.
  112. Jana, P.; Shyam, M.; Singh, S.; Jayaprakash, V.; Dev, A. Biodegradable polymers in drug delivery and oral vaccination. Eur Polym J. 2021, 142, 110155.
  113. Duraikkannu, S. L.; Castro-Muñoz, R.; Figoli, A. A review on phase-inversion technique-based polymer microsphere fabrication. Colloid Interface Sci Commun. 2021, 40, 100329.
  114. Zhao, Z.; Wang, Z.; Li, G.; Cai, Z.; Wu, J.; Wang, L.; Deng, L.; Cai, M.; Cui, W. Injectable microfluidic hydrogel microspheres for cell and drug delivery. Adv Funct Mater. 2021, 31, 2103339.
  115. Zhang, M.; Qian, X.; Zeng, Q.; Zhang, Y.; Cao, H.; Che, R. Hollow microspheres of polypyrrole/magnetite/carbon nanotubes by spray-dry as an electromagnetic synergistic microwave absorber. Carbon. 2021, 175, 499-508.
  116. Bai, Y.; Zhang, F.; Xu, K.; Wang, X.; Wang, C.; Zhang, H.; Tan, Y.; Wang, P. Pickering emulsion strategy to control surface wettability of polymer microspheres for oil-water separation. Appl Surf Sci. 2021, 566, 150742.
  117. Du, L.; Liu, S.; Hao, G.; Zhang, L.; Zhou, M.; Bao, Y.; Ding, B.; Sun, Q.; Zhang, G. Preparation and release profiles in vitro/vivo of galantamine pamoate loaded poly (lactideco-glycolide) (PLGA) microspheres. Front Pharmacol. 2020, 11, 619327.
  118. Kim, Y.; Sah, H. Protein loading into spongelike PLGA microspheres. Pharmaceutics. 2021, 13, 137.
  119. Shi, W.; Ching, Y. C.; Chuah, C. H. Preparation of aerogel beads and microspheres based on chitosan and cellulose for drug delivery: A review. Int J Biol Macromol. 2021, 170, 751-767.doi: 10.1016/j.ijbiomac.2020.12.214 pmid: 33412201
  120. Yu, Y.; Li, G.; Han, W.; Zhu, L.; Si, T.; Wang, H.; Sun, Y.; He, Y. An efficient preparation of porous polymeric microspheres by solvent evaporation in foam phase. Chin J Chem Eng. 2021, 29, 409-416.
  121. Li, W.; Wei, H.; Liu, Y.; Li, S.; Wang, G.; Guo, T.; Han, H. An in situ reactive spray-drying strategy for facile preparation of starch-chitosan based hydrogel microspheres for water treatment application. Chem Eng Process Process Inten. 2021, 168, 108548.
  122. Sharma, A.; Khamar, D.; Cullen, S.; Hayden, A.; Hughes, H. Innovative drying technologies for biopharmaceuticals. Int J Pharm. 2021, 609, 121115.
  123. Shi, J.; Zhu, P.; Zhao, S.; Xu, C.; Yan, F.; Shen, R.; Xia, H.; Jiang, H.; Xu, S.; Zhao, F. Continuous spheroidization strategy for explosives with micro/nano hierarchical structure by coupling microfluidics and spray drying. Chem Eng J. 2021, 412, 128613.
  124. Cui, Y.; Yang, K.; Wang, J.; Shah, T.; Zhang, Q.; Zhang, B. Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave. Carbon. 2021, 172, 1-14.
  125. Kumar, P.; Ebbens, S.; Zhao, X. Inkjet printing of mammalian cells - theory and applications. Bioprinting. 2021, 23, e00157.
  126. He, J.; Lin, Z.; Hu, X.; Xing, L.; Liang, G.; Chen, D.; An, J.; Xiong, C.; Zhang, X.; Zhang, L. Biocompatible and biodegradable scaffold based on polytrimethylene carbonate-tricalcium phosphate microspheres for tissue engineering. Colloids Surf B Biointerfaces. 2021, 204, 111808.
  127. Yuan, X.; Zhu, W.; Yang, Z.; He, N.; Chen, F.; Han, X.; Zhou, K. Recent advances in 3D printing of smart scaffolds for bone tissue engineering and regeneration. Adv Mater. 2024, 36, e2403641.
  128. Govindan, R.; Gu, F. L.; Karthi, S.; Girija, E. K. Effect of phosphate glass reinforcement on the mechanical and biological properties of freeze-dried gelatin composite scaffolds for bone tissue engineering applications. Mater Today Commun. 2020, 22, 100765.
  129. Gu, P.; Xu, Y.; Liu, Q.; Wang, Y.; Li, Z.; Chen, M.; Mao, R.; Liang, J.; Zhang, X.; Fan, Y.; Sun, Y. Tailorable 3DP flexible scaffolds with porosification of filaments facilitate cell ingrowth and biomineralized deposition. ACS Appl Mater Interfaces. 2022, doi: 10.1021/acsami.2c07649.
  130. Bose, S.; Roy, M.; Bandyopadhyay, A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012, 30, 546-554.doi: 10.1016/j.tibtech.2012.07.005 pmid: 22939815
  131. Hu, X.; Zhang, Z.; Wu, H.; Yang, S.; Zhao, W.; Che, L.; Wang, Y.; Cao, J.; Li, K.; Qian, Z. Progress in the application of 3D-printed sodium alginate-based hydrogel scaffolds in bone tissue repair. Biomater Adv. 2023, 152, 213501.
  132. Navarro, M.; Aparicio, C.; Charles-Harris, M.; Ginebra, M. P.; Engel, E.; Planell, J. A. Development of a biodegradable composite scaffold for bone tissue engineering:physicochemical, topographical, mechanical, degradation, and biological properties. In Ordered polymeric nanostructures at surfaces, Vancso, G. J., ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2006; pp 209-231.
  133. Li, Y.; Feng, Z.; Hao, L.; Huang, L.; Xin, C.; Wang, Y.; Bilotti, E.; Essa, K.; Zhang, H.; Li, Z.; Yan, F.; Peijs, T. A review on functionally graded materials and structures via additive manufacturing: from multi-scale design to versatile functional properties. Adv Mater Technol. 2020, 5, 1900981.
  134. Zhang, Y.; Li, C.; Zhang, W.; Deng, J.; Nie, Y.; Du, X.; Qin, L.; Lai, Y. 3D-printed NIR-responsive shape memory polyurethane/magnesium scaffolds with tight-contact for robust bone regeneration. Bioact Mater. 2022, 16, 218-231.doi: 10.1016/j.bioactmat.2021.12.032 pmid: 35415289
  135. Hu, X.; He, J.; Yong, X.; Lu, J.; Xiao, J.; Liao, Y.; Li, Q.; Xiong, C. Biodegradable poly (lactic acid-co-trimethylene carbonate)/chitosan microsphere scaffold with shape-memory effect for bone tissue engineering. Colloids Surf B Biointerfaces. 2020, 195, 111218.
  136. He, J.; Zhang, Y.; Liu, X.; Peng, l.; Li, H.; Xiong, C.; Zhang, L. Load-bearing PTMC-beta tri-calcium phosphate and dexamethasone biphasic composite microsphere scaffolds for bone tissue engineering. Mater Lett. 2020, 260, 126939.
  137. Sokolova, V.; Kostka, K.; Shalumon, K. T.; Prymak, O.; Chen, J. P.; Epple, M. Synthesis and characterization of PLGA/HAP scaffolds with DNA-functionalised calcium phosphate nanoparticles for bone tissue engineering. J Mater Sci Mater Med. 2020, 31, 102.
  138. Gu, X.; Zha, Y.; Li, Y.; Chen, J.; Liu, S.; Du, Y.; Zhang, S.; Wang, J. Integrated polycaprolactone microsphere-based scaffolds with biomimetic hierarchy and tunable vascularization for osteochondral repair. Acta Biomater. 2022, 141, 190-197.
  139. Xu, W.; Zhao, R.; Wu, T.; Li, G.; Wei, K.; Wang, L. Biodegradable calcium carbonate/mesoporous silica/poly(lactic-glycolic acid) microspheres scaffolds with osteogenesis ability for bone regeneration. RSC Adv. 2021, 11, 5055-5064.doi: 10.1039/d0ra09958a pmid: 35424439
  140. Zeng, H.; Pathak, J. L.; Shi, Y.; Ran, J.; Liang, L.; Yan, Q.; Wu, T.; Fan, Q.; Li, M.; Bai, Y. Indirect selective laser sintering-printed microporous biphasic calcium phosphate scaffold promotes endogenous bone regeneration via activation of ERK1/2 signaling. Biofabrication. 2020, 12, 025032.
  141. Yuan, Z.; Yuan, X.; Zhao, Y.; Cai, Q.; Wang, Y.; Luo, R.; Yu, S.; Wang, Y.; Han, J.; Ge, L.; Huang, J.; Xiong, C. Injectable GelMA cryogel microspheres for modularized cell delivery and potential vascularized bone regeneration. Small. 2021, 17, e2006596.
  142. Zhao, Z.; Li, G.; Ruan, H.; Chen, K.; Cai, Z.; Lu, G.; Li, R.; Deng, L.; Cai, M.; Cui, W. Capturing magnesium ions via microfluidic hydrogel microspheres for promoting cancellous bone regeneration. ACS Nano. 2021, 15, 13041-13054.
  143. Wu, J.; Li, G.; Ye, T.; Lu, G.; Li, R.; Deng, L.; Wang, L.; Cai, M.; Cui, W. Stem cell-laden injectable hydrogel microspheres for cancellous bone regeneration. Chem Eng J. 2020, 393, 124715.
  144. Li, X.; Li, X.; Yang, J.; Lin, J.; Zhu, Y.; Xu, X.; Cui, W. Living and injectable porous hydrogel microsphere with paracrine activity for cartilage regeneration. Small. 2023, 19, e2207211.
  145. Bai, L.; Han, Q.; Han, Z.; Zhang, X.; Zhao, J.; Ruan, H.; Wang, J.; Lin, F.; Cui, W.; Yang, X.; Hao, Y. Stem cells expansion vector via bioadhesive porous microspheres for accelerating articular cartilage regeneration. Adv Healthc Mater. 2024, 13, e2302327.
  146. Yao, Y.; Wei, G.; Deng, L.; Cui, W. Visualizable and lubricating hydrogel microspheres via nanoPOSS for cartilage regeneration. Adv Sci (Weinh). 2023, 10, e2207438.
  147. Xiao, P.; Han, X.; Huang, Y.; Yang, J.; Chen, L.; Cai, Z.; Hu, N.; Cui, W.; Huang, W. Reprogramming macrophages via immune cell mobilized hydrogel microspheres for osteoarthritis treatments. Bioact Mater. 2024, 32, 242-259.doi: 10.1016/j.bioactmat.2023.09.010 pmid: 37869722
  148. Cao, H.; Chen, M.; Cui, X.; Liu, Y.; Liu, Y.; Deng, S.; Yuan, T.; Fan, Y.; Wang, Q.; Zhang, X. Cell-free osteoarthritis treatment with sustained-release of chondrocyte-targeting exosomes from umbilical cord-derived mesenchymal stem cells to rejuvenate aging chondrocytes. ACS Nano. 2023, 17, 13358-13376.doi: 10.1021/acsnano.3c01612 pmid: 37439514
  149. Guo, L.; Chen, H.; Li, Y.; Zhou, J.; Chen, J. Biocompatible scaffolds constructed by chondroitin sulfate microspheres conjugated 3D-printed frameworks for bone repair. Carbohydr Polym. 2023, 299, 120188.
  150. Xie, C.; Liang, R.; Ye, J.; Peng, Z.; Sun, H.; Zhu, Q.; Shen, X.; Hong, Y.; Wu, H.; Sun, W.; Yao, X.; Li, J.; Zhang, S.; Zhang, X.; Ouyang, H. High-efficient engineering of osteo-callus organoids for rapid bone regeneration within one month. Biomaterials. 2022, 288, 121741.
  151. Zou, L.; Hu, L.; Pan, P.; Tarafder, S.; Du, M.; Geng, Y.; Xu, G.; Chen, L.; Chen, J.; Lee, C. H. Icariin-releasing 3D printed scaffold for bone regeneration. Compos B Eng. 2022, 232, 109625.
  152. Wang, J.; Wang, Y.; Sun, X.; Liu, D.; Huang, C.; Wu, J.; Yang, C.; Zhang, Q. Biomimetic cartilage scaffold with orientated porous structure of two factors for cartilage repair of knee osteoarthritis. Artif Cells Nanomed Biotechnol. 2019, 47, 1710-1721.doi: 10.1080/21691401.2019.1607866 pmid: 31062604
  153. Zhao, Z. H.; Ma, X. L.; Ma, J. X.; Kang, J. Y.; Zhang, Y.; Guo, Y. Sustained release of naringin from silk-fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Mater Today Bio. 2022, 13, 100206.
  154. Xia, Y.; Jing, X.; Wu, X.; Zhuang, P.; Guo, X.; Dai, H. 3D-printed dual-ion chronological release functional platform reconstructs neuro-vascularization network for critical-sized bone defect regeneration. Chem Eng J. 2023, 465, 143015.
  155. Borden, M.; Attawia, M.; Laurencin, C. T. The sintered microsphere matrix for bone tissue engineering: in vitro osteoconductivity studies. J Biomed Mater Res. 2002, 61, 421-429.
  156. Kofron, M. D.; Cooper, J. A., Jr.; Kumbar, S. G.; Laurencin, C. T. Novel tubular composite matrix for bone repair. J Biomed Mater Res A. 2007, 82, 415-425.pmid: 17295242
  157. Shi, X.; Wang, Y.; Ren, L.; Lai, C.; Gong, Y.; Wang, D. A. A novel hydrophilic poly(lactide-co-glycolide)/lecithin hybrid microspheres sintered scaffold for bone repair. J Biomed Mater Res A. 2010, 92, 963-972.doi: 10.1002/jbm.a.32423 pmid: 19291688
  158. Luciani, A.; Guarino, V.; Ambrosio, L.; Netti, P. A. Solvent and melting induced microspheres sintering techniques: a comparative study of morphology and mechanical properties. J Mater Sci Mater Med. 2011, 22, 2019-2028.
  159. Shahin-Shamsabadi, A.; Hashemi, A.; Tahriri, M.; Bastami, F.; Salehi, M.; Mashhadi Abbas, F. Mechanical, material, and biological study of a PCL/bioactive glass bone scaffold: importance of viscoelasticity. Mater Sci Eng C Mater Biol Appl. 2018, 90, 280-288.
  160. Jose, G.; Shalumon, K. T.; Liao, H. T.; Kuo, C. Y.; Chen, J. P. Preparation and characterization of surface heat sintered nanohydroxyapatite and nanowhitlockite embedded poly (lactic-co-glycolic acid) microsphere bone graft scaffolds: in vitro and in vivo studies. Int J Mol Sci. 2020, 21, 528.
  161. Jaklenec, A.; Wan, E.; Murray, M. E.; Mathiowitz, E. Novel scaffolds fabricated from protein-loaded microspheres for tissue engineering. Biomaterials. 2008, 29, 185-192.pmid: 17950842
  162. Jaklenec, A.; Hinckfuss, A.; Bilgen, B.; Ciombor, D. M.; Aaron, R.; Mathiowitz, E. Sequential release of bioactive IGF-I and TGF-beta 1 from PLGA microsphere-based scaffolds. Biomaterials. 2008, 29, 1518-1525.doi: 10.1016/j.biomaterials.2007.12.004 pmid: 18166223
  163. Go, D. P.; Harvie, D. J. E.; Tirtaatmadja, N.; Gras, S. L.; O’Connor, A. J. A simple, scalable process for the production of porous polymer microspheres by ink-jetting combined with thermally induced phase separation. Part Part Syst Charact. 2014, 31, 685-698.
  164. Singh, M.; Morris, C. P.; Ellis, R. J.; Detamore, M. S.; Berkland, C. Microsphere-based seamless scaffolds containing macroscopic gradients of encapsulated factors for tissue engineering. Tissue Eng Part C Methods. 2008, 14, 299-309.
  165. Qutachi, O.; Vetsch, J. R.; Gill, D.; Cox, H.; Scurr, D. J.; Hofmann, S.; Müller, R.; Quirk, R. A.; Shakesheff, K. M.; Rahman, C. V. Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature. Acta Biomater. 2014, 10, 5090-5098.doi: S1742-7061(14)00351-1 pmid: 25152354
  166. Bhamidipati, M.; Scurto, A. M.; Detamore, M. S. The future of carbon dioxide for polymer processing in tissue engineering. Tissue Eng Part B Rev. 2013, 19, 221-232.
  167. Bhamidipati, M.; Sridharan, B.; Scurto, A. M.; Detamore, M. S. Subcritical CO2 sintering of microspheres of different polymeric materials to fabricate scaffolds for tissue engineering. Mater Sci Eng C Mater Biol Appl. 2013, 33, 4892-4899.
  168. Mohan, N.; Dormer, N. H.; Caldwell, K. L.; Key, V. H.; Berkland, C. J.; Detamore, M. S. Continuous gradients of material composition and growth factors for effective regeneration of the osteochondral interface. Tissue Eng Part A. 2011, 17, 2845-2855.
  169. Singh, M.; Sandhu, B.; Scurto, A.; Berkland, C.; Detamore, M. S. Microsphere-based scaffolds for cartilage tissue engineering: using subcritical CO(2) as a sintering agent. Acta Biomater. 2010, 6, 137-143.doi: 10.1016/j.actbio.2009.07.042 pmid: 19660579
  170. Duan, B.; Wang, M.; Zhou, W. Y.; Cheung, W. L.; Li, Z. Y.; Lu, W. W. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 2010, 6, 4495-4505.doi: 10.1016/j.actbio.2010.06.024 pmid: 20601244
  171. Zhou, W. Y.; Lee, S. H.; Wang, M.; Cheung, W. L.; Ip, W. Y. Selective laser sintering of porous tissue engineering scaffolds from poly(L: -lactide)/carbonated hydroxyapatite nanocomposite microspheres. J Mater Sci Mater Med. 2008, 19, 2535-2540.
  172. Lin, K.; Liu, J.; Wu, J.-M.; Sun, Y.; Li, F.; Zhou, Y.; Shi, Y. Selective laser sintered nano-HA/PDLLA composite microspheres for bone scaffolds applications. Rapid Prototyp J. 2020, 26, 1131-1143.
  173. Zhang, J.; Wang, Y.; Qu, Q.; Lu, T.; Li, F.; Wang, J.; Yang, A.; Zou, Y.; Huang, C. Preparation of single, heteromorphic microspheres, and their progress for medical applications. Macromol Mater Eng. 2021, 306, 2000593.
  174. Suzuki, D.; Horigome, K.; Kureha, T.; Matsui, S.; Watanabe, T. Polymeric hydrogel microspheres: design, synthesis, characterization, assembly and applications. Polym J. 2017, 49, 695-702.
  175. Jang, H. Y.; Shin, J. Y.; Oh, S. H.; Byun, J. H.; Lee, J. H. PCL/HA hybrid microspheres for effective osteogenic differentiation and bone regeneration. ACS Biomater Sci Eng. 2020, 6, 5172-5180.doi: 10.1021/acsbiomaterials.0c00550 pmid: 33455267
  176. Bahadoran, M.; Shamloo, A.; Nokoorani, Y. D. Development of a polyvinyl alcohol/sodium alginate hydrogel-based scaffold incorporating bFGF-encapsulated microspheres for accelerated wound healing. Sci Rep. 2020, 10, 7342.doi: 10.1038/s41598-020-64480-9 pmid: 32355267
  177. Yuan, Z.; Wei, P.; Huang, Y.; Zhang, W.; Chen, F.; Zhang, X.; Mao, J.; Chen, D.; Cai, Q.; Yang, X. Injectable PLGA microspheres with tunable magnesium ion release for promoting bone regeneration. Acta Biomater. 2019, 85, 294-309.doi: S1742-7061(18)30742-6 pmid: 30553873
  178. Qu, M.; Liao, X.; Jiang, N.; Sun, W.; Xiao, W.; Zhou, X.; Khademhosseini, A.; Li, B.; Zhu, S. Injectable open-porous PLGA microspheres as cell carriers for cartilage regeneration. J Biomed Mater Res A. 2021, 109, 2091-2100.doi: 10.1002/jbm.a.37196 pmid: 33866669
  179. García-García, P.; Reyes, R.; Pérez-Herrero, E.; Arnau, M. R.; Évora, C.; Delgado, A. Alginate-hydrogel versus alginate-solid system. Efficacy in bone regeneration in osteoporosis. Mater Sci Eng C Mater Biol Appl. 2020, 115, 111009.
  180. Lin, S. J.; Chan, Y. C.; Su, Z. C.; Yeh, W. L.; Lai, P. L.; Chu, I. M. Growth factor-loaded microspheres in mPEG-polypeptide hydrogel system for articular cartilage repair. J Biomed Mater Res A. 2021, 109, 2516-2526.
  181. Liao, H.; Walboomers, X. F.; Habraken, W. J.; Zhang, Z.; Li, Y.; Grijpma, D. W.; Mikos, A. G.; Wolke, J. G.; Jansen, J. A. Injectable calcium phosphate cement with PLGA, gelatin and PTMC microspheres in a rabbit femoral defect. Acta Biomater. 2011, 7, 1752-1759.doi: 10.1016/j.actbio.2010.12.020 pmid: 21185953
  182. Wei, P.; Yuan, Z.; Jing, W.; Huang, Y.; Cai, Q.; Guan, B.; Liu, Z.; Zhang, X.; Mao, J.; Chen, D.; Yang, X. Strengthening the potential of biomineralized microspheres in enhancing osteogenesis via incorporating alendronate. Chem Eng J. 2019, 368, 577-588.
  183. Mao, J.; Wei, P.; Yuan, Z.; Jing, W.; Cao, J.; Li, G.; Guo, J.; Wang, H.; Chen, D.; Cai, Q. Osteoconductive and osteoinductive biodegradable microspheres serving as injectable micro-scaffolds for bone regeneration. J Biomater Sci Polym Ed. 2021, 32, 229-247.
  184. Wei, P.; Jing, W.; Yuan, Z.; Huang, Y.; Guan, B.; Zhang, W.; Zhang, X.; Mao, J.; Cai, Q.; Chen, D.; Yang, X. Vancomycin- and strontium-loaded microspheres with multifunctional activities against bacteria, in angiogenesis, and in osteogenesis for enhancing infected bone regeneration. ACS Appl Mater Interfaces. 2019, 11, 30596-30609.
  185. Huang, Y.; Du, Z.; Zheng, T.; Jing, W.; Liu, H.; Liu, X.; Mao, J.; Zhang, X.; Cai, Q.; Chen, D.; Yang, X. Antibacterial, conductive, and osteocompatible polyorganophosphazene microscaffolds for the repair of infectious calvarial defect. J Biomed Mater Res A. 2021, 109, 2580-2596.doi: 10.1002/jbm.a.37252 pmid: 34173709
  186. Wei, D. X.; Dao, J. W.; Chen, G. Q. A micro-ark for cells: highly open porous polyhydroxyalkanoate microspheres as injectable scaffolds for tissue regeneration. Adv Mater. 2018, 30, e1802273.
  187. Rudnik-Jansen, I.; Colen, S.; Berard, J.; Plomp, S.; Que, I.; van Rijen, M.; Woike, N.; Egas, A.; van Osch, G.; van Maarseveen, E.; Messier, K.; Chan, A.; Thies, J.; Creemers, L. Prolonged inhibition of inflammation in osteoarthritis by triamcinolone acetonide released from a polyester amide microsphere platform. J Control Release. 2017, 253, 64-72.
  188. Gong, Y.; Yan, S.; Xia, P.; Wang, R.; Zhang, K.; Cui, L.; Yin, J. Porous microspheres based on hydroxyapatite-graft-poly (γ-benzyl-l-glutamate) with improving homogeneity of hydroxyapatite and osteogenesis. Mater Lett. 2019, 250, 206-209.doi: 10.1016/j.matlet.2019.05.015
  189. Fang, J.; Zhang, Y.; Yan, S.; Liu, Z.; He, S.; Cui, L.; Yin, J. Poly(L-glutamic acid)/chitosan polyelectrolyte complex porous microspheres as cell microcarriers for cartilage regeneration. Acta Biomater. 2014, 10, 276-288.doi: 10.1016/j.actbio.2013.09.002 pmid: 24025620
  190. Zou, Z.; Li, H.; Yu, K.; Ma, K.; Wang, Q.; Tang, J.; Liu, G.; Lim, K.; Hooper, G.; Woodfield, T.; Cui, X.; Zhang, W.; Tian, K. The potential role of synovial cells in the progression and treatment of osteoarthritis. Exploration (Beijing). 2023, 3, 20220132.
  191. Han, Y.; Yang, J.; Zhao, W.; Wang, H.; Sun, Y.; Chen, Y.; Luo, J.; Deng, L.; Xu, X.; Cui, W.; Zhang, H. Biomimetic injectable hydrogel microspheres with enhanced lubrication and controllable drug release for the treatment of osteoarthritis. Bioact Mater. 2021, 6, 3596-3607.doi: 10.1016/j.bioactmat.2021.03.022 pmid: 33869900
  192. Bian, J.; Cai, F.; Chen, H.; Tang, Z.; Xi, K.; Tang, J.; Wu, L.; Xu, Y.; Deng, L.; Gu, Y.; Cui, W.; Chen, L. Modulation of local overactive inflammation via injectable hydrogel microspheres. Nano Lett. 2021, 21, 2690-2698.doi: 10.1021/acs.nanolett.0c04713 pmid: 33543616
  193. Shen, C.; Wang, J.; Li, G.; Hao, S.; Wu, Y.; Song, P.; Han, Y.; Li, M.; Wang, G.; Xu, K.; Zhang, H.; Ren, X.; Jing, Y.; Yang, R.; Geng, Z.; Su, J. Boosting cartilage repair with silk fibroin-DNA hydrogel-based cartilage organoid precursor. Bioact Mater. 2024, 35, 429-444.doi: 10.1016/j.bioactmat.2024.02.016 pmid: 38390528
  194. Liu, J.; Lu, Y.; Xing, F.; Liang, J.; Wang, Q.; Fan, Y.; Zhang, X. Cell-free scaffolds functionalized with bionic cartilage acellular matrix microspheres to enhance the microfracture treatment of articular cartilage defects. J Mater Chem B. 2021, 9, 1686-1697.doi: 10.1039/d0tb02616f pmid: 33491727
  195. Ingavle, G. C.; Gionet-Gonzales, M.; Vorwald, C. E.; Bohannon, L. K.; Clark, K.; Galuppo, L. D.; Leach, J. K. Injectable mineralized microsphere-loaded composite hydrogels for bone repair in a sheep bone defect model. Biomaterials. 2019, 197, 119-128.doi: S0142-9612(19)30005-5 pmid: 30641263
  196. Chen, S.; Han, X.; Cao, Y.; Yi, W.; Zhu, Y.; Ding, X.; Li, K.; Shen, J.; Cui, W.; Bai, D. Spatiotemporalized hydrogel microspheres promote vascularized osteogenesis via ultrasound oxygen delivery. Adv Funct Mater. 2024, 34, 2308205.
  197. Almela, T.; Brook, I. M.; Khoshroo, K.; Rasoulianboroujeni, M.; Fahimipour, F.; Tahriri, M.; Dashtimoghadam, E.; El-Awa, A.; Tayebi, L.; Moharamzadeh, K. Simulation of cortico-cancellous bone structure by 3D printing of bilayer calcium phosphate-based scaffolds. Bioprinting. 2017, 6, 1-7.
  198. Lavanya, K.; Chandran, S. V.; Balagangadharan, K.; Selvamurugan, N. Temperature- and pH-responsive chitosan-based injectable hydrogels for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2020, 111, 110862.
  199. Han, X.; Saiding, Q.; Cai, X.; Xiao, Y.; Wang, P.; Cai, Z.; Gong, X.; Gong, W.; Zhang, X.; Cui, W. Intelligent vascularized 3D/4D/5D/6D-printed tissue scaffolds. Nanomicro Lett. 2023, 15, 239.
  200. Puppi, D.; Chiellini, F.; Piras, A. M.; Chiellini, E. Polymeric materials for bone and cartilage repair. Prog Polym Sci. 2010, 35, 403-440.
  201. Bose, S.; Vahabzadeh, S.; Bandyopadhyay, A. Bone tissue engineering using 3D printing. Mater Today. 2013, 16, 496-504.
  202. Hu, X.; Chen, J.; Yang, S.; Zhang, Z.; Wu, H.; He, J.; Qin, L.; Cao, J.; Xiong, C.; Li, K.; Liu, X.; Qian, Z. 3D printed multifunctional biomimetic bone scaffold combined with tp-mg nanoparticles for the infectious bone defects repair. Small. 2024, e2403681.
  203. Kamali, A.; Oryan, A.; Hosseini, S.; Ghanian, M. H.; Alizadeh, M.; Baghaban Eslaminejad, M.; Baharvand, H. Cannabidiol-loaded microspheres incorporated into osteoconductive scaffold enhance mesenchymal stem cell recruitment and regeneration of critical-sized bone defects. Mater Sci Eng C Mater Biol Appl. 2019, 101, 64-75.
  204. Lee, D.; Wufuer, M.; Kim, I.; Choi, T. H.; Kim, B. J.; Jung, H. G.; Jeon, B.; Lee, G.; Jeon, O. H.; Chang, H.; Yoon, D. S. Sequential dual-drug delivery of BMP-2 and alendronate from hydroxyapatite-collagen scaffolds for enhanced bone regeneration. Sci Rep. 2021, 11, 746.doi: 10.1038/s41598-020-80608-3 pmid: 33436904
  205. Brougham, C. M.; Levingstone, T. J.; Shen, N.; Cooney, G. M.; Jockenhoevel, S.; Flanagan, T. C.; O’Brien, F. J. Freeze-drying as a novel biofabrication method for achieving a controlled microarchitecture within large, complex natural biomaterial scaffolds. Adv Healthc Mater. 2017, 6, 1700598.
  206. Li, H.; Liao, Z.; Yang, Z.; Gao, C.; Fu, L.; Li, P.; Zhao, T.; Cao, F.; Chen, W.; Yuan, Z.; Sui, X.; Liu, S.; Guo, Q. 3D printed poly(ε-caprolactone)/meniscus extracellular matrix composite scaffold functionalized with kartogenin-releasing PLGA microspheres for meniscus tissue engineering. Front Bioeng Biotechnol. 2021, 9, 662381.
  207. Qiu, X.; Li, S.; Li, X.; Xiao, Y.; Li, S.; Fen, Q.; Kang, X.; Zhen, P. Experimental study of β-TCP scaffold loaded with VAN/PLGA microspheres in the treatment of infectious bone defects. Colloids Surf B Biointerfaces. 2022, 213, 112424.
  208. Han, X.; Sun, M.; Chen, B.; Saiding, Q.; Zhang, J.; Song, H.; Deng, L.; Wang, P.; Gong, W.; Cui, W. Lotus seedpod-inspired internal vascularized 3D printed scaffold for bone tissue repair. Bioact Mater. 2021, 6, 1639-1652.doi: 10.1016/j.bioactmat.2020.11.019 pmid: 33313444
  209. Hunter, D. J. Risk stratification for knee osteoarthritis progression: a narrative review. Osteoarthritis Cartilage. 2009, 17, 1402-1407.
  210. Yin, P.; Su, W.; Li, T.; Wang, L.; Pan, J.; Wu, X.; Shao, Y.; Chen, H.; Lin, L.; Yang, Y.; Cheng, X.; Li, Y.; Wu, Y.; Zeng, C.; Huang, W. A modular hydrogel bioink containing microsphere-embedded chondrocytes for 3D-printed multiscale composite scaffolds for cartilage repair. iScience. 2023, 26, 107349.
Share
Back to top