·
REVIEW
·

Hydrogel-based biomaterials for brain regeneration after stroke: gap to clinical translation

Hanlai Li1 Tingting Gu1 Jingjing Xu1 Lin Gan1 Chang Liu2 Jixian Wan3 Zhihao Mu4 Haiyan Lyu5 Zhibin Wang6 Qianqian Liu7 Jie Chen8 Yaohui Tang1*
Show Less
1 School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
2 Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
3 Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
4 Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunan Province, China
5 Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
6 Lingyi iTECH Manufacturing Co., Ltd., Suzhou, Jiangsu Province, China
7 Ankerui (Shanxi) Biological Cell Co., Ltd., Taiyuan, Shanxi Province; 8Jiangsu Charity Biotech Co., Ltd., Shanghai, China
BMT 2025 , 6(2), 165–180; https://doi.org/10.12336/bmt.24.00020
Submitted: 11 April 2024 | Revised: 20 September 2024 | Accepted: 21 October 2024 | Published: 25 June 2025
Copyright © 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Due to the limited effects of current treatments on brain repair and regeneration, stroke continues to be the predominant cause of death and long-term disability on a global scale. In recent years, hydrogel-based biomaterials combined with stem cells and extracellular vesicles have emerged as promising new treatments to improve brain regeneration after stroke. However, the clinical translation of hydrogel-based biomaterials for the treatment of brain injury is still far from satisfactory. In this review, we first summarise the present status of stroke-related clinical treatments and the advantages provided by hydrogel-based materials in combination with stem cells and extracellular vesicles in preclinical studies. We then focus on the possible causes of the gap between preclinical studies and clinical translation of hydrogel-based biomaterials from the perspective of biocompatibility and safety, the choices of preclinical models, the lack of clinical noninvasive imaging methods, standardisation and quality control, manufacturing scalability, and regulatory compliance. With the progress in the abovementioned areas, we believe that the clinical translation of hydrogel-based biomaterials will greatly improve brain regeneration after stroke and that this improvement will be realised by the general public in the near future.

Keywords
Biomaterials
Clinical translation
Hydrogel
Stroke
Funding
This work was supported by grants from the National Key R&D Program of China, No. 2019YFA0112000 (to YT); the National Natural Science Foundation of China (NSFC), Nos. 82071284 (to YT), 82371307 (to YT), 82172529 (to JW), 32060184 (to HM); Natural Science Foundation of Shanghai, No. 21ZR1451700 (to HL); Young Leading Scientists Cultivation Plan supported by Shanghai Municipal Education Commission, No. ZXWH1082101 (to YT); Interdisciplinary Program of Shanghai Jiao Tong University, No. ZH2018QNA16 (to YT); Key Projects of the National Center for Translational Medicine SUITM-202306 (to YT); and Joint Special Funds for the Department of Science and Technology of Yunnan Province-Kunming Medical University, No. 202101AY070001-044 (to HM).
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

  1. Wang D, Shang ZY, Cui Y, Yang BQ, Ntaios G, Chen HS. Characteristics of intracranial plaque in patients with non-cardioembolic stroke and intracranial large vessel occlusion. Stroke Vasc Neurol. 2023;8:387-398. doi: 10.1136/svn-2022-002071

 

  1. Wang Z, Liu W, Ren Y, et al. Loss of life expectancy due to stroke and its subtypes in urban and rural areas in China, 2005-2020. Stroke Vasc Neurol. 2023;8:349-357. doi: 10.1136/svn-2022-001968

 

  1. Liu L, Chen W, Zhou H, et al. Chinese Stroke Association guidelines for clinical management of cerebrovascular disorders: Executive summary and 2019 update of clinical management of ischaemic cerebrovascular diseases. Stroke Vasc Neurol. 2020;5:159-176. doi: 10.1136/svn-2020-000378

 

  1. Peisker T, Koznar B, Stetkarova I, Widimsky P. Acute stroke therapy: A review. Trends Cardiovasc Med. 2017;27:59-66. doi: 10.1016/j.tcm.2016.06.009

 

  1. Saini V, Guada L, Yavagal DR. Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology. 2021;97:S6-S16. doi: 10.1212/WNL.0000000000012781

 

  1. Yang K, Zhang Z, Liu X, et al. Identification of hypoxia-related genes and exploration of their relationship with immune cells in ischemic stroke. Sci Rep. 2023;13:10570. doi: 10.1038/s41598-023-37753-2

 

  1. Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Prog Neurobiol. 2014;115:157-188. doi: 10.1016/j.pneurobio.2013.11.006

 

  1. Rodrigo R, Fernández-Gajardo R, Gutiérrez R, et al. Oxidative stress and pathophysiology of ischemic stroke: Novel therapeutic opportunities. CNS Neurol Disord Drug Targets. 2013;12:698-714. doi: 10.2174/1871527311312050015

 

  1. Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage. Neuropharmacology. 2008;55:310-318. doi: 10.1016/j.neuropharm.2008.01.005

 

  1. Martin SS, Aday AW, Almarzooq ZI, et al. 2024 heart disease and stroke statistics: A report of US and global data from the American heart association. Circulation. 2024;149:e347-e913. doi: 10.1161/CIR.0000000000001209

 

  1. Moskowitz MA, Lo EH, Iadecola C. The science of stroke: Mechanisms in search of treatments. Neuron. 2010;67:181-198. doi: 10.1016/j.neuron.2010.07.002

 

  1. Bhaskar S, Stanwell P, Cordato D, Attia J, Levi C. Reperfusion therapy in acute ischemic stroke: Dawn of a new era? BMC Neurol. 2018;18:8. doi: 10.1186/s12883-017-1007-y

 

  1. Bacakova L, Zarubova J, Travnickova M, et al. Stem cells: Their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review. Biotechnol Adv. 2018;36:1111-1126. doi: 10.1016/j.biotechadv.2018.03.011

 

  1. Alessandrini M, Preynat-Seauve O, De Bruin K, Pepper MS. Stem cell therapy for neurological disorders. S Afr Med J. 2019;109:70-77. doi: 10.7196/SAMJ.2019.v109i8b.14009

 

  1. Tang YH, Ma YY, Zhang ZJ, Wang YT, Yang GY. Opportunities and challenges: Stem cell-based therapy for the treatment of ischemic stroke. CNS Neurosci Ther. 2015;21:337-347. doi: 10.1111/cns.12386

 

  1. Ryu B, Sekine H, Homma J, et al. Allogeneic adipose-derived mesenchymal stem cell sheet that produces neurological improvement with angiogenesis and neurogenesis in a rat stroke model. J Neurosurg. 2019;132:442-455. doi: 10.3171/2018.11.JNS182331

 

  1. Levy ML, Crawford JR, Dib N, Verkh L, Tankovich N, Cramer SC. Phase I/II study of safety and preliminary efficacy of intravenous allogeneic mesenchymal stem cells in chronic stroke. Stroke. 2019;50:2835-2841. doi: 10.1161/STROKEAHA.119.026318

 

  1. Van Niel, G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213-228. doi: 10.1038/nrm.2017.125

 

  1. Gomes AR, Sangani NB, Fernandes TG, Diogo MM, Curfs LMG, Reutelingsperger CP. Extracellular vesicles in CNS developmental disorders. Int J Mol Sci. 2020;21:9428. doi: 10.3390/ijms21249428

 

  1. Raposo G, Stahl PD. Extracellular vesicles - on the cusp of a new language in the biological sciences. Extracell Vesicles Circ Nucl Acids. 2023;4:240-254. doi: 10.20517/evcna.2023.18

 

  1. Jin S, Lv Z, Kang L, et al. Next generation of neurological therapeutics: Native and bioengineered extracellular vesicles derived from stem cells. Asian J Pharm Sci. 2022;17:779-797. doi: 10.1016/j.ajps.2022.10.002

 

  1. An Z, Tian J, Liu Y, et al. Exosomes as a cell-free therapy for myocardial injury following acute myocardial infarction or ischemic reperfusion. Aging Dis. 2022;13:1770-1786. doi: 10.14336/AD.2022.0416

 

  1. Varderidou-Minasian S, Lorenowicz MJ. Mesenchymal stromal/ stem cell-derived extracellular vesicles in tissue repair: Challenges and opportunities. Theranostics. 2020;10:5979-5997. doi: 10.7150/thno.40122

 

  1. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:eaau6977. doi: 10.1126/science.aau6977

 

  1. Gregorius J, Wang C, Stambouli O, et al. Small extracellular vesicles obtained from hypoxic mesenchymal stromal cells have unique characteristics that promote cerebral angiogenesis, brain remodeling and neurological recovery after focal cerebral ischemia in mice. Basic Res Cardiol. 2021;116:40. doi: 10.1007/s00395-021-00881-9

 

  1. Zhang T, Ma S, Lv J, et al. The emerging role of exosomes in Alzheimer’s disease. Ageing Res Rev. 2021;68:101321. doi: 10.1016/j.arr.2021.101321

 

  1. Li L, Zhang Y, Mu J, et al. Transplantation of human mesenchymal stem-cell-derived exosomes immobilized in an adhesive hydrogel for effective treatment of spinal cord injury. Nano Lett. 2020;20:4298-4305. doi: 10.1021/acs.nanolett.0c00929

 

  1. Lai RC, Arslan F, Lee MM, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4:214-222. doi: 10.1016/j.scr.2009.12.003

 

  1. Liu C, He D, Cen H, et al. Nucleic acid functionalized extracellular vesicles as promising therapeutic systems for nanomedicine. Extracell Vesicles Circ Nucl Acids. 2022;3:14-30. doi: 10.20517/evcna.2021.21

 

  1. Jiang W, Xu J. Immune modulation by mesenchymal stem cells. Cell Prolif. 2020;53:e12712. doi: 10.1111/cpr.12712

 

  1. Wechsler LR, Bates D, Stroemer P, Andrews-Zwilling YS, Aizman I. Cell therapy for chronic stroke. Stroke. 2018;49:1066-1074. doi: 10.1161/STROKEAHA.117.018290

 

  1. Brennan M, Layrolle P, Mooney DJ. Biomaterials functionalized with MSC secreted extracellular vesicles and soluble factors for tissue regeneration. Adv Funct Mater. 2020;30:1909125. doi: 10.1002/adfm.201909125

 

  1. Farhat W, Hasan A, Lucia L, Becquart F, Ayoub A, Kobeissy F. Hydrogels for advanced stem cell therapies: A biomimetic materials approach for enhancing natural tissue function. IEEE Rev Biomed Eng. 2019;12:333-351.

 

  1. Youngblood RL, Truong NF, Segura T, Shea LD. It’s all in the delivery: Designing hydrogels for cell and non-viral gene therapies. Mol Ther. 2018;26:2087-2106. doi: 10.1016/j.ymthe.2018.07.022

 

  1. Cheng Q, Hao A, Xing P. Stimulus-responsive luminescent hydrogels: Design and applications. Adv Colloid Interface Sci. 2020;286:102301. doi: 10.1016/j.cis.2020.102301

 

  1. Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. Self-healing injectable hydrogels for tissue regeneration. Chem Rev. 2023;123:834-873. doi: 10.1021/acs.chemrev.2c00179

 

  1. Zhao Y, Song S, Ren X, Zhang J, Lin Q, Zhao Y. Supramolecular adhesive hydrogels for tissue engineering applications. Chem Rev. 2022;122:5604-5640.

 

  1. Lee M, Kim MC, Lee JY. Nanomaterial-based electrically conductive hydrogels for cardiac tissue repair. Int J Nanomed. 2022;17:6181-6200.

 

  1. Kharkar PM, Kiick KL, Kloxin AM. Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem Soc Rev. 2013;42:7335-7372. doi: 10.1039/C3CS60040H

 

  1. Dienes J, Browne S, Farjun B, et al. Semisynthetic hyaluronic acid-based hydrogel promotes recovery of the injured tibialis anterior skeletal muscle form and function. ACS Biomater Sci Eng. 2021;7:1587-1599. doi: 10.1021/acsbiomaterials.0c01751

 

  1. Hu W, Wang Z, Xiao Y, Zhang S, Wang J. Advances in crosslinking strategies of biomedical hydrogels. Biomater Sci. 2019;7:843-855. doi: 10.1039/C8BM01246F

 

  1. Batista RA, Espitia PJP, Quintans JSS, et al. Hydrogel as an alternative structure for food packaging systems. Carbohydr Polym. 2019;205:106-116. doi: 10.1016/j.carbpol.2018.10.006

 

  1. Vashist A, Vashist A, Gupta YK, Ahmad S. Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B. 2014;2:147-166. doi: 10.1039/C3TB21016B

 

  1. Thang NH, Chien TB, Cuong DX. Polymer-based hydrogels applied in drug delivery: An overview. Gels. 2023;9:523. doi: 10.3390/gels9070523

 

  1. Farasati Far B, Isfahani AA, Nasiriyan E, et al. An updated review on advances in hydrogel-based nanoparticles for liver cancer treatment. Livers. 2023;3:161-189. doi: 10.3390/livers3020012

 

  1. Jooken S, Deschaume O, Bartic C. Nanocomposite hydrogels as functional extracellular matrices. Gels. 2023;9:153. doi: 10.3390/gels9020153

 

  1. Xie B, Xie H. Application of stimuli-responsive hydrogel in brain disease treatment. Front Bioeng Biotechnol. 2024;12:1450267.

 

  1. Jiang Y, Wang R, Wang C, et al. Brain microenvironment responsive and pro-angiogenic extracellular vesicle-hydrogel for promoting neurobehavioral recovery in type 2 diabetic mice after stroke. Adv Healthc Mater. 2022;11:e2201150. doi: 10.1002/adhm.202201150

 

  1. Zhu W, Zhang J, Wei Z, Zhang B, Weng X. Advances and progress in self-healing hydrogel and its application in regenerative medicine. Materials (Basel). 2023;16:1215. doi: 10.3390/ma16031215

 

  1. Xu J, Hsu SH. Self-healing hydrogel as an injectable implant: Translation in brain diseases. J Biomed Sci. 2023;30:43.

 

  1. Pei Y, Huang L, Wang T, et al. Bone marrow mesenchymal stem cells loaded into hydrogel/nanofiber composite scaffolds ameliorate ischemic brain injury. Mater Today Adv. 2023;17:100349. doi: 10.1016/j.mtadv.2023.100349

 

  1. Wu X, Guo W, Wang L, et al. An injectable asymmetric-adhesive hydrogel as a GATA6+ cavity macrophage trap to prevent the formation of postoperative adhesions after minimally invasive surgery. Adv Funct Mater. 2022;32:2110066. doi: 10.1002/adfm.202110066

 

  1. Gu C, Li Y, Liu J, et al. Neural stem cell-derived exosomes-loaded adhesive hydrogel controlled-release promotes cerebral angiogenesis and neurological function in ischemic stroke. Exp Neurol. 2023;370:114547. doi: 10.1016/j.expneurol.2023.114547

 

  1. Xu X, Wang L, Jing J, et al. Conductive collagen-based hydrogel combined with electrical stimulation to promote neural stem cell proliferation and differentiation. Front Bioeng Biotechnol. 2022;10:912497. doi: 10.3389/fbioe.2022.912497

 

  1. George PM, Bliss TM, Hua T, et al. Electrical preconditioning of stem cells with a conductive polymer scaffold enhances stroke recovery. Biomaterials. 2017;142:31-40. doi: 10.1016/j.biomaterials.2017.07.020

 

  1. Dong Z, Zhao J, Xu J, Deng W, Sun P. Strongly adhesive, self-healing, hemostatic hydrogel for the repair of traumatic brain injury. Biomacromolecules. 2024;25:2462-2475. doi: 10.1021/acs.biomac.3c01406

 

  1. Khan ZM, Wilts E, Vlaisavljevich E, Long TE, Verbridge SS. Electroresponsive hydrogels for therapeutic applications in the brain. Macromol Biosci. 2022;22:e2100355. doi: 10.1002/mabi.202100355

 

  1. Panwar V, Babu A, Sharma A, et al. Tunable, conductive, self-healing, adhesive and injectable hydrogels for bioelectronics and tissue regeneration applications. J Mater Chem B. 2021;9:6260-6270. doi: 10.1039/D1TB01075A

 

  1. Chen A, Tian H, Yang N, et al. Towards extracellular vesicle delivery systems for tissue regeneration: Material design at the molecular level. Extracell Vesicles Circ Nucl Acids. 2022;3:323-356. doi: 10.20517/evcna.2022.37

 

  1. Wang Y, Tan H, Hui X. Biomaterial scaffolds in regenerative therapy of the central nervous system. Biomed Res Int. 2018;2018:7848901. doi: 10.1155/2018/7848901

 

  1. Mantha S, Pillai S, Khayambashi P, et al. Smart hydrogels in tissue engineering and regenerative medicine. Materials (Basel). 2019;12:3323. doi: 10.3390/ma12203323

 

  1. Moshayedi P, Nih LR, Llorente IL, et al. Systematic optimization of an engineered hydrogel allows for selective control of human neural stem cell survival and differentiation after transplantation in the stroke brain. Biomaterials. 2016;105:145-155. doi: 10.1016/j.biomaterials.2016.07.028

 

  1. Cheng TY, Chen MH, Chang WH, Huang MY, Wang TW. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering. Biomaterials. 2013;34:2005-2016. doi: 10.1016/j.biomaterials.2012.11.043

 

  1. Li Y, Rodrigues J, Tomás H. Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications. Chem Soc Rev. 2012;41:2193-2221. doi: 10.1039/C1CS15203C

 

  1. Li Y, Yang HY, Lee DS. Advances in biodegradable and injectable hydrogels for biomedical applications. J Control Release. 2021;330:151-160. doi: 10.1016/j.jconrel.2020.12.008

 

  1. Lin SH, Huang APH, Hsu SH. Injectable, micellar chitosan self-healing hydrogel for asynchronous dual-drug delivery to treat stroke rats. Adv Funct Mater. 2023;33:2303853. doi: 10.1002/adfm.202303853

 

  1. Tuladhar A, Obermeyer JM, Payne SL, et al. Injectable hydrogel enables local and sustained co-delivery to the brain: Two clinically approved biomolecules, cyclosporine and erythropoietin, accelerate functional recovery in rat model of stroke. Biomaterials. 2020;235:119794. doi: 10.1016/j.biomaterials.2020.119794

 

  1. Basu S, Pacelli S, Paul A. Self-healing DNA-based injectable hydrogels with reversible covalent linkages for controlled drug delivery. Acta Biomater. 2020;105:159-169. doi: 10.1016/j.actbio.2020.01.021

 

  1. Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: Role of inflammatory cells. J Leukoc Biol. 2010;87:779-789. doi: 10.1189/jlb.1109766

 

  1. Gao L, Peng L, Wang J, Zhang JH, Xia Y. Mitochondrial stress: A key role of neuroinflammation in stroke. J Neuroinflammation. 2024;21:44. doi: 10.1186/s12974-024-03033-7

 

  1. Ibrahim AA, Abdel Mageed SS, Safar MM, El-Yamany MF, Oraby MA. MitoQ alleviates hippocampal damage after cerebral ischemia: The potential role of SIRT6 in regulating mitochondrial dysfunction and neuroinflammation. Life Sci. 2023;328:121895. doi: 10.1016/j.lfs.2023.121895

 

  1. Iadecola C, Anrather J. The immunology of stroke: From mechanisms to translation. Nat Med. 2011;17:796-808. doi: 10.1038/nm.2399

 

  1. Huang C, Dong L, Zhao B, et al. Anti-inflammatory hydrogel dressings and skin wound healing. Clin Transl Med. 2022;12:e1094. doi: 10.1002/ctm2.1094

 

  1. Liu Z, Zhang S, Ran Y, et al. Nanoarchitectonics of tannic acid based injectable hydrogel regulate the microglial phenotype to enhance neuroplasticity for poststroke rehabilitation. Biomater Res. 2023;27:108. doi: 10.1186/s40824-023-00444-0

 

  1. Wang Z, Pan J, Yuan R, Chen M, Guo X, Zhou S. Shell-sheddable polymeric micelles alleviate oxidative stress and inflammation for enhanced ischemic stroke therapy. Nano Lett. 2023;23:6544-6552. doi: 10.1021/acs.nanolett.3c01567

 

  1. Jin Y, Kim IY, Kim ID, et al. Biodegradable gelatin microspheres enhance the neuroprotective potency of osteopontin via quick and sustained release in the post-ischemic brain. Acta Biomater. 2014;10:3126-3135. doi: 10.1016/j.actbio.2014.02.045

 

  1. Joachim E, Kim ID, Jin Y, Kim KK, Lee JK, Choi H. Gelatin nanoparticles enhance the neuroprotective effects of intranasally administered osteopontin in rat ischemic stroke model. Drug Deliv Transl Res. 2014;4:395-399. doi: 10.1007/s13346-014-0208-9.

 

  1. González-Nieto D, Fernández-García L, Pérez-Rigueiro J, Guinea GV, Panetsos F. Hydrogels-assisted cell engraftment for repairing the stroke-damaged brain: Chimera or reality. Polymers (Basel). 2018;10:184. doi: 10.3390/polym10020184

 

  1. Loebel C, Rodell CB, Chen MH, Burdick JA. Shear-thinning and self-healing hydrogels as injectable therapeutics and for 3D-printing. Nat Protoc. 2017;12:1521-1541. doi: 10.1038/nprot.2017.053

 

  1. Alonso JM, Andrade Del Olmo J, Perez Gonzalez R, Saez-Martinez V. Injectable hydrogels: From laboratory to industrialization. Polymers (Basel). 2021;13:650. doi: 10.3390/polym13040650

 

  1. Bai Y, Han B, Zhang Y, et al. Advancements in hydrogel application for ischemic stroke therapy. Gels. 2022;8:777. doi: 10.3390/gels8120777

 

  1. Shen Z, Liang Q, Chang Q, Liu Y, Zhang Q. Topological hydrogels for long-term brain signal monitoring, neuromodulation, and stroke treatment. Adv Mater. 2024;36:e2310365. doi: 10.1002/adma.202310365

 

  1. Zheng J, Wei Z, Yang K, et al. Neural stem cell-laden self-healing polysaccharide hydrogel transplantation promotes neurogenesis and functional recovery after cerebral ischemia in rats. ACS Appl Bio Mater. 2021;4:3046-3054. doi: 10.1021/acsabm.0c00934

 

  1. Liu Y, Hsu YH, Huang AP, Hsu SH. Semi-interpenetrating polymer network of hyaluronan and chitosan self-healing hydrogels for central nervous system repair. ACS Appl Mater Interfaces. 2020;12:40108-40120. doi: 10.1021/acsami.0c11433

 

  1. Zhao Y, Li Q, Niu J, et al. Neutrophil membrane-camouflaged polyprodrug nanomedicine for inflammation suppression in ischemic stroke therapy. Adv Mater. 2024;36:e2311803. doi: 10.1002/adma.202311803

 

  1. Shen Z, Zhang C, Wang T, Xu J. Advances in functional hydrogel wound dressings: A review. Polymers (Basel). 2023;15:2000. doi: 10.3390/polym15092000

 

  1. Gomez-Florit M, Pardo A, Domingues RMA, et al. Natural-based hydrogels for tissue engineering applications. Molecules. 2020;25:5858. doi: 10.3390/molecules25245858

 

  1. Liu B, Chen K. Advances in hydrogel-based drug delivery systems. Gels. 2024;10:262. doi: 10.3390/gels10040262

 

  1. Raeisi A, Farjadian F. Commercial hydrogel product for drug delivery based on route of administration. Front Chem. 2024;12:1336717. doi: 10.3389/fchem.2024.1336717

 

  1. Lin KT, Wang A, Nguyen AB, Iyer J, Tran SD. Recent advances in hydrogels: Ophthalmic applications in cell delivery, vitreous substitutes, and ocular adhesives. Biomedicines. 2021;9:1203. doi: 10.3390/biomedicines9091203

 

  1. Mandal A, Clegg JR, Anselmo AC, Mitragotri S. Hydrogels in the clinic. Bioeng Transl Med. 2020;5:e10158. doi: 10.1002/btm2.10158

 

  1. Ballios BG, Cooke MJ, Donaldson L, et al. A hyaluronan-based injectable hydrogel improves the survival and integration of stem cell progeny following transplantation. Stem Cell Reports. 2015;4:1031-1045. doi: 10.1016/j.stemcr.2015.04.008

 

  1. Kang W, Wang L, Fan Y. Viscoelastic response of gray matter and white matter brain tissues under creep and relaxation. J Biomech. 2024;162:111888. doi: 10.1016/j.jbiomech.2023.111888

 

  1. Eberle D, Fodelianaki G, Kurth T, et al. Acquired demyelination but not genetic developmental defects in myelination leads to brain tissue stiffness changes. Brain Multiphys. 2020;1:100019. doi: 10.1016/j.brain.2020.100019

 

  1. Lam J, Lowry WE, Carmichael ST, Segura T. Delivery of iPS-NPCs to the stroke cavity within a hyaluronic acid matrix promotes the differentiation of transplanted cells. Adv Funct Mater. 2014;24:7053-7062. doi: 10.1002/adfm.201401483

 

  1. Axpe E, Orive G, Franze K, Appel EA. Towards brain-tissue-like biomaterials. Nat Commun. 2020;11:3423. doi: 10.1038/s41467-020-17245-x

 

  1. Wang X, Li S, Yu H, et al. The biocompatibility of multi-source stem cells and gelatin-carboxymethyl chitosan-sodium alginate hybrid biomaterials. Tissue Eng Regen Med. 2022;19:491-503. doi: 10.1007/s13770-021-00429-x

 

  1. Wang Z, Wang J, Jin Y, et al. A neuroprotective sericin hydrogel as an effective neuronal cell carrier for the repair of ischemic stroke. ACS Appl Mater Interfaces. 2015;7:24629-24640. doi: 10.1021/acsami.5b06804

 

  1. Ju R, Wen Y, Gou R, Wang Y, Xu Q. The experimental therapy on brain ischemia by improvement of local angiogenesis with tissue engineering in the mouse. Cell Transplant. 2014;23(Suppl 1):S83-95. doi: 10.3727/096368914X684998

 

  1. Modo M, Ghuman H, Azar R, Krafty R, Badylak SF, Hitchens TK. Mapping the acute time course of immune cell infiltration into an ECM hydrogel in a rat model of stroke using (19)F MRI. Biomaterials. 2022;282:121386. doi: 10.1016/j.biomaterials.2022.121386

 

  1. Ghuman H, Hitchens TK, Modo M. A systematic optimization of 19F MR image acquisition to detect macrophage invasion into an ECM hydrogel implanted in the stroke-damaged brain. Neuroimage. 2019;202:116090. doi: 10.1016/j.neuroimage.2019.116090

 

  1. Fernández-García L, Marí-Buyé N, Barios JA, et al. Safety and tolerability of silk fibroin hydrogels implanted into the mouse brain. Acta Biomater. 2016;45:262-275. doi: 10.1016/j.actbio.2016.09.003

 

  1. Griffin DR, Archang MM, Kuan CH, et al. Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing. Nat Mater. 2021;20:560-569. doi: 10.1038/s41563-020-00844-w

 

  1. Ghuman H, Gerwig M, Nicholls FJ, et al. Long-term retention of ECM hydrogel after implantation into a sub-acute stroke cavity reduces lesion volume. Acta Biomater. 2017;63:50-63. doi: 10.1016/j.actbio.2017.09.011

 

  1. Narayan SK, Grace Cherian S, Babu Phaniti P, Babu Chidambaram S, Rachel Vasanthi AH, Arumugam M. Preclinical animal studies in ischemic stroke: Challenges and some solutions. Anim Model Exp Med. 2021;4:104-115. doi: 10.1002/ame2.12166

 

  1. Xu L, Sun X, Griffiths B, et al. Sexual dimorphism in brain sirtuin-1 and m6A methylated sirtuin-1 mRNA, and in protection with post-injury anti-miR-200c treatment, after experimental stroke in aged mice. Aging Dis. 2023;14:892-903. doi: 10.14336/AD.2022.1225

 

  1. Kelly-Hayes M. Influence of age and health behaviors on stroke risk: Lessons from longitudinal studies. J Am Geriatr Soc. 2010;58(Suppl 2):S325-S328. doi: 10.1111/j.1532-5415.2010.02915.x

 

  1. Stamatovic SM, Martinez-Revollar G, Hu A, Choi J, Keep RF, Andjelkovic AV. Decline in Sirtuin-1 expression and activity plays a critical role in blood-brain barrier permeability in aging. Neurobiol Dis. 2019;126:105-116. doi: 10.1016/j.nbd.2018.09.006

 

  1. Bots SH, Peters SAE, Woodward M. Sex differences in coronary heart disease and stroke mortality: A global assessment of the effect of ageing between 1980 and 2010. BMJ Glob Health. 2017;2:e000298. doi: 10.1136/bmjgh-2017-000298

 

  1. Liu F, Lang J, Li J, Benashski SE, Siegel M, Xu Y, McCullough LD. Sex differences in the response to poly(ADP-ribose) polymerase-1 deletion and caspase inhibition after stroke. Stroke. 2011;42:1090-1096. doi: 10.1161/STROKEAHA.110.594861

 

  1. Li J, McCullough LD. Sex differences in minocycline-induced neuroprotection after experimental stroke. J Cereb Blood Flow Metab. 2009;29:670-674. doi: 10.1038/jcbfm.2009.3

 

  1. McCullough LD, Zeng Z, Blizzard KK, Debchoudhury I, Hurn PD. Ischemic nitric oxide and poly (ADP-ribose) polymerase-1 in cerebral ischemia: male toxicity, female protection. J Cereb Blood Flow Metab. 2005;25:502-512. doi: 10.1038/sj.jcbfm.9600059

 

  1. Tsintou M, Dalamagkas K, Moore TL, et al. The use of hydrogel-delivered extracellular vesicles in recovery of motor function in stroke: A testable experimental hypothesis for clinical translation including behavioral and neuroimaging assessment approaches. Neural Regen Res. 2021;16:605-613. doi: 10.4103/1673-5374.295269

 

  1. Lin X, Wang H, Huang S, et al. A reliable nonhuman primate model of ischemic stroke with reproducible infarct size and long-term sensorimotor deficits. Aging Dis. 2023;14:245-255. doi: 10.14336/AD.2022.0722

 

  1. Tsintou M, Dalamagkas K, Makris N. Advancing research in regeneration and repair of the motor circuitry: Non-human primate models and imaging scales as the missing links for successfully translating injectable therapeutics to the clinic. Int J Stem Cell Res Ther. 2016;3:042. doi: 10.23937/2469-570X/1410042

 

  1. Cook DJ, Nguyen C, Chun HN, et al. Hydrogel-delivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke. J Cereb Blood Flow Metab. 2017;37:1030-1045. doi: 10.1177/0271678X16649964

 

  1. Totten JD, Alhadrami HA, Jiffri EH, McMullen CJ, Seib FP, Carswell HV. Towards clinical translation of ‘second-generation’ regenerative stroke therapies: Hydrogels as game changers? Trends Biotechnol. 2022;40:708-720. doi: 10.1016/j.tibtech.2021.10.009

 

  1. Chen YS, Harn HJ, Chiou TW. The role of biomaterials in implantation for central nervous system injury. Cell Transplant. 2018;27:407-422. doi: 10.1177/0963689717732991

 

  1. Oliveira EP, Malysz-Cymborska I, Golubczyk D, et al. Advances in bioinks and in vivo imaging of biomaterials for CNS applications. Acta Biomater. 2019;95:60-72. doi: 10.1016/j.actbio.2019.05.006

 

  1. Bible E, Dell’Acqua F, Solanky B, et al. Non-invasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by (19)F- and diffusion-MRI. Biomaterials. 2012;33:2858-2871. doi: 10.1016/j.biomaterials.2011.12.033

 

  1. Jin T, Nicholls FJ, Crum WR, Ghuman H, Badylak SF, Modo M. Diamagnetic chemical exchange saturation transfer (diaCEST) affords magnetic resonance imaging of extracellular matrix hydrogel implantation in a rat model of stroke. Biomaterials. 2017;113:176-190. doi: 10.1016/j.biomaterials.2016.10.043

 

  1. Han X, Huang J, To AKW, et al. CEST MRI detectable liposomal hydrogels for multiparametric monitoring in the brain at 3T. Theranostics. 2020;10:2215-2228. doi: 10.7150/thno.40146
Conflict of interest
Zhibin Wang, Qianqian Liu, and Jie Chen are employees of Lingyi iTECH Manufacturing Co., Ltd., Ankerui (Shanxi) Biological Cell Co., Ltd., and Jiangsu Charity Biotech Co., Ltd., respectively. There is no conflict of interest for this review.
Share
Back to top