·
REVIEW
·

Electrostrategies in orthopaedic research

Jing-Cheng Cao1,2,3# Ze-Yu Shang4# Yi-Fan Zhang1,2,3# Hong-Zhi Lv1,2,3 Tai-Long Shi1,2,3 Yu-Qin Zhang1,2,3 Hai-Cheng Wang5 Yi-Peng Jiang1,2,3 Yi-Sheng Chen6 Wei Chen1,2,3* Meng-Xuan Yao1,2,3*
Show Less
1 Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
2 Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei Province, China
3 NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei Province, China
4 Advanced Biomedical Imaging, University College London, London, United Kingdom
5 Department of Orthopaedics, Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine in Hebei Province, Cangzhou, Hebei Province, China
6 Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai, China
BMT 2025 , 6(3), 294–313; https://doi.org/10.12336/bmt.24.00011
Submitted: 6 March 2024 | Revised: 30 April 2024 | Accepted: 27 July 2024 | Published: 22 September 2025
Copyright © 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Electrostrategies encompassing electrical stimulation and biomaterials with conductive or piezoelectric properties have garnered escalating interest within the orthopaedic research domain. We conducted a comprehensive bibliometric analysis of 2810 publications on electrostrategies in orthopaedic research a field for which no extensive overview has been provided to date. This study highlighted two main phases of progress since 1980 indicating an increasing emphasis on electrostrategies. We identified key contributors including institutions and authors with concentrated activity in North America, Europe and Asia. The study also outlined the most influential and co-cited journals in this domain. Our keyword analysis underscored “electrical-stimulation” “bone” and “in vitro” as prevalent themes with a significant focus on the effects of electrical stimulation on bone growth proliferation differentiation and its applications in bone surgeries. The keyword co-occurrence analysis revealed four major thematic clusters: “electrical-stimulation” “bone” “surgery” and “bone-mineral density.” Our findings underscored essential research directions such as the manufacturing and application of conductive and piezoelectric biomaterials and electrically-guided stem cell differentiation. The study also pointed out the potential to enhance orthopaedic treatment methods and patients’ quality of life. Future research should focus on refining electrical stimulation conditions developing new piezoelectric materials and advancing personalised tissue engineering strategies. In conclusion this study illuminates the global trends and emerging hotspots of electrostrategies in orthopaedic research providing a valuable reference for its further application and understanding in the field.

Keywords
Bibliometric analysis
Conductive biomaterials
Electrical stimulation
Electrostrategies
Piezoelectric properties
Funding
This study was funded by the Hebei Province Graduate Innovation Funding Project (No. CXZZBS2024124), the Key Supported Projects of the Joint Fund of the National Natural Science Foundation of China (No. U22A20357), and the National Natural Science Youth Foundation of China (No. 82102584).
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

  1. Baek S, Park H, Igci FD, Lee D. Electrical stimulation of human adipose-derived mesenchymal stem cells on O2 plasma-treated ITO glass promotes osteogenic differentiation. Int J Mol Sci. 2022;23:12490. doi: 10.3390/ijms232012490

 

  1. Gu J, He X, Chen X, Dong L, Weng W, Cheng K. Effects of electrical stimulation on cytokine-induced macrophage polarization. J Tissue Eng Regen Med. 2022;16:448-459. doi: 10.1002/term.3292

 

  1. Nicksic PJ, Donnelly DT, Verma N, et al. Electrical stimulation of acute fractures: A narrative review of stimulation protocols and device specifications. Front Bioeng Biotechnol. 2022;10:879187. doi: 10.3389/fbioe.2022.879187

 

  1. Martin RB, Burr DB, Sharkey NA. Skeletal Tissue Mechanics. New York: Springer New York: 1998.

 

  1. Ahn AC, Grodzinsky AJ. Relevance of collagen piezoelectricity to “Wolff’s Law”: A critical review. Med Eng Phys. 2009;31:733-741. doi: 10.1016/j.medengphy.2009.02.006

 

  1. Goldenberg DM, Hansen HJ. Electric enhancement of bone healing. Science. 1972;175:1118-1120.

 

  1. Bassett CA, Pawluk RJ, Becker RO. Effects of electric currents on bone in vivo. Nature. 1964;204:652-654. doi: 10.1038/204652a0

 

  1. Kohata K, Itoh S, Horiuchi N, Yoshioka T, Yamashita K. The role of the collaborative functions of the composite structure of organic and inorganic constituents and their influence on the electrical properties of human bone. Biomed Mater Eng. 2016;27:305-314. doi: 10.3233/BME-161587

 

  1. Guillot-Ferriols M, Lanceros-Méndez S, Gómez Ribelles JL, Gallego Ferrer G. Electrical stimulation: Effective cue to direct osteogenic differentiation of mesenchymal stem cells? Biomater Adv. 2022;138:212918. doi: 10.1016/j.bioadv.2022.212918

 

  1. Qiao Z, Lian M, Liu X, et al. Electreted sandwich membranes with persistent electrical stimulation for enhanced bone regeneration. ACS Appl Mater Interfaces. 2022;14:31655-31666. doi: 10.1021/acsami.2c06665

 

  1. Bhaskar N, Kachappilly MC, Bhushan V, Pandya HJ, Basu B. Electrical field stimulated modulation of cell fate of pre-osteoblasts on PVDF/ BT/MWCNT based electroactive biomaterials. J Biomed Mater Res A. 2023;111:340-353. doi: 10.1002/jbm.a.37472

 

  1. Wu H, Dong H, Tang Z, et al. Electrical stimulation of piezoelectric BaTiO3 coated Ti6Al4V scaffolds promotes anti-inflammatory polarization of macrophages and bone repair via MAPK/JNK inhibition and OXPHOS activation. Biomaterials. 2023;293:121990. doi: 10.1016/j.biomaterials.2022.121990

 

  1. Krech ED, LaPierre LJ, Tuncdemir S, et al. Design considerations for piezoelectrically powered electrical stimulation: The balance between power generation and fatigue resistance. J Mech Behav Biomed Mater. 2022;126:104976.

 

  1. Xu J, He Y, Sun Y, et al. Micropatterned polypyrrole/hydroxyapatite composite coatings promoting osteoinductive activity by electrical stimulation. Coatings. 2022;12:849.

 

  1. Chen J, Song L, Qi F, et al. Enhanced bone regeneration via ZIF-8 decorated hierarchical polyvinylidene fluoride piezoelectric foam nanogenerator: Coupling of bioelectricity, angiogenesis, and osteogenesis. Nano Energy. 2023;106:108076.

 

  1. Qi F, Gao X, Shuai Y, et al. Magnetic-driven wireless electrical stimulation in a scaffold. Compos B Eng. 2022;237:109864. doi: 10.1016/j.compositesb.2022.109864

 

  1. Najjari A, Mehdinavaz Aghdam R, Ebrahimi SAS, et al. Smart piezoelectric biomaterials for tissue engineering and regenerative medicine: A review. Biomed Tech (Berl). 2022;67:71-88. doi: 10.1515/bmt-2021-0265

 

  1. Li J, Feng Y, Chen W, et al. Electroactive materials: Innovative antibacterial platforms for biomedical applications. Prog Mater Sci. 2023;132:101045. doi: 10.1016/j.pmatsci.2022.101045

 

  1. Silva CA, Fernandes MM, Ribeiro C, Lanceros-Mendez S. Two- and three-dimensional piezoelectric scaffolds for bone tissue engineering. Colloids Surf B Biointerfaces. 2022;218:112708. doi: 10.1016/j.colsurfb.2022.112708

 

  1. Liu J, Hou Z, Qu C, Pan S. Experimental study on the coupling between the piezoelectric and streaming potential in wet bone. J Biomech. 2023;147:111454. doi: 10.1016/j.jbiomech.2023.111454

 

  1. Yang C, Ji J, Lv Y, Li Z, Luo D. Application of piezoelectric material and devices in bone regeneration. Nanomaterials (Basel). 2022;12:4386. doi: 10.3390/nano12244386

 

  1. Goonoo N, Bhaw-Luximon A. Piezoelectric polymeric scaffold materials as biomechanical cellular stimuli to enhance tissue regeneration. Mater Today Commun. 2022;31:103491. doi: 10.1016/j.mtcomm.2022.103491

 

  1. Zheng Y, Zhao L, Li Y, et al. Nanostructure mediated piezoelectric effect of tetragonal BaTiO(3) coatings on bone mesenchymal stem cell shape and osteogenic differentiation. Int J Mol Sci. 2023;24:4051. doi: 10.3390/ijms24044051

 

  1. Hood WW, Wilson CS. The literature of bibliometrics, scientometrics, and informetrics. Scientometrics. 2001;52:291-314.

 

  1. Zupic I, Čater T. Bibliometric methods in management and organization. Organ Res Methods. 2014;18:429-472.

 

  1. Bölte S, Poustka F, Constantino JN. Assessing autistic traits: Cross-cultural validation of the Social Responsiveness Scale (SRS). Autism Res. 2008;1:354-363. doi: 10.1002/aur.49

 

  1. Martín-Martín A, Thelwall M, Orduna-Malea E, Delgado López- Cózar E. Google Scholar, Microsoft academic, scopus, dimensions, web of science, and opencitations’ COCI: A multidisciplinary comparison of coverage via citations. Scientometrics. 2021;126:871-906.

 

  1. Huang X, Yang Z, Zhang J, et al. A Bibliometric Analysis Based on Web of Science: Current perspectives and potential trends of SMAD7 in oncology. Front Cell Dev Biol. 2021;9:712732. doi: 10.3389/fcell.2021.712732

 

  1. Aria M, Cuccurullo C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J Informetr. 2017;11:959-975. doi: 10.1016/j.joi.2017.08.007

 

  1. Zhang YQ, Geng Q, Li C, et al. Application of piezoelectric materials in the field of bone: A bibliometric analysis. Front Bioeng Biotechnol. 2023;11:1210637. doi: 10.3389/fbioe.2023.1210637

 

  1. van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84:523-538. doi: 10.1007/s11192-009-0146-3

 

  1. Cobo MJ, López-Herrera AG, Herrera-Viedma E, Herrera F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. J Informetr. 2011;5:146-166. doi: 10.1016/j.joi.2010.10.002

 

  1. Liu Z, Wan X, Wang ZL, Li L. Electroactive biomaterials and systems for cell fate determination and tissue regeneration: Design and applications. Adv Mater. 2021;33:e2007429. doi: 10.1002/adma.202007429

 

  1. Qian Y, Zhao X, Han Q, Chen W, Li H, Yuan W. An integrated multi-layer 3D-fabrication of PDA/RGD coated graphene loaded PCL nanoscaffold for peripheral nerve restoration. Nat Commun. 2018;9:323. doi: 10.1038/s41467-017-02598-7

 

  1. Roshanbinfar K, Vogt L, Ruther F, Roether JA, Boccaccini AR, Engel FB. Nanofibrous composite with tailorable electrical and mechanical properties for cardiac tissue engineering. Adv Funct Mater. 2020;30:1908612. doi: 10.1002/adfm.201908612

 

  1. Roshanbinfar K, Vogt L, Greber B, et al. Electroconductive biohybrid hydrogel for enhanced maturation and beating properties of engineered cardiac tissues. Adv Funct Mater. 2018;28:1803951. doi: 10.1002/adfm.201803951

 

  1. Ferrari AC, Basko DM. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol. 2013;8:235-246. doi: 10.1038/nnano.2013.46

 

  1. Jiang N, Tan P, He M, Zhang J, Sun D, Zhu S. Graphene reinforced polyether ether ketone nanocomposites for bone repair applications. Polym Test. 2021;100:107276. doi: 10.1016/j.polymertesting.2021.107276

 

  1. Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321:385-388. doi: 10.1126/science.1157996

 

  1. Du Z, Wang C, Zhang R, Wang X, Li X. Applications of graphene and its derivatives in bone repair: Advantages for promoting bone formation and providing real-time detection, challenges and future prospects. Int J Nanomedicine. 2020;15:7523-7551. doi: 10.2147/IJN.S271917

 

  1. Li J, Liu X, Crook JM, Wallace GG. Development of 3D printable graphene oxide based bio-ink for cell support and tissue engineering. Front Bioeng Biotechnol. 2022;10:994776. doi: 10.3389/fbioe.2022.994776

 

  1. Xue W, Du J, Li Q, et al. Preparation, properties, and application of graphene-based materials in tissue engineering scaffolds. Tissue Eng Part B Rev. 2022;28:1121-1136. doi: 10.1089/ten.TEB.2021.0127

 

  1. Yang M, Han Y, Bianco A, Ji DK. Recent progress on second near-infrared emitting carbon dots in biomedicine. ACS Nano. 2024;18:11560-11572. doi: 10.1021/acsnano.4c00820

 

  1. Qiao K, Guo S, Zheng Y, et al. Effects of graphene on the structure, properties, electro-response behaviors of GO/PAA composite hydrogels and influence of electro-mechanical coupling on BMSC differentiation. Mater Sci Eng C Mater Biol Appl. 2018;93:853-863. doi: 10.1016/j.msec.2018.08.047

 

  1. Yao Q, Liu H, Lin X, et al. 3D interpenetrated graphene foam/58S bioactive glass scaffolds for electrical-stimulation-assisted differentiation of rabbit mesenchymal stem cells to enhance bone regeneration. J Biomed Nanotechnol. 2019;15:602-611. doi: 10.1166/jbn.2019.2703

 

  1. Balikov DA, Fang B, Chun YW, et al. Directing lineage specification of human mesenchymal stem cells by decoupling electrical stimulation and physical patterning on unmodified graphene. Nanoscale. 2016;8:13730-13739.

 

  1. Wang W, Junior JRP, Nalesso PRL, et al. Engineered 3D printed poly(ɛ-caprolactone)/graphene scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2019;100:759-770. doi: 10.1016/j.msec.2019.03.047

 

  1. More N, Srivastava A, Kapusetti G. Graphene oxide reinforcement enhances the piezoelectric and mechanical properties of poly(3- hydroxybutyrate-co-3-hydroxy valerate)-based nanofibrous scaffolds for improved proliferation of chondrocytes and ECM production. ACS Appl Bio Mater. 2020;3:6823-6835. doi: 10.1021/acsabm.0c00765

 

  1. Lai YH, Chen YH, Pal A, et al. Regulation of cell differentiation via synergistic self-powered stimulation and degradation behavior of a biodegradable composite piezoelectric scaffold for cartilage tissue. Nano Energy. 2021;90:106545. doi: 10.1016/j.nanoen.2021.106545

 

  1. Tang Y, Chen L, Duan Z, Zhao K, Wu Z. Graphene/barium titanate/ polymethyl methacrylate bio-piezoelectric composites for biomedical application. Ceram Int. 2020;46:6567-6574. doi: 10.1016/j.ceramint.2019.11.142

 

  1. Ikram R, Shamsuddin SAA, Mohamed Jan B, et al. Impact of graphene derivatives as artificial extracellular matrices on mesenchymal stem cells. Molecules. 2022;27:379. doi: 10.3390/molecules27020379

 

  1. Wu X, Zheng S, Ye Y, Wu Y, Lin K, Su J. Enhanced osteogenic differentiation and bone regeneration of poly(lactic-co-glycolic acid) by graphene via activation of PI3K/Akt/GSK-3β/β-catenin signal circuit. Biomater Sci. 2018;6:1147-1158.

 

  1. Cheng J, Liu J, Wu B, et al. Graphene and its derivatives for bone tissue engineering: In vitro and in vivo evaluation of graphene-based scaffolds, membranes and coatings. Front Bioeng Biotechnol. 2021;9:734688. doi: 10.3389/fbioe.2021.734688

 

  1. Ou L, Lin S, Song B, Liu J, Lai R, Shao L. The mechanisms of graphene-based materials-induced programmed cell death: A review of apoptosis, autophagy, and programmed necrosis. Int J Nanomedicine. 2017;12:6633-6646. doi: 10.2147/IJN.S140526

 

  1. Wang X, Xu S, Zhou S, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials. 2016;83:127-141. doi: 10.1016/j.biomaterials.2016.01.012

 

  1. Merola M, Affatato S. Materials for hip prostheses: A review of wear and loading considerations. Materials (Basel). 2019;12:495. doi: 10.3390/ma12030495

 

  1. Dixon DT, Gomillion CT. Conductive scaffolds for bone tissue engineering: Current state and future outlook. J Funct Biomater. 2021;13:1. doi: 10.3390/jfb13010001

 

  1. Saini M, Singh Y, Arora P, Arora V, Jain K. Implant biomaterials: A comprehensive review. World J Clin Cases. 2015;3:52-57. doi: 10.12998/wjcc.v3.i1.52

 

  1. Sansone V, Pagani D, Melato M. The effects on bone cells of metal ions released from orthopaedic implants. A review. Clin Cases Miner Bone Metab. 2013;10:34-40. doi: 10.11138/ccmbm/2013.10.1.034

 

  1. Xing R, Liu K, Jiao T, et al. An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/ photodynamic therapy. Adv Mater. 2016;28:3669-3676. doi: 10.1002/adma.201600284

 

  1. Xu L, Li X, Takemura T, Hanagata N, Wu G, Chou LL. Genotoxicity and molecular response of silver nanoparticle (NP)-based hydrogel. J Nanobiotechnology. 2012;10:16. doi: 10.1186/1477-3155-10-16

 

  1. Paquet C, de Haan HW, Leek DM, et al. Clusters of superparamagnetic iron oxide nanoparticles encapsulated in a hydrogel: A particle architecture generating a synergistic enhancement of the T2 relaxation. ACS Nano. 2011;5:3104-3112. doi: 10.1021/nn2002272

 

  1. Zare M, Ramezani Z, Rahbar N. Development of zirconia nanoparticles-decorated calcium alginate hydrogel fibers for extraction of organophosphorous pesticides from water and juice samples: Facile synthesis and application with elimination of matrix effects. J Chromatogr A. 2016;1473:28-37. doi: 10.1016/j.chroma.2016.10.071

 

  1. Min JH, Patel M, Koh WG. Incorporation of conductive materials into hydrogels for tissue engineering applications. Polymers (Basel). 2018;10:1078. doi: 10.3390/polym10101078

 

  1. Nekounam H, Allahyari Z, Gholizadeh S, Mirzaei E, Shokrgozar MA, Faridi-Majidi R. Simple and robust fabrication and characterization of conductive carbonized nanofibers loaded with gold nanoparticles for bone tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2020;117:111226. doi: 10.1016/j.msec.2020.111226

 

  1. Huang Y, Du Z, Zheng T, et al. Antibacterial, conductive, and osteocompatible polyorganophosphazene microscaffolds for the repair of infectious calvarial defect. J Biomed Mater Res A. 2021;109:2580-2596. doi: 10.1002/jbm.a.37252

 

  1. Shi X, Wang W, Miao X, et al. Constructing conductive channels between platinum nanoparticles and graphitic carbon nitride by gamma irradiation for an enhanced oxygen reduction reaction. ACS Appl Mater Interfaces. 2020;12:46095-46106. doi: 10.1021/acsami.0c12838

 

  1. Sharma Y, Tiwari A, Hattori S, et al. Fabrication of conducting electrospun nanofibers scaffold for three-dimensional cells culture. Int J Biol Macromol. 2012;51:627-631. doi: 10.1016/j.ijbiomac.2012.06.014

 

  1. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr- Esfahani MH, Ramakrishna S. Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering. Tissue Eng Part A. 2009;15:3605-3619. doi: 10.1089/ten.TEA.2008.0689

 

  1. Zhang D, Liu D, Zhang J, Fong C, Yang M. Gold nanoparticles stimulate differentiation and mineralization of primary osteoblasts through the ERK/MAPK signaling pathway. Mater Sci Eng C Mater Biol Appl. 2014;42:70-77. doi: 10.1016/j.msec.2014.04.042

 

  1. Liang H, Jin C, Ma L, et al. Accelerated bone regeneration by gold-nanoparticle-loaded mesoporous silica through stimulating immunomodulation. ACS Appl Mater Interfaces. 2019;11:41758-41769. doi: 10.1021/acsami.9b16848

 

  1. Durán N, Nakazato G, Seabra AB. Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: An overview and comments. Appl Microbiol Biotechnol. 2016;100;6555-6570. doi: 10.1007/s00253-016-7657-7

 

  1. Meng M, He H, Xiao J, Zhao P, Xie J, Lu Z. Controllable in situ synthesis of silver nanoparticles on multilayered film-coated silk fibers for antibacterial application. J Colloid Interface Sci. 2016;461:369-375. doi: 10.1016/j.jcis.2015.09.038

 

  1. Sobczak-Kupiec A, Malina D, Piatkowski M, Krupa-Zuczek K, Wzorek Z, Tyliszczak B. Physicochemical and biological properties of hydrogel/ gelatin/hydroxyapatite PAA/G/HAp/AgNPs composites modified with silver nanoparticles. J Nanosci Nanotechnol. 2012;12:9302-9311. doi: 10.1166/jnn.2012.6756

 

  1. Ediyilyam S, Lalitha MM, George B, et al. Synthesis, characterization and physicochemical properties of biogenic silver nanoparticle-encapsulated chitosan bionanocomposites. Polymers (Basel). 2022;14:463. doi: 10.3390/polym14030463

 

  1. Selvamani V, Kadian S, Detwiler DA, et al. Laser-assisted nanotexturing and silver immobilization on titanium implant surfaces to enhance bone cell mineralization and antimicrobial properties. Langmuir. 2022;38:4014-4027. doi: 10.1021/acs.langmuir.2c00008

 

  1. Lee S, Kwon D, Yim C, Jeon S. Facile detection of Troponin I using dendritic platinum nanoparticles and capillary tube indicators. Anal Chem. 2015;87:5004-5008. doi: 10.1021/acs.analchem.5b00921

 

  1. Zhou T, Yan L, Xie C, et al. A mussel-inspired persistent ROS-scavenging, electroactive, and osteoinductive scaffold based on electrochemical-driven in situ nanoassembly. Small. 2019;15:e1805440. doi: 10.1002/smll.201805440

 

  1. Meng S, Zhang Z, Rouabhia M. Accelerated osteoblast mineralization on a conductive substrate by multiple electrical stimulation. J Bone Miner Metab. 2011;29:535-544. doi: 10.1007/s00774-010-0257-1

 

  1. Lalegül-Ülker Ö, Elçin AE, Elçin YM. Intrinsically conductive polymer nanocomposites for cellular applications. Adv Exp Med Biol. 2018;1078:135-153. doi: 10.1007/978-981-13-0950-2_8

 

  1. Meng S, Rouabhia M, Zhang Z. Electrical stimulation modulates osteoblast proliferation and bone protein production through heparin-bioactivated conductive scaffolds. Bioelectromagnetics. 2013;34:189-199. doi: 10.1002/bem.21766

 

  1. Yan H, Li L, Wang Z, et al. Mussel-inspired conducting copolymer with aniline tetramer as intelligent biological adhesive for bone tissue engineering. ACS Biomater Sci Eng. 2020;6:634-646. doi: 10.1021/acsbiomaterials.9b01601

 

  1. Park J, Kaliannagounder VK, Jang SR, et al. Electroconductive polythiophene nanocomposite fibrous scaffolds for enhanced osteogenic differentiation via electrical stimulation. ACS Biomater Sci Eng. 2022;8:1975-1986. doi: 10.1021/acsbiomaterials.1c01171

 

  1. Ravikumar K, Boda SK, Basu B. Synergy of substrate conductivity and intermittent electrical stimulation towards osteogenic differentiation of human mesenchymal stem cells. Bioelectrochemistry. 2017;116:52-64. doi: 10.1016/j.bioelechem.2017.03.004

 

  1. Huang Y, Du Z, Li K, et al. ROS-scavenging electroactive polyphosphazene-based core-shell nanofibers for bone regeneration. Adv Fiber Mater. 2022;4:894-907.

 

  1. Huang Y, Du Z, Wei P, et al. Biodegradable microspheres made of conductive polyorganophosphazene showing antioxidant capacity for improved bone regeneration. Chem Eng J. 2020;397:125352. doi: 10.1016/j.cej.2020.125352

 

  1. Rajabi AH, Jaffe M, Arinzeh TL. Piezoelectric materials for tissue regeneration: A review. Acta Biomater. 2015;24:12-23. doi: 10.1016/j.actbio.2015.07.010

 

  1. Jacob J, More N, Kalia K, Kapusetti G. Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm Regen. 2018;38:2. doi: 10.1186/s41232-018-0059-8

 

  1. Samadi A, Salati MA, Safari A, et al. Comparative review of piezoelectric biomaterials approach for bone tissue engineering. J Biomater Sci Polym Ed. 2022;33:1555-1594. doi: 10.1080/09205063.2022.2065409

 

  1. Khare D, Basu B, Dubey AK. Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications. Biomaterials. 2020;258:120280. doi: 10.1016/j.biomaterials.2020.120280

 

  1. Ning C, Zhou Z, Tan G, Zhu Y, Mao C. Electroactive polymers for tissue regeneration: Developments and perspectives. Prog Polym Sci. 2018;81:144-162. doi: 10.1016/j.progpolymsci.2018.01.001

 

  1. Makino T, Nakamura T, Bustamante L, Takayanagi S, Koyama D, Matsukawa M. Piezoelectric and inversely piezoelectric responses of bone tissue plates in the megahertz range. IEEE Trans Ultrason Ferroelectr Freq Control. 2020;67:1525-1532.

 

  1. Swain S, Padhy RN, Rautray TR. Polarized piezoelectric bioceramic composites exhibit antibacterial activity. Mater Chem Phys. 2020;239:122002. doi: 10.1016/j.matchemphys.2019.122002

 

  1. Cai K, Jiao Y, Quan Q, Hao Y, Liu J, Wu L. Improved activity of MC3T3-E1 cells by the exciting piezoelectric BaTiO(3)/TC4 using low-intensity pulsed ultrasound. Bioact Mater. 2021;6:4073-4082. doi: 10.1016/j.bioactmat.2021.04.016

 

  1. Wang Q, Chen Q, Zhu J, Huang C, Darvell BW, Chen Z. Effects of pore shape and porosity on the properties of porous LNKN ceramics as bone substitute. Mater Chem Phys. 2008;109:488-491. doi: 10.1016/j.matchemphys.2007.12.022

 

  1. Poon KK, Wurm MC, Evans DM, Einarsrud MA, Lutz R, Glaum J. Biocompatibility of (Ba,Ca)(Zr,Ti)O(3) piezoelectric ceramics for bone replacement materials. J Biomed Mater Res B Appl Biomater. 2020;108:1295-1303. doi: 10.1002/jbm.b.34477

 

  1. Wang P, Hao L, Wang Z, Wang Y, Guo M, Zhang P. Gadolinium-doped BTO-functionalized nanocomposites with enhanced MRI and x-ray dual imaging to simulate the electrical properties of bone. ACS Appl Mater Interfaces. 2020;12:49464-49479. doi: 10.1021/acsami.0c15837

 

  1. Lim J, Liu YC, Chu YC, et al. Piezoelectric effect stimulates the rearrangement of chondrogenic cells and alters ciliary orientation via atypical PKCζ. Biochem Biophys Rep. 2022;30:101265. doi: 10.1016/j.bbrep.2022.101265

 

  1. Minary-Jolandan M, Yu MF. Uncovering nanoscale electromechanical heterogeneity in the subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone. ACS Nano. 2009;3:1859-1863. doi: 10.1021/nn900472n

 

  1. Zhao F, Zhang C, Liu J, et al. Periosteum structure/function-mimicking bioactive scaffolds with piezoelectric/chem/nano signals for critical-sized bone regeneration. Chem Eng J. 2020;402:126203. doi: 10.1016/j.cej.2020.126203

 

  1. Damaraju SM, Shen Y, Elele E, et al. Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials. 2017;149:51-62. doi: 10.1016/j.biomaterials.2017.09.024

 

  1. Chen W, Yu Z, Pang J, Yu P, Tan G, Ning C. Fabrication of biocompatible potassium sodium niobate piezoelectric ceramic as an electroactive implant. Materials (Basel). 2017;10:345. doi: 10.3390/ma10040345

 

  1. Zhang C, Wang W, Hao X, et al. A novel approach to enhance bone regeneration by controlling the polarity of GaN/AlGaN heterostructures. Adv Funct Mater. 2021;31:2007487. doi: 10.1002/adfm.202007487

 

  1. Kitsara M, Blanquer A, Murillo G, et al. Permanently hydrophilic, piezoelectric PVDF nanofibrous scaffolds promoting unaided electromechanical stimulation on osteoblasts. Nanoscale. 2019;11:8906-8917. doi: 10.1039/C8NR10384D

 

  1. Das R, Curry EJ, Le TT, et al. Biodegradable nanofiber bone-tissue scaffold as remotely-controlled and self-powering electrical stimulator. Nano Energy. 2020;76:105028. doi: 10.1016/j.nanoen.2020.105028

 

  1. Kaliannagounder VK, Raj NPMJ, Unnithan AR, et al. Remotely controlled self-powering electrical stimulators for osteogenic differentiation using bone inspired bioactive piezoelectric whitlockite nanoparticles. Nano Energy. 2021;85:105901. doi: 10.1016/j.nanoen.2021.105901

 

  1. Qi F, Gao X, Peng S, et al. Polyaniline protrusions on MoS2 nanosheets for PVDF scaffolds with improved electrical stimulation. ACS Appl Nano Mater. 2021;4:13955-13966. doi: 10.1021/acsanm.1c03260

 

  1. Zheng T, Zhao H, Huang Y, et al. Piezoelectric calcium/manganese-doped barium titanate nanofibers with improved osteogenic activity. Ceram Int. 2021;47:28778-28789. doi: 10.1016/j.ceramint.2021.07.038

 

  1. Samadian H, Mobasheri H, Hasanpour S, Ai J, Azamie M, Faridi-Majidi R. Electro-conductive carbon nanofibers as the promising interfacial biomaterials for bone tissue engineering. J Mol Liq. 2020;298:112021. doi: 10.1016/j.molliq.2019.112021

 

  1. Barbosa F, Ferreira FC, Silva JC. Piezoelectric electrospun fibrous scaffolds for bone, articular cartilage and osteochondral tissue engineering. Int J Mol Sci. 2022;23:2907. doi: 10.3390/ijms23062907

 

  1. Sun X, Bai Y, Zheng X, et al. Bone piezoelectricity-mimicking nanocomposite membranes enhance osteogenic differentiation of bone marrow mesenchymal stem cells by amplifying cell adhesion and actin cytoskeleton. J Biomed Nanotechnol. 2021;17:1058-1067. doi: 10.1166/jbn.2021.3090

 

  1. Fan B, Guo Z, Li X, et al. Electroactive barium titanate coated titanium scaffold improves osteogenesis and osseointegration with low-intensity pulsed ultrasound for large segmental bone defects. Bioact Mater. 2020;5:1087-1101. doi: 10.1016/j.bioactmat.2020.07.001

 

  1. Morales-Román RM, Guillot-Ferriols M, Roig-Pérez L, Lanceros- Mendez S, Gallego-Ferrer G, Gómez Ribelles JL. Freeze-extraction microporous electroactive supports for cell culture. Eur Polym J. 2019;119:531-540.

 

  1. Liao CC, Li JM, Hsieh CL. Auricular electrical stimulation alleviates headache through cgrp/cox-2/trpv1/trpa1 signaling pathways in a nitroglycerin-induced migraine rat model. Evid Based Complement Alternat Med. 2019;2019:2413919. doi: 10.1155/2019/2413919

 

  1. Hirano K, Yamauchi H, Nakahara N, Kinoshita K, Yamaguchi M, Takemori S. X-ray diffraction analysis to explore molecular traces of eccentric contraction on rat skeletal muscle parallelly evaluated with signal protein phosphorylation levels. Int J Mol Sci. 2021;22:12644.doi: 10.3390/ijms222312644

 

  1. Pan LL, Ke JQ, Zhao CC, et al. Electrical stimulation improves rat muscle dysfunction caused by chronic intermittent hypoxia-hypercapnia via regulation of miRNA-related signaling pathways. PLoS One. 2016;11:e0152525. doi: 10.1371/journal.pone.0152525

 

  1. Zhang R, Han S, Liang L, et al. Ultrasonic-driven electrical signal-iron ion synergistic stimulation based on piezotronics induced neural differentiation of mesenchymal stem cells on FeOOH/PVDF nanofibrous hybrid membrane. Nano Energy. 2021;87:106192. doi: 10.1016/j.nanoen.2021.106192

 

  1. Scarisoreanu ND, Craciun F, Ion V, et al. Lead-free piezoelectric (Ba,Ca) (Zr,Ti)O(3) thin films for biocompatible and flexible devices. ACS Appl Mater Interfaces. 2017;9:266-278. doi: 10.1021/acsami.6b14774

 

  1. Zhang J, He X, Zhou Z, et al. The osteogenic response to chirality-patterned surface potential distribution of CFO/P(VDF-TrFE) membranes. Biomater Sci. 2022;10:4576-4587.

 

  1. Shake JG, Gruber PJ, Baumgartner WA, et al. Mesenchymal stem cell implantation in a swine myocardial infarct model: Engraftment and functional effects. Ann Thorac Surg. 2002;73:1919-1925; discussion 1926. doi: 10.1016/s0003-4975(02)03517-8

 

  1. Bolger WE. Piezoelectric surgical device in endoscopic sinus surgery: An initial clinical experience. Ann Otol Rhinol Laryngol. 2009;118:621-624. doi: 10.1177/000348940911800903

 

  1. Salami A, Mora R, Crippa B, Gentile R, Dellepiane M, Guastini L. Potential nerve damage following contact with a piezoelectric device. Ann Otol Rhinol Laryngol. 2011;120:249-254. doi: 10.1177/000348941112000406

 

  1. Crippa B, Salzano FA, Mora R, Dellepiane M, Salami A, Guastini L. Comparison of postoperative pain: Piezoelectric device versus microdrill. Eur Arch Otorhinolaryngol. 2011;268:1279-1282. doi: 10.1007/s00405-011-1520-3

 

  1. Rullo R, Addabbo F, Papaccio G, D’Aquino R, Festa VM. Piezoelectric device vs. conventional rotative instruments in impacted third molar surgery: Relationships between surgical difficulty and postoperative pain with histological evaluations. J Craniomaxillofac Surg. 2013;41:e33-e38. doi: 10.1016/j.jcms.2012.07.007

 

  1. Furuta I, Ogita H, Iguchi F, et al. Efficient bone conduction hearing device with a novel piezoelectric transducer using skin as an electrode. IEEE Trans Biomed Eng. 2022;69:3326-3333. doi: 10.1109/TBME.2022.3168229

 

  1. Bhargava N, Perrotti V, Caponio VCA, Matsubara VH, Patalwala D, Quaranta A. Comparison of heat production and bone architecture changes in the implant site preparation with compressive osteotomes, osseodensification technique, piezoelectric devices, and standard drills: An ex vivo study on porcine ribs. Odontology. 2023;111:142-153. doi: 10.1007/s10266-022-00730-8

 

  1. Valente NA, Cosma L, Nocca G, D’Addona A, Lajolo C. Piezoelectric device versus conventional osteotomy instruments in the comparison of three different bone harvesting methods: An istomorphometric, phonometric, and chronometric evaluation. Int J Oral Maxillofac Implants. 2019;34:1070-1077. doi: 10.11607/jomi.7309

 

  1. De Castro DK, Fay A, Wladis EJ, et al. Self-irrigating piezoelectric device in orbital surgery. Ophthalmic Plast Reconstr Surg. 2013;29:118-122. doi: 10.1097/IOP.0b013e31827f59d4

 

  1. Jamil FA, Al-Adili SS. Lateral ridge splitting (expansion) with immediate placement of endosseous dental implant using piezoelectric device: A new treatment protocol. J Craniofac Surg. 2017;28:434-439. doi: 10.1097/SCS.0000000000003229

 

  1. Happe A. Use of a piezoelectric surgical device to harvest bone grafts from the mandibular ramus: Report of 40 cases. Int J Periodontics Restorative Dent. 2007;27:241-249.

 

  1. Chaichana KL, Jallo GI, Dorafshar AH, Ahn ES. Novel use of an ultrasonic bone-cutting device for endoscopic-assisted craniosynostosis surgery. Childs Nerv Syst. 2013;29:1163-1168. doi: 10.1007/s00381-013-2043-6

 

  1. Silva D, Martins O, Matos S, Lopes P, Rolo T, Baptista I. Histological and profilometric evaluation of the root surface after instrumentation with a new piezoelectric device - ex vivo study. Int J Dent Hyg. 2015;13:138-144. doi: 10.1111/idh.12091

 

  1. Zandi M, Heidari A, Jamshidi S, et al. Histological evaluation of inferior alveolar nerve injury after osteotomy of mandibular buccal cortex using piezoelectric versus conventional rotary devices: A split-mouth randomised study in rabbits. Br J Oral Maxillofac Surg. 2021;59:561-566. doi: 10.1016/j.bjoms.2020.08.106

 

  1. Bharathi J, Mittal S, Tewari S, et al. Effect of the piezoelectric device on intraoperative hemorrhage control and quality of life after endodontic microsurgery: A randomized clinical study. J Endod. 2021;47:1052-1060. doi: 10.1016/j.joen.2021.04.013

 

  1. Stacchi C, Berton F, Turco G, et al. Micromorphometric analysis of bone blocks harvested with eight different ultrasonic and sonic devices for osseous surgery. J Craniomaxillofac Surg. 2016;44:1143-1151. doi: 10.1016/j.jcms.2016.04.024

 

  1. Tanaka SM. Effect of stimulation frequency on osteogenic capability of electrical muscle stimulation. J Biomechan Sci Eng. 2014;9:14-00114.

 

  1. Leppik L, Oliveira KMC, Bhavsar MB, Barker JH. Electrical stimulation in bone tissue engineering treatments. Eur J Trauma Emerg Surg. 2020;46:231-244. doi: 10.1007/s00068-020-01324-1

 

  1. Inoue S, Hatakeyama J, Aoki H, et al. Utilization of mechanical stress to treat osteoporosis: the effects of electrical stimulation, radial extracorporeal shock wave, and ultrasound on experimental osteoporosis in ovariectomized rats. Calcif Tissue Int. 2021;109:215-229. doi: 10.1007/s00223-021-00831-6

 

  1. Tian J, Shi R, Liu Z, et al. Self-powered implantable electrical stimulator for osteoblasts’ proliferation and differentiation. Nano Energy. 2019;59:705-714. doi: 10.1016/j.nanoen.2019.02.073
Conflict of interest
All authors declare that they have no conflict of interest.
Share
Back to top